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Objectives: To investigate the prognostic role of radiomic features based on
pretreatment MRI in predicting progression-free survival (PFS) of locally advanced
cervical cancer (LACC).

Methods: All 181 women with histologically confirmed LACC were randomly divided into
the training cohort (n = 126) and the validation cohort (n = 55). For each patient, we
extracted radiomic features from whole tumors on sagittal T2WI and axial DWI. The least
absolute shrinkage and selection operator (LASSO) algorithm combined with the Cox
survival analysis was applied to select features and construct a radiomic score (Rad-
score) model. The cutoff value of the Rad-score was used to divide the patients into high-
and low-risk groups by the X-tile. Kaplan–Meier analysis and log-rank test were used to
assess the prognostic value of the Rad-score. In addition, we totally developed three
models, the clinical model, the Rad-score, and the combined nomogram.

Results: The Rad-score demonstrated good performance in stratifying patients into high-
and low-risk groups of progression in the training (HR = 3.279, 95% CI: 2.865–3.693,
p < 0.0001) and validation cohorts (HR = 2.247, 95% CI: 1.735–2.759, p < 0.0001).
Otherwise, the combined nomogram, integrating the Rad-score and patient’s age,
hemoglobin, white blood cell, and lymph vascular space invasion, demonstrated
prominent discrimination, yielding an AUC of 0.879 (95% CI, 0.811–0.947) in the
training cohort and 0.820 (95% CI, 0.668–0.971) in the validation cohort. The Delong
test verified that the combined nomogram showed better performance in estimating PFS
than the clinical model and Rad-score in the training cohort (p = 0.038, p = 0.043).

Conclusion: The radiomics nomogram performed well in individualized PFS estimation
for the patients with LACC, which might guide individual treatment decisions.

Keywords: locally advanced cervical cancer, magnetic resonance imaging, radiomics, progression-free
survival, MRI
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INTRODUCTION

Cervical cancer is one of the most common cancer in women
worldwide and an important cause of cancer-related death among
women (1). In developing countries, screening has not yet been fully
universal, and the incidence and mortality of cervical cancer are still
on the rise. In China, most cervical cancer patients are at advanced
stages when diagnosed (2). Radical hysterectomy or concurrent
chemoradiotherapy is the standard treatment protocol for locally
advanced cervical cancer (LACC) (3). Nevertheless, recurrence or
metastasis frequently occurred in these patients, with only 50%
~60% 5-year survival rate. Thence, pretreatment prediction for the
high-risk recurrence or distant metastasis is important for the
development of individualized treatment protocols.

Several clinical factors have already been identified as risk factors
in cervical cancer patients, including International Federation of
Gynecology and Obstetrics (FIGO) stage, lymph node metastasis
(LNM), lymph vascular space invasion (LVSI), and depth of
invasion (4, 5). Nevertheless, even if the clinical stage and
treatment plan of the patient are similar, the clinical outcome can
vary widely. These findings imply that the present prognostic model
could not provide adequate prognostic information and correctly
assess the intrinsic heterogeneity of tumors. Hence, new prognostic
biomarkers are required for individual treatment.

Pretreatment magnetic resonance imaging (MRI) can supply
more details about tumor heterogeneity than tissue samples and
assist in determining the tumor size, location, degree of invasion
into adjacent organs, and LNM (6, 7). The emerging radiomics
holds great potential for facilitating better clinical decision-
making. Radiomics refers to the conversion of medical images
into mineable high-dimensional data via automatic high-
throughput extraction of data characterization algorithms (8,
9). The main function of radiomics is that the image data-mining
method can detect the intrinsic heterogeneity of tumors,
unidentifiable by radiologists, and provide decision support
noninvasively for oncology at low cost (10, 11). According to
previous studies, radiomics features could predict the survival
outcomes and recurrence, evaluate tumor subtype and stage,
monitor therapeutic response, and detect LNM or distant
metastasis (12–14). It is unknown whether radiomics
signatures of pretreatment MRI can predict progression-free
survival (PFS) in LACC patients who received radical
hysterectomy without preoperative neoadjuvant chemotherapy.

Therefore, the purpose of our study is to develop and validate
a noninvasive radiomics signature based on pretreatment MRI
for the PFS prediction in patients with LACC.
MATERIALS AND METHODS

Patients
We identified 181 consecutive women with LACC who underwent
surgeries following pretreatment MRI using a 3.0-T scanner at our
institution between January 2011 and February 2017 (to ensure a
minimum follow-up of 3 years). The inclusion criteria were as
follows (Supplementary Figure S1): (i) patients who underwent
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radical hysterectomies and pelvic lymphadenectomies; (ii) patients
who have not received treatment before surgery and the
clinicopathological data are complete; and (iii) sagittal T2-
weighted imaging (T2WI) and axial diffusion-weighted imaging
(DWI) were performed less than the 2-week period before surgery.
The exclusion criteria were as follows: (i) lesions invisible on axial
DWI or sagittal T2WI; (ii) poor image quality due to the movement
of the patient during examination or the chemical shift artifact of
the gas in the colorectum; (iii) patients who underwent preoperative
therapies; and (iv) patients with other cancers at the same time.

Follow-Up and Prognosis Evaluation
Information was collected from telephone consultations,
outpatient medical records, and social security death indices.
In our study, the endpoint event was PFS, which was defined as
the time from the date of surgery until any recurrence (local or
distant recurrence, metastasis). Clinical follow-up was every 3
months for the first 2 years, every 6 months for the next 3 years,
and annually thereafter. Gynecological examinations, cervical
cytology, and imaging tools such as computed tomography (CT),
MR, and positron emission tomography (PET)/CT imaging were
used to evaluate the patients during the follow-up.

MRI Scan Acquisition and Tumor
Segmentation
All patients underwent pelvic 3.0-T MRI scans (Signa EXCITE; GE
Medical Systems, 3200N, Grandview Blvd, Waukesha, WI 53188,
USA; or Achieva, Philips Healthcare, The Netherlands), using a 16-
channel phased-array encoding abdominal coil. The scanning range
was set to cover the entire pelvis from the level of the anterior
superior iliac spine to the inferior level of the symphysis pubis.
Patients had to fast at least 6 h before the examination. The standard
pelvic MR scan protocol was used in this retrospective study,
including multiple b-value DWI (repetition time (TR)/echo time
(TE) = 3,625/74ms, field of view (FOV): 420 × 420mm,matrix: 256
× 128, slice thickness/gap = 5 mm/6 mm, b-values: 0.700 s/mm2),
sagittal T2-weighted fat suppression (FS) images: (TR/TE = 3,200/
106 ms, FOV = 320 × 320 mm, matrix = 320 × 224, slice thickness/
gap = 4 mm/5 mm); axial T2-weighted fat suppression (FS) images:
(TR/TE = 3,600/104 ms, FOV = 380 × 380mm, matrix = 320 × 224.
slice thickness/gap = 5 mm/6 mm); coronal T2-weighted fat
suppression (FS) images: (TR/TE = 3,400/107 ms, FOV = 360 ×
360 mm, matrix = 320 × 192, slice thickness/gap = 4 mm/5 mm);
and axial T1-weighted imaging (T1WI): (TR/TE = 245 ms/2 ms,
FOV: 380 × 380mm,matrix: 384 × 180, slice thickness/gap = 5mm/
6 mm).

Pelvic MRI Digital Imaging and Communications in Medicine
(DICOM) original images of all patients were downloaded from the
Picture Archiving and Communication System (PACS) and
uploaded into the ITK-SNAP (open source software; www.
itksnap.org) for three-dimensional manual segmentation of MR
images (15). The regions of interest (ROIs) of the entire tumor were
manually outlined layer by layer by a radiologist with 5 years of
experience in gynecological imaging, and the results were verified by
a senior radiologist with 15 years of work experience. The radiomics
workflow is displayed in Figure 1.
December 2021 | Volume 11 | Article 749114

http://www.itksnap.org
http://www.itksnap.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cai et al. MRI Radiomic Features of LACC
Feature Extraction
Before feature extraction, the image was preprocessed, including
resampling the MR image to a 1 × 1 × 1-mm3 voxel size and
normalizing the image gray scale to 0 to 255. The purpose of image
preprocessing is to reduce heterogeneity bias caused by different
equipments and scanning parameters. Radiomic feature extraction
was implemented in Artificial Intelligence Kit Version 3.0.0.R,
which is a commercial software of GE Healthcare. We extracted
396 radiomic features of tumor on T2WI and DWI, respectively,
and a total of 792 quantitative features for each patient. The features
were divided into four groups: (I) intensity histogram (n = 84), (II)
morphology (n = 40) and (III) texture (n = 668), including (a) gray-
level co-occurrence matrix (GLCM, n = 288), (b) gray-level run
length matrix (GLRLM, n = 344), and (c) Haralick (n = 36).

Feature Selection
High-dimensional extraction produced various radiomic
features, but not all of them were significantly associated with
PFS in LACC. To develop the radiomics model, we designed a
two-step procedure for dimensionality reduction and selection of
radiomic features. We applied the least absolute shrinkage and
selection operator (LASSO) algorithm jointly with the Cox
survival analysis to select the importantly prognostic features
in the training cohort (16, 17). Then, the multiple-feature-based
radiomic signatures were created for predicting patients’ PFS in
the training cohort. The LASSO Cox regression model analysis
was completed by the “glmnet” package (18, 19).

Building and Validation of the
Radiomics Signature
The radiomics score (Rad-score, which was defined as the radiomics
signature in the current study) was computed in the training cohort
by the LASSOCox regressionmodel analysis.Above all, we evaluated
the potential relationship of the Rad-score with PFS in the training
cohort and then tested it in the validation cohort. In addition, all
patientswere divided intohigh-risk and low-risk groups according to
Frontiers in Oncology | www.frontiersin.org 3
theoptimumcutoff valueof theRad-scorebyapplyingX-tile software
(20). The relationship of the radiomic risk score with PFS was
assessed in the training cohort and then verified in the validation
cohort by using Kaplan–Meier analysis and log-rank test.

Construction of an Individualized PFS
Prediction Model
The univariate Cox analysis was used to determine clinicopathologic
factors associated with PFS in all patients (n = 181). LASSO Cox
regression model analysis was applied to select variables with a
p value < 0.1 in the univariate Cox analysis. Except the Rad-score, a
clinical model which incorporated only the independent
clinicopathologic risk factors was also built to predict the 3-year
PFS. The prognostic performance of the models was measured by
Harrell’s concordance index (C-index), C-index = 0.5 describes a
random prediction, and C-index = 1.0 implies a perfect prediction
ability (21). Since the C-index method may be wrong when
predicting a fixed time point (22), we also use the time-dependent
area under the receiver operating characteristic (ROC) analysis to
assess the t-year risk of an event (23, 24).

To provide the clinician with a quantitative approach to predict
patients’ probability of 3-year PFS, and to show the incremental
value of the Rad-score to the clinicopathologic risk factors, we
further built a combined nomogram (combined model) as an
individualized PFS prediction model that incorporated both the
Rad-score and clinicopathologic risk factors for PFS prediction. The
prognostic performance of the nomogram was estimated by C-
index and ROC analysis. Besides, calibration curves were used to
compare the predicted PFS with the actual PFS.

Statistical Analysis
Statistical analysis was executed by R software (version 3.6.3) and
SPSS (version 23.0). Rad-scores were divided into two groups
according to the cutoff value selected by X-tile. In addition, the
continuous clinical variables were converted into categorical
variables on the basis of cutoff values, which were determined
by ROC analysis or routine cutoff points (for size). Differences in
FIGURE 1 | The radiomics workflow.
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distributions between the training and validation cohorts were
assessed with the chi-squared test as appropriate. A quantitative
comparison of the area under the curve (AUC) was made with
the Delong test (25). The glmnet package was adopted for
running LASSO–Cox. The survival package was adopted for
building the Cox proportional risk model, drawing the Kaplan–
Meier analysis, and calculating the C-index. The rms package
was used for nomograms and calibration curves. All two-sided
p values less than 0.05 were considered significant.
RESULTS

Patient Characteristics
The clinicopathologic factors of all patients are summarized in
Table 1. Of the 181 patients included in the study, the mean age
Frontiers in Oncology | www.frontiersin.org 4
of the patients was 50.67 ± 10.81 years. Disease recurred in 33 of
181 patients (18.2%). The median follow-up time was 50.5
months (40.75–66.0) for the training cohort and 48.0 months
(40.0–66.0) for the validation cohort. There were no significant
differences between the training cohort and the validation cohort
in clinicopathologic features (p = 0.146–0.714).

Feature Selection, Radiomics Signature
Building and Validation
The LASSO Cox regression model was used to build a prognostic
Rad-score. Eight potential predictors, six features from T2WI,
and two features from DWI were included in the training cohort.
Finally, the Rad-score was constructed based on the eight
features, and the calculation formula is as follows: Rad-score =
-0.253 × T2WI_MinIntensity + 0.210 × T2WI_ClusterShade +
0.076 × T2WI_GLCM-IDM + 0.201 × T2WI_RLM-
TABLE 1 | Patient characteristics in the training and validation cohorts.

Characteristics Training cohort (n = 126) Validation cohort (n = 55) p value

Age (years) 0.714
≥54.50 65 (51.59%) 30 (54.55%)
<54.50 61 (48.41%) 25 (45.45%)
FIGO stage 0.357
IB1 43 (34.13%) 24 (43.64.09%)
IB2 10 (7.93%) 6 (10.91%)
IIA1 54 (42.86%) 16 (29.09%)
IIA2 19 (15.08%) 9 (16.36%)
Size(cm) 0.539
2~4 97 (76.98%) 40 (72.73%)
>4 29 (23.02%) 15 (27.27%)
LVSI 0.360
Positive 35 (27.78%) 19 (34.55%)
Negative 91 (72.22%) 36 (65.45%)
PLN 0.409
Positive 21 (16.67%) 12 (21.82%)
Negative 105 (83.33%) 43 (78.18%)
Differentiation 0.758
Low grade 5 (3.97%) 1 (1.82%)
Middle grade 51 (40.48%) 23 (41.82%)
High grade 70 (55.56%) 31 (56.36%)
Pathological type 0.260
SCC 110 (87.30%) 52 (94.54%)
Adenocarcinoma 10 (7.94%) 1 (1.82%)
Other 6 (4.76%) 2 (3.64%)
SCCA(mg/L) 0.887
≥2.05 70 (58.33%)) 28 (57.14%)
<2.05 50 (41.67% 21 (42.86%)
Albumin (g/L) 0.215
≥41.25 104 (82.54%) 41 (74.55%)
<41.25 22 (17.46%) 14 (25.45%)
Hemoglobin (g/L) 0.409
≥145.5 11 (8.73%) 7 (12.73%)
<145.5 115 (91.27%) 48 (87.27%)
Platelet (109/L) 0.653
≥296 29 (23.02%) 11 (20%)
<296 97 (76.98%) 44 (80%)
WBC (109/L) 0.236
≥7.465 39 (30.95%) 22 (40%)
<7.465 87 (69.05%) 33 (60%)
December 2021 | Volume 11 | Article
FIGO, International Federation of Gynecology and Obstetrics; LVSI, lymph vascular space invasion; LNM, lymph node metastasis; SCC, squamous cell carcinoma; SCCA, squamous cell
carcinoma antigen; WBC, white blood cell.
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LongRunEmphasis × T2WI_RLM-LongRunHighGreyLevel
Emphasis + 0.391 × T2WI_LowIntensityLargeAreaEmphasis +
0.198 × DWI_HighIntensitySmallAreaEmphasis + 0.493 ×
DWI_SmallAreaEmphasis. Distributions of the Rad-score in
the training and validation cohorts are displayed in
Supplementary Figure S2.

The optimum cutoff generated by X-tile was 0.543. According
to the optimal cutoff value, patients were classified into high-risk
(Rad-score ≥ 0.543) and low-risk (Rad-score < 0.543) groups. A
Kaplan–Meier analysis (Figure 2) was demonstrated that the
patients in the high-risk group had shorter PFS than did the low-
risk group in the training [hazard ratio (HR) = 3.279, 95% CI:
2.865–3.693, p < 0.0001] and validation cohorts (HR = 2.247,
95% CI: 1.735–2.759, p < 0.0001). Figure 3 shows typical patients
who had similar clinicopathological characteristics, but their PFS
Frontiers in Oncology | www.frontiersin.org 5
time was significantly different (9 vs. 37 months). The Rad-score
of patient 2 was significantly higher than that of patient 1 (1.380
vs. 0.029). In the LASSO Cox regression analysis, the Rad-score
yielded a C-index of 0.778 [95% confidence interval (CI): 0.699–
0.858] for the training cohort (Table 2). The favorable prognostic
performance of the Rad-score was further confirmed in the
validation cohort (C-index, 0.816; 95% CI: 0.673–0.958).

Univariate Cox Analysis of the Risk
Factors for PFS
In addition to Rad-score, we included a total of 12
clinicopathologic factors into the univariate analysis (Table 3),
and the results showed that age (HR = 0.511, 95% CI: 0.247–
1.053, p = 0.069), LVSI (HR = 2.286, 95% CI: 1.151–4.538, p =
0.018), squamous cell carcinoma antigen (HR = 0.427, 95% CI:
A B

FIGURE 2 | Kaplan–Meier survival curves of progression-free survival according to the Rad-score in the training cohorts (A) and independent validation data set (B).
Shadows represent 95% confidence interval. HR, hazard ratio.
FIGURE 3 | MR images showed that the sagittal T2WI and axial DWI lesions were cervical cancer. Although patient 1 and patient 2 had similar clinicopathological
characteristics, their Rad-score were significantly different. Patient 1 did not find obvious signs of recurrence or metastasis after 37 months of postoperative follow-
up, while the Patient 2 relapsed 9 months after surgery. The Rad-score of patient 2 was significantly higher than that of patient 1. FIGO, International Federation of
Gynecology and Obstetrics; LVSI, lymph vascular space invasion; LNM, lymph node metastasis; SCC, squamous cell carcinoma; PFS, progression-free survival.
December 2021 | Volume 11 | Article 749114
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0.182–1.005, p = 0.051), albumin (HR = 0.530, 95% CI: 0.252–
1.113, p = 0.091), hemoglobin (HR = 5.393, 95% CI: 2.560–
11.363, p < 0.0001), white blood cell (WBC) (HR = 2.233, 95%
CI: 1.128–4.420, p = 0.021), and Rad-score (HR = 2.647, 95% CI:
2.002–3.501, p < 0.0001), would be identified as candidate risk
factors (p < 0.1) into the LASSO Cox regression analysis.
Frontiers in Oncology | www.frontiersin.org 6
Assessment the Performances of Various
Models in 3-Year PFS Prediction
The LASSO Cox regression model analysis showed that age,
LVSI, hemoglobin, and WBC were finally selected and integrated
into a clinical model (Figure 4). The performance of the clinical
model for 3-year PFS prediction yielded a C-index value of 0.778
TABLE 2 | Model performance on predicting 3-year PFS.

Models Cohorts C-index (95% CI) AUC (95% CI) ACC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Clinical model Training 0.778
(0.699–0.858)

0.774
(0.673–0.875)

0.714
(0.711–0.717)

0.717
(0.631–0.803)

0.700
(0.499–0.901)

Validation 0.816
(0.673–0.958)

0.707
(0.513–0.902)

0.764
(0.757–0.770)

0.800
(0.683–0.917)

0.600
(0.296–0.904)

Radiomic score Training 0.756
(0.650–0.861)

0.804
(0.693–0.914)

0.722
(0.719–0.725)

0.708
(0.621–0.794)

0.800
(0.625–0.975)

Validation 0.803
(0.690–0.915)

0.795
(0.653–0.937)

0.764
(0.757–0.770)

0.756
(0.630–0.881)

0.800
(0.552–1.048)

Combined model Training 0.821
(0.746–0.896)

0.879
(0.811–0.947)

0.786
(0.783–0.788)

0.764
(0.683–0.845)

0.900
(0.769–1.031)

Validation 0.829
(0.699–0.959)

0.82
(0.668–0.971)

0.855
(0.850–0.859)

0.867
(0.767–0.966)

0.800
(0.552–1.048)
December 2021 | Volum
PFS, progression-free survival; C-index, Harrell’s concordance indices; CI, confidence interval; AUC, area under the curve; ACC, accuracy.
TABLE 3 | Univariate Cox analysis of risk factors for PFS in all patients.

Characteristics Univariate analysis

Hazard ratio 95% CI p value

Age
≥54.5 years versus <54.5 years 0.511 0.247–1.053 0.069
Size
2~4 cm versus >4 cm 0.851 0.396–1.831 0.680
FIGO stage
IB1 Reference
IB2 0.352 0.045–2.724 0.317
IIA1 1.337 0.614–2.912 0.464
IIA2 1.369 0.506–3.701 0.536
LVSI
positive versus negative 2.286 1.151–4.538 0.018
PLN
positive versus negative 1.748 0.813–3.762 0.153
Differentiation
Low grade Reference
Middle grade 0.779 0.105–5.791 0.807
High grade 0.653 0.315–1.355 0.253
Pathological type
SCC Reference
Adenocarcinoma 0.473 0.064–3.473 0.462
Other 2.469 0.751–8.112 0.137
SCCA (mg/L)
≥2.05 versus <2.05 0.427 0.182–1.005 0.051
Albumin (g/L)
≥41.25 versus <41.25 0.530 0.252–1.113 0.094
Hemoglobin (g/L)
≥145.5 versus <145.5 5.393 2.560–11.363 <0.0001
Platelet (109/L)
≥296 versus <296 1.088 0.472–2.508 0.843
WBC (109/L)
≥7.465 versus <7.465 2.233 1.128–4.420 0.021
Rad-score 2.647 2.002–3.501 <0.0001
e 11 | Article
PFS, progression-free survival; FIGO, International Federation of Gynecology and Obstetrics; LVSI, lymph vascular space invasion; LNM, lymph node metastasis; SCC, squamous cell
carcinoma; SCCA, squamous cell carcinoma antigen; WBC, white blood cell; CI, confidence interval.
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(95% CI: 0.699–0.858) in the training cohort and 0.816 (95% CI:
0.673–0.958) in the validation cohort (Table 2). The combined
nomogram (Figure 4) integrating the radiomic score and the
above four clinicopathologic factors demonstrated a better
discrimination both in the training (C-index, 0.821; 95% CI:
0.746–0.896) and in the validation cohort (C-index, 0.829; 95%
CI: 0.699–0.959) when compared with radiomic score or clinical
model alone (Table 2).

In the training cohort (Table 2 and Figure 5A), the radiomics
score (AUC, 0.804 [95% CI: 0.693–0.914]) showed a comparable
prognostic performance with the clinical model (AUC, 0.774
[95% CI: 0.673–0.875]), with a p value of 0.719 (Figure 6). The
combined nomogram was shown to be with the highest AUC
value (0.879, [95% CI: 0.811–0.947]), demonstrating a significant
improvement in PFS prediction compared to the clinical model
or the radiomics score (p = 0.038, p = 0.043, respectively)
(Figure 6). In the validation cohort (Table 2 and Figure 5B),
the clinical model yielded an AUC of 0.707 (95% CI: 0.513–
0.902). Although the radiomics score (AUC, 0.795 [95% CI:
0.653–0.937]) showed improvement compared with the clinical
model, the Delong test found that no significant difference was
Frontiers in Oncology | www.frontiersin.org 7
shown between the AUCs (p = 0.458) (Figure 6). The combined
nomogram (AUC, 0.820 [95% CI: 0.668–0.971]) also showed
improvement over the clinical model or the radiomics score for
the PFS prediction in the validation cohort. However, the
difference was not significant (p = 0.150, p = 0.684,
respectively) (Figure 6).
DISCUSSION

In this study, we developed and validated an MRI-based Rad-
score for noninvasive PFS prediction in patients with LACC
undergoing surgery. The study demonstrated that the Rad-score
was significantly related with 3-year PFS in both the training and
validation cohorts. The Rad-score stratified the patients into low-
risk and high-risk groups, and the Kaplan–Meier analysis
showed that the patients in the high-risk group portended a
worse prognosis with shorter PFS than did the low-risk group in
the training (HR = 3.279, 95% CI: 2.865–3.693, p < 0.0001) and
validation cohorts (HR = 2.247, 95% CI: 1.735–2.759, p <
0.0001). The performance of the combined nomogram which
A

B C

FIGURE 4 | The combined nomogram was developed to predict the risk of 3-year progression-free survival (PFS) of patients with locally advanced cervical cancer
undergoing surgery. (A) The combined nomogram that integrates the Rad-score with the clinicopathologic features in the training data set. Calibration curves of the
combined nomogram in the (B) training and (C) validation cohorts. The diagonal gray line represents a perfect evaluation, while the blue line represents the actual
performance of the nomogram. A closer fit to the diagonal gray line indicates a better assessment. LVSI, lymph vascular space invasion; WBC, white blood cell.
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integrated Rad-score and significant clinicopathologic
parameters was demonstrated to have better performance than
the Rad-score or clinical model alone in the PFS prediction.
Furthermore, the nomogram showed a satis factory
discrimination performance, with C-indexes of 0.821 and 0.829
in the training and validation cohorts.

Cox regression analysis was used to build the clinical model
for PFS prediction. Four clinical features including age,
hemoglobin, WBC, and LVSI were found to be correlated with
PFS. Inflammation is an important part of the tumor
microenvironment and plays a key role in the initiation,
Frontiers in Oncology | www.frontiersin.org 8
promotion, progression, invasion, and metastasis of the tumor
(26). Systemic inflammation biomarkers such as C-reactive
protein (CRP), platelet count, hemoglobin, and WBC had
already been shown to have prognostic values in different
tumors (27, 28). In our study, hemoglobin and WBC were also
identified as important prognostic factors for PFS which was
coherent with the results of the previous studies. In addition,
lymph-vascular space invasion is considered to be a crucial factor
in the tumor cell dissemination (29) and is identified as an
unfavorable prognostic factor in cervical cancer (30, 31), which is
consistent with our study.
FIGURE 6 | Delong test between different models. p-value of the Delong test between any two models.
A B

FIGURE 5 | Time-dependent receiver operating characteristic (ROC) curves comparing the predictive capacity of the three models. (A) Training cohort, N = 126.
(B) Validation cohort, N = 55. PFS, progression-free survival.
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Radiomics analysis has developed as a non-invasive method to
visualize and quantify intra-tumor heterogeneity by high-
throughput quantitative characteristic extraction from medical
images, thereby providing prognostic information in medical
decision making (8). In the recent years, researchers have used
radiomics in the prediction of pathological features, LNM, and
response to neoadjuvant chemotherapy in cervical cancer (12–14,
32), rather than clinical outcomes such as PFS and overall survival
(OS). Jin et al. reported that MRI-based radiomics signature was
an independent predictor of DFS in patients with early-stage
cervical cancer treated with radical hysterectomy, and their study
demonstrated that the Rad-score yielded a C-index of 0.753 (95%
CI: 0.696-0.805) on 3-year DFS prediction, which were higher
than either clinical model or combined model (33). However,
these studies focused on early-stage (IB-IIA) cervical cancer
treated by surgery. Only two clinicopathological features (LNM
and LVSI) were included in their clinical model, which did not
contain another hematological parameter. Some previous studies
applied PET/CT radiomics to evaluate patients’ responses to
chemoradiotherapy with LACC (34, 35). Although PET/CT
demonstrated good discrimination ability, its high cost and
high radiation limited its wide use. The role of MRI-based
radiomic signatures to evaluate PFS in patients with LACC who
have surgical indicators has not yet been investigated. Therefore,
in this context, it is necessary for us to do this research.

The LASSO-Cox-based method was used to construct the Rad-
score, which derived from the joint T2WI and DWI. Wang et al.
have published two articles about using Rad-score based on the joint
T2WI and DWI for prediction of LNM or parametrial invasion
(PMI) in patients with early cervical cancer (36, 37). These studies
demonstrated that the Rad-score from the combined T2WI and
DWI has a significant improvement performance for prediction of
LNM or PMI, compared with the Rad-score from T2WI or DWI
alone. The advantage of T2WI is that it can clearly show the
anatomical features of tumors in the cervical cancer patients, and as
a functional imaging, DWI can provide microscopic motion of
water molecules in tissues and subsequently detect early
pathological changes based on water diffusion properties (38).
Therefore, the combination of T2WI and DWI could balance the
shortcomings and gain more precise and comprehensive
information about the tumors. In our study, the radiomic score
that combined T2WI and DWI showed good performance for
prediction of 3-year PFS in patients with LACC, which yielded a C-
index of 0.803 (95%CI, 0.690–0.915) and an AUC of 0.795 (95%CI:
0.653-0.937) in the validation cohort.

To provide a clinically suitable and quantitative approach for
the individual prediction of PFS in patients with LACC, a
nomogram could enable gynecologists to evaluate the survival
of patients based on their clinical and image characteristics. In
the current study, a combined nomogram that combined both
the Rad-score and other important clinicopathologic features
was established for the 3-year PFS evaluation in patients with
LACC for the first time. The combined nomogram was shown to
have a significant improvement performance for the 3-year PFS
prediction, compared with the Rad-score or clinical model alone
(C-index of 0.821 vs. 0.778 and 0.816 in the training cohort;
0.829 vs. 0.816 and 0.803 in the validation cohort). This result
Frontiers in Oncology | www.frontiersin.org 9
was also verified by the conclusions of the ROC analysis. It
indicated that the radiomics signature may contain information
that is complementary to clinical factors, reflecting changes of
human tissues at the molecular and genetic levels (9, 33).
Another interesting finding of our research was that the Rad-
score could serve as a marker in discriminating low-risk and
high-risk patients. Patients with higher Rad-scores have the
worse PFS. These results provided a new insight into the future
treatment protocols in patients with LACC. For instance, LACC
patients at high risk of recurrence and metastasis could be
considered for preoperative neoadjuvant chemotherapy,
whereas patients at low risk of recurrence could directly select
surgeries, thereby avoiding unnecessary chemotherapy-related
toxicities and disease progression due to delays in effective
treatment. Therefore, the Rad-score may be used as an effective
biomarker to improve the prognostic ability of pretreatment.

Ourresearchhas the following limitations.Firstly, its retrospective
design and single-institution study may lead to inevitable selection
bias. Prospective multicenter studies with larger populations will be
required to confirm the robustness and reproducibility of the current
research. Secondly, imaging data were collected by different MR
scanners or imaging protocols. Although all the imaging data were
normalized to reduce bias before extraction, the performance of the
radiomics signature will be significantly improved by normalization
of the imaging data. Finally, due to the limited number of patients
with genetic data, we did not provide genomic characteristics in our
study. In the future study, how to integrate genomic features,
radiomics signature, and clinical characteristics together will
become increasingly important.

CONCLUSION

We developed and validated a Rad-score as a non-invasive method
for a preoperative evaluation of PFS in patients with LACC. The
combined nomogram, which integrated the Rad-score and
clinicopathologic factors, showed significant improvement in the
prediction of PFS and may serve as a potential tool to guide
individual treatment plans for patients with LACC.
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