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Effects of memory on the shapes of 
simple outbreak trees
Giacomo Plazzotta1, Christopher Kwan2, Michael Boyd3 & Caroline Colijn1

Genomic tools, including phylogenetic trees derived from sequence data, are increasingly used to 
understand outbreaks of infectious diseases. One challenge is to link phylogenetic trees to patterns of 
transmission. Particularly in bacteria that cause chronic infections, this inference is affected by variable 
infectious periods and infectivity over time. It is known that non-exponential infectious periods can 
have substantial effects on pathogens’ transmission dynamics. Here we ask how this non-Markovian 
nature of an outbreak process affects the branching trees describing that process, with particular focus 
on tree shapes. We simulate Crump-Mode-Jagers branching processes and compare different patterns of 
infectivity over time. We find that memory (non-Markovian-ness) in the process can have a pronounced 
effect on the shapes of the outbreak’s branching pattern. However, memory also has a pronounced 
effect on the sizes of the trees, even when the duration of the simulation is fixed. When the sizes of 
the trees are constrained to a constant value, memory in our processes has little direct effect on tree 
shapes, but can bias inference of the birth rate from trees. We compare simulated branching trees to 
phylogenetic trees from an outbreak of tuberculosis in Canada, and discuss the relevance of memory to 
this dataset.

Understanding outbreaks of an infectious disease is important for understanding how a pathogen spreads, and in 
determining the best steps to take to control it. Recently, the advent of next-generation sequencing has permitted 
the use of genomic data to assist in understanding outbreaks. Even small amounts of genetic variation within 
an outbreak can potentially be detected with whole-genome sequencing, and used to aid in reconstructing who 
infected whom1–8. Genomic data are typically analysed by inferring phylogenetic trees (phylogenies), namely 
trees in which the tips correspond to pathogen isolates from infected cases, and the internal nodes correspond 
to inferred ancestors. Phylogenies are usually rooted, binary trees. An ongoing challenge in epidemiology is to 
make the best use of genomic data, usually with the help of inference and analysis of phylogenetic trees that carry 
information on parameters including the basic reproduction number (R0)9,10.

Phylogenetic trees are related to branching trees. In a branching process without multifurcations (ie where 
there is a positive time interval between successive branching events), the process defines a bifurcating tree mov-
ing forward in time; internal branch lengths reflect times between infection events, and pendant branch lengths 
reflect the time between an infection event and a sampling event. Under good conditions (where evolution is 
clock-like, within-host diversity is low and where sufficient diversity accrues across sampled individuals), a timed 
phylogenetic tree can be seen as an approximate representation of the true branching tree, though it does not 
include the information of who infected whom in a direct way. Indeed, the link between pairwise genetic diversity 
and who infected whom has been widely studied and discussed6–8,11–17. These assumptions may break down for 
various reasons, but the study of branching trees remains a central tool for modelling phylogenetic trees.

Both the theory of branching processes and Kingman’s coalescent theory provide models for branch-
ing trees; these have been used to good effect in theoretical epidemiology11,14,15,18–21. The constant rate 
birth-death and coalescent processes share the simplifying assumption that distribution of times between 
branching events is exponential, due to the constant rates, mirroring the exponential time distribution in the 
susceptible-infectious-recovered (SIR)-type epidemic models that have been widely used to model the spread of 
infection22. However, exponentially distributed (memory-less) infectious periods are not very realistic for many 
infections23–28. Non-exponential distributions in models of the spread of infection have been a topic of study for 
decades, and it is well established that incorporating memory in these processes can have large effects on the 
models’ dynamics24,26,29–32. Non-exponential distributions, particularly in the infectious period, can also affect 
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the estimation of R0 and other parameters33–35. The growing fields of phylodynamics and genomic epidemiology, 
however, have primarily used the constant rate assumption because of its tractability and the inherent additional 
complexities of estimation from sequence data. Recently there has been growing interest in non-Markovian pro-
cesses in this context, particularly non-constant removal rates36–38. Using multiple compartments, the epidemio-
logical coalescent can account for non-exponential durations of infectiousness and variable infectivity15,19,21 but 
in models with many compartments, the necessary inference becomes challenging due to large numbers of latent 
variables15.

Chronic bacterial infections such as tuberculosis have long and variable durations of infection. This can 
include a non-infectious latent period, as is the case for tuberculosis, and can also include infectiousness wors-
ening over time. Furthermore, cases may not present clinically in the chronological order in which they were 
infected. An individual may be undiagnosed and infectious for months, and some infections may remain latent 
for variable time periods in infected individuals. Accordingly, the spreading processes of these complex infections 
are likely to depart substantially from the constant rate assumption, and reconstructing transmission events using 
the timing of case presentation is not always feasible.

Models have so far focused primarily on the branching times in phylogenetic trees, as these are natural quan-
tities in branching processes and coalescent theory. However, it has been observed for species phylogenies that 
the tree shapes arising from the Yule or constant-rate birth-death processes do not fit trees from data particularly 
well39–43. Several studies have suggested that tree shapes carry relevant information for epidemiology21,44–47, and 
tree shapes have recently been shown to have applications to inference from phylogenies derived from both viral 
and macroevolutionary data21,48. Frost and Volz21 noted that coalescent times are not sufficient to estimate epi-
demiological dynamics in complex models (such as structured populations), though they do very well in simple 
populations. They found that high transmission in the acute stage of HIV infection affected the asymmetry and 
the numbers of cherry configurations in phylogenies21. Recently, Hagen et al.48 also found that variable speciation 
rates in macroevolutionary processes affect tree imbalance and produce trees that match the shapes of thou-
sands of macroevolutionary trees better than trees from homogeneous processes. However, while asymmetry and 
cherry patterns capture aspects of tree shape, they do not describe it entirely. Incorporating tree shapes into the 
growing field of phylodynamics is an open challenge.

Here, we simulate and compare outbreaks using infectiousness functions that vary sharply over time. We com-
pare a range of shape features of the resulting trees to each other, to trees from constant rate processes, and to trees 
from a tuberculosis dataset for which memory is likely relevant. We allow substantial delays between infection 
and infectiousness, so that the times are not exponentially distributed. This introduces memory into the process. 
We control either R0 (the mean number of secondary infections) or the Malthusian parameter M (the mean rate of 
growth of the process), but vary the timing of infections, and explore how this affects the shapes of the outbreaks’ 
branching trees. We find that contrary to our expectations, memory in the process has very little direct effect on 
the shapes of branching trees. Rather, it strongly affects the number of infected individuals (tips in the tree), and 
affects tree shapes as a consequence. It also affects estimates of the birth rate derived from branching times, and it 
affects the comparison between the branch timing and that expected under a Yule process. We find that phyloge-
nies derived from data do not match the shapes of the constant-rate birth-death models even when the birth and 
death rates were fit to data, and we discuss whether this match should be expected.

Methods
Formulation and notation.  We use the Crump-Mode-Jagers generalised branching process. We follow 
Jagers’ setting49: each individual is assigned a random variable λ modelling its life/recovery time and a point 
process ξ modelling the number of individuals that he infects and the respective infection times. The pairs (λ, ξ) 
assigned to different individuals are independent and identically distributed. This implies that in the process z(t), 
defined as the number of individuals alive at time t, is indeed a branching process.

In our model, λ is an exponential random variable representing the life span of an individual, its expectation 
is 1/δ where δ is the death rate. If δ =  0 we have trees with no death, this results in ultrametric trees, i.e. trees where 
the distance from an ancestor to any of the tips is the same. This removes the risk that sampling through time will 
bias the shape features21. The point process ξ (the new infections caused by each individual) is a non-homogeneous 
Poisson process with intensity I(t). The mean number of secondary infections caused by any individual (R0) is 
given by ∫= ( ) δ∞ −R I t dte t

0 0
, where t is the time since an the individual became infected. The Malthusian param-

eter M is the finite positive solution to the equation ∫ ξ τ= ( )τ∞ − dE1 e [ ]M
0

 which in our setting reduces to 
∫ τ τ= ( )δ τ∞ −( + ) I d1 e M

0
. The Malthusian parameter M exists if E[ξ(0)] <  1 <  E[ξ(∞)] <  ∞, which are reasonable 

properties in the context of transmission trees (and we assume them throughout). The Malthusian parameter 
captures the growth of the process because the expectation E[e−Mtz(t)] converges to a constant as t →  ∞50.

To convert the branching process simulation to a rooted binary transmission tree with branch lengths in units 
of time, we begin at the source case, adding a node each time there is an infection event. One of the descending 
lineages from that node corresponds to the infector (say A), and the other to the infectee (say B). The length of 
the branch is either (1) the time between A’s infection and A infecting B (if B is the first case A infected), or (2) 
the time between A’s infecting the individual she infected just prior to B and the time A infects B. The pendant 
branch length to the tip labelled B is the time between either (1) B’s infection and B’s sampling (if B did not infect 
anyone) or (2) the time between B’s last infection of someone else and B’s sampling. In this way, the branching 
process defines a rooted, timed, bifurcating tree. While the focus of this paper is on how the shapes of these trees 
are affected by the intensity function describing when infection events occur, the motivation of the work makes 
the implicit assumption that these shapes are made relevant because under good conditions, timed phylogenetic 
trees are a reasonable approximation to these bifurcating timed transmission trees.
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Simulations.  Simulating stochastic branching trees under processes with memory is challenging. 
Gillespie-type methods do not fit the problem naturally, and steps must be taken to ensure that all events that can 
happen before the final simulation time have the appropriate probability of happening (affecting the conditions 
under which the process can be stopped). This can be very computationally time-consuming due to the varia-
bility of the tree size in branching processes. This complexity is part of the motivation for using simple intensity 
functions. To simulate non homogeneous trees, we wrote an iterative function that takes in input the ancestor, the 
start and final time of the tree, the intensity function and the life-span distribution: SimNHTree(ancestor, start-
Time, finalTime, int, lambda). The branching property states that the subtree generated by each daughter of the 
ancestor is equal, in distribution, to the whole tree in every aspect but the starting time. To use this property we 
first find the number of daughters of the ancestor and their birth times, simulating a non homogeneous Poisson 
process with intensity int. Then, for each of the ancestor’s daughters, the function SimNHTree calls itself with the 
daughter and its birth time as new input: SimNHTree(daughteri, birthTime(daughteri), finalTime, int, lambda). 
This generates the ancestor’s daughters subtrees which can be merged because we track each subtree’s ancestor 
and start time.

We use two different approaches to setting the stopping time: in Scenario 1 we fix the time for each intensity 
function so that when R0 is the same, so is the time, and when M is the same, so is the time. In Scenario 2 we tune 
the time to obtain, on average, trees with the desired number of tips. To do this, we use a simple algorithm that 
simulates a group of trees and if the total average of the tips is too high/low then the algorithm decreases/increases 
the final time and starts a new simulation. It stops once the average number of tips of each group is between 
32 and 34 (to be comparable to our dataset) or between 98 and 102, in order to compare results in larger trees 
(Scenario 2-large). To exclude meaningless cases, we rejected trees with fewer than 5 tips. In each scenario, we 
vary the delay between becoming infected and infecting others, using different intensity functions (each labelled 
with a case number illustrated in Figs. 1 and 2(a)). In Scenario 3 we increase both the delay between becoming 
infected and infecting others (ie location of the intensity function) and the height of the intensity function. This 
results in the basic reproduction number ranging more widely than in Scenarios 1 and 2. Here we also use a pos-
itive death rate, so trees are not ultrametric.

The parameters were chosen empirically, in order to explore and compare trees originated by different inten-
sity functions, but sharing biologically-relevant measures such as R0, M or the size. The parameter choice was 
not intended to fit a specific outbreak. However, R0 values for most common pathogens including tuberculosis 
(R0 =  1–1.5) are in the range 1–6, with some viruses having much higher values (measles for example at R0 ≈  20). 
Our choices of R0 mirror these values. The sizes of our outbreaks mirror the dataset we have, and in order that the 
results not be restricted to processes of this small size we also explore larger trees. Table 1 and Figs 1 and 2(a) give 
details of the parameters in each simulation. We compare these sets of simulations with two sets of constant-rate 
birth-death trees, one with with parameters matching the R0 of the trees in Scenario 1, and one with parameters 
estimated from our TB data using BEAST. For each case in Scenario 1, 2 and 3 we simulate 200 trees and for the 
two homogeneous cases we simulate 1000 trees.

The number of secondary infections per infectious case has a mean of R0 but of course it can be distributed 
in various ways. In the terminology of branching processes this distribution is called the offspring distribution; 
the constant-rate birth-death process has a geometric offspring distribution (a convolution of a Poisson number 
during their lifespan and an exponential lifespan). However our non-homogeneous Poisson processes, in which 
cases survive their infectious period, have a Poisson offspring distribution. To explore possible effects of this dif-
ference, we simulate a variant of our process in which the intensity functions varied as in Scenario 1, but we draw 
the numbers of secondary infections from a geometric distribution (see Supplement).

Figure 1.  Intensity functions used in Scenario 1 and 2. 
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Intensity functions: the time between infection and infecting others.  For scenario 1, 2, and 2-large 
we choose intensity functions such that we can introduce memory while fixing R0 (cases 1–4 in Table 1), or fixing 
the Malthusian parameter (cases 5–8 in Table 1). It is not possible to fix both simultaneously while varying the 
intensity function independently. We vary the timing of infectiousness, from beginning immediately (cases 1 and 
5 in Table 1) to beginning relatively late after a case was infected (cases 4 and 8 in Table 1); Fig. 1 illustrates the 
intensity functions for each case.

For a general step-like intensity function, R0 is given by

δ
= ( − ), ( )

δ δ− − ( + )R k e e 1
n n

0
1

where k is the height of the step, n defines the step interval [n, n +  1] and δ is the death rate. The Malthusian 
parameter M cannot be written in closed form and is the solution of the following equation:

δ +
( − ) = ,

( )
δ δ−( + ) −( + )( + )k

M
e e 1 2

M n M n 1

where k, n and δ are same as in Equation (1). Given a fixed value of R0, Eq. (1) can be used to obtain different 
intensity functions with the same R0, varying the parameters n and k. In a similar way if M is fixed, from Eq. (2) 
one can derive the height k for different values of n, thus defining different intensity functions with the same 
Malthusian parameter. In this way we derive the intensity functions in Fig. 1.

Shape features.  Many of the functions used in this paper have been collected into an R package called phy-
loTop. Its aim is to allow the calculation of topological properties of phylogenetic trees. It does this by allowing the 
calculation of certain basic properties. Three important examples of topological properties of the nodes of a tree 
are the number of descendants of each node (this generalises the concept of cherries), the imbalance in the num-
ber of descendants and the length of the ladder starting from that node. For a graphical representation of cherry, 
pitchfork and ladder we refer to Fig. 3. The package includes tools to calculate these and many others. Once these 

Scenario Case Intensity function Life span
Final 
time R0 M

Scenario 1

#1 n =  1/3, k =  1.50 no death 9.00 1.50 0.50

#2 n =  2/3, k =  1.5 no death 9.00 1.50 0.35

#3 n =  1, k =  1.5 no death 9.00 1.50 0.27

#4 n =  4/3, k =  1.5 no death 9.00 1.50 0.22

#5 n =  1/3, k =  2.21 no death 4.20 2.21 1.00

#6 n =  2/3, k =  3.08 no death 4.20 3.06 1.00

#7 n =  1, k =  4.30 no death 4.20 4.30 1.00

#8 n =  4/3, k =  6.00 no death 4.20 6.00 1.00

Scenario 2

#1 n =  1/3, k =  1.50 no death 3.79 1.50 0.50

#2 n =  2/3, k =  1.50 no death 5.54 1.50 0.35

#3 n =  1, k =  1.50 no death 7.15 1.50 0.27

#4 n =  4/3, k =  1.50 no death 8.93 1.50 0.22

#5 n =  1/3, k =  2.21 no death 2.70 2.21 1.00

#6 n =  2/3, k =  3.08 no death 3.20 3.06 1.00

#7 n =  1, k =  4.30 no death 3.60 4.30 1.00

#8 n =  4/3, k =  6.00 no death 3.70 6.00 1.00

Scenario 2-large

#1 n =  1/3, k =  1.50 no death 6.6 1.50 0.50

#2 n =  2/3, k =  1.50 no death 9.3 1.50 0.35

#3 n =  1, k =  1.50 no death 11.6 1.50 0.27

#4 n =  4/3, k =  1.50 no death 14.6 1.50 0.22

#5 n =  1/3, k =  2.21 no death 4.1 2.21 1.00

#6 n =  2/3, k =  3.08 no death 4.7 3.06 1.00

#7 n =  1, k =  4.30 no death 4.9 4.30 1.00

#8 n =  4/3, k =  6.00 no death 5.2 6.00 1.00

Scenario 3

#1 n =  0, k =  2.31 exp, δ =  1.00 4.50 1.46 1.00

#2 n =  1, k =  17.09 exp, δ =  1.00 4.50 1.46 3.97

#3 n =  1, k =  126.29 exp, δ =  1.00 4.50 1.46 10.80

Scenario BD NA k =  1.5 ∀  t exp, δ =  1.00 3.00 1.50 0.50

Scenario BDfit NA k =  7.38 ⋅  10−3 ∀  t exp, δ =  4.20 ⋅  10−3 184 1.76 3.2 ⋅  10−3

Table 1.   Details of the parameters that defined the simulations. The choice of parameters was empirical, 
intended to generate trees with different intensity functions, i.e. effect of memory, sharing some biologically 
relevant measures such as R0, M or the size.
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basic properties have been found it is easy to calculate whatever else may be needed. This approach is quite flexible 
in calculating other topological properties. phyloTop implements this practice for some common examples such 
as the Colless and Sackin imbalance. phyloTop is based on the R package phylobase.

We use the normalized Colless imbalance51,52, Sackin imbalance16,53, the number of cherries21,54, the number 
of pitchforks, a “stairness” property (stairs2), the number of internal nodes with a single tip descendent 
(ILnumber), and an average “ladder length” (avgLadder). A cherry is two tips with a common ancestor. A pitch-
fork is a configuration of 3 tips: one cherry and an additional tip with a common ancestor. They can be counted in 
phyloTop with nConfig (tree,3). The stairs feature is the second “stair-ness” shape defined by Norstrom55, namely 
the average of 

)
( , )

( ,

T T

T T

min
max

li ri

li ri

 over the internal nodes of the tree. Here, Tri and Tli are the number of tips descending 
from the left and right sides at internal node i. We define a ladder to be a series of of connected internal nodes, 
each with a single leaf descendant. The avgLadder is the average length of ladders in the tree.

These can all be computed in a straightforward manner in the phyloTop package. The relevant phyloTop 
functions were then used with a function called treeListSummary. As inputs, this takes a list of functions (each of 
which return a topological property of a tree) and a list of trees. It then returns a data frame displaying the results 
of applying the input functions to the input trees. phyloTop has been made available on CRAN with a standard 
open source licence.

We normalise the shape features by comparing them to the maximum possible value in a tree of the given size. 
Normalization is performed by division by the maximum possible value, which is a function of the number of 
tips, n. While the expected value of any of the shape patterns will vary with the model under which the expecta-
tion is taken, and these averages are in general challenging to determine, the maximum possible value in a tree of 
size n is straightforward for all of these shape features. Normalization is as follows: Colless (already normalized); 

Figure 2.  Intensity functions (a) and shapes of trees (b) from Scenario 3, in which we explore a more 
extreme example of memory with a high R0, high M, and delayed but high intensity function. (See Table 1 
for parameters).
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Sackin (normalized dividing by: ( + ) −n n 1 11
2

); cherries (normalized dividing by n/2); pitchforks (normalized 
dividing by: n/3); Stairs2 (already normalized); ILnumber (normalized by dividing by n −  2); max height (nor-
malised by dividing by n −  1), average ladder (normalized by dividing by n −  2).

A linear regression was performed for normalised shape feature versus the start of the intensity burst n. A 
t-test on the slope was used to infer whether the feature increased or decreased with n. The test and the relative 
p-vaue, i.e. the probabiility given the simulations that the shape feature considered is are neither increasing nor 
decreasing, was found with the function t.test in R56. In addition, in the supplement the Spearman’s correlation 
between shape features was computed for each scenario and case.

Data.  We use data previously described in8 and47 (Outbreak A) Briefly, the outbreak included 33 M. tuberculo-
sis isolates collected in British Columbia between 2006 and 2011. Isolates were sequenced using paired-end 75bp 
reads on the Illumina HiSeq. The outbreak, sequences and SNPs are presented in8. Reads were aligned against 
the reference genome M. tuberculosis CDC1551 (NC002755) using Burrows-Wheeler Aligner (BWA)57. Single 
nucleotide variants were identified using samtools mpileup58 and were filtered to remove any variant positions 
within 250bp of each other and any positions for which at least one isolate did not have a genotype quality score of 
222. The remaining variants were manually reviewed for accuracy and were used to construct phylogenetic trees 
with BEAST59,60 and MrBayes61. BEAST was run with the tip dates, and with birth-death serial sampling model62, 
an uncorrelated relaxed molecular clock with an exponential (1) prior on the rate, and a GTR substitution model. 
The MCMC chain length was 10000000 with every 1000th stored. MrBayes was run with the following options: 
lset Ploidy =  Haploid; prset Brlenspr =  clock:uniform; prset Treeagepr =  Gamma(7.5, 1); prset nodeagepr =  cali-
brated and tip dates included.

Results
A linear model was fitted to the group of simulations cases 1–4 and cases 5–8 in order to investigate how memory, 
in terms of different intensity functions, may affect processes with either same basic reproduction number or 
same Malthusian parameters. The result of the statistical analysis is shown in Table 2.

From the simulations in Scenario 1, summarised in Fig. 4, we find that memory can affect many of the shape 
features we compared. In particular, as the start of the infectious period n moves further from the time of infec-
tion, the tree imbalance increases. A negative or null slope of both standardised Colless and Sackin imbalance 
is rejected with a p-value p <  10−8 for both cases 1–4 and cases 5–8. The frequency of cherries is unaffected by 
memory if the R0 is kept constant (p =  0.48). For cases 5–8 the frequency of cherries is decreasing, having rejected 
the hypothesis of a null or negative slope (p <  10−15). The frequency of pitchforks shows a slight increase for 
cases 1–4 in (p =  1.3 ⋅  10−6) and decrease for cases 5–8 (p =  1.5 ⋅  10−4). Similarly the “stairs 2” feature55 increases 
as n increases for cases 1–4 where the R0 is kept constant (p =  1.4 ⋅  10−4) and decreases for cases 5–8 where 
the Malthusian parameter is constant (p <  10−15). The normalised number of internal nodes with a single tip 
descendant (“ILnumber”), maximum heights and average ladder length increase when both the R0 is constant (p 
1.9 ⋅  10−5, < 10−15, 9.9 ⋅  10−9 respectively) and when the Matlhusian parameter is constant (all p < 10−15). Whereas 
it is difficult to visualise most topological differences, the increase in imbalance, standardised maximum height 

Figure 3.  Graphical illustration of a cherry, a pitchfork and a ladder. 
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and average ladder can be appreciated from the example trees related to Scenario 1 in Fig. 5. for instance the tree 
in (S1 case5) is more balance and has smaller ladders, in proportion to its tips, than (S1 case7) or (S1 case8).

However, the most dramatic difference between the various cases in Fig. 4 is in the number of tips. This was 
against expectation because the combinations final time-R0 and final time-M were kept the same in cases 1–4 
and 5–8 respectively (see Table 1). Particularly in cases 5–8 which have the same Malthusian parameter, the net 
growth is the same up to a (usually unknown) constant, and here it seems that this constant is highly dependent 
on the specific intensity function. This led us to ask whether the impact of memory on tree shapes in this context 
is just a matter of the impact of memory on the number of tips. To explore this question, we adjusted the time 
periods of the simulations to allow the different cases to produce branching trees of comparable sizes (Scenario 2).  
Fig. 6 shows the result. We now see lower differences between the processes. In the simulations where R0 is kept 
constant, only the frequency of cherries, the “stairs 2” and the ILnumber show a statistically significant (p <  0.01) 
pattern. The cherry frequency and the “stairs 2” decrease (p of 0.2 ⋅  10−3 and 0.6 ⋅  10−3 respectively), whether the 
ILnumber increases as n increases (p =  0.3 ⋅  10−2). In the cases with constant M, more shape features showed 
statistically significant patterns. As the time between infection and the start of the infectious period grows, the 
cherry and pitchfork frequencies together with the “stairs 2” measure decrease (p of 10−15, 0.5 ⋅  10−3, < 10−15 
respectively), whether the ILnumber, the maximum height and the average ladder increase (p of < 10−15, 0.3 ⋅  10−2 
and 0.1 ⋅  10−3 respectively). Comparing to Scenario 1, adjusting for the size of the branching trees eradicates the 
some effects of memory, particularly in the simulations where R0 is kept constant. In Fig. 5, second row, some 
example trees for Scenario 2 were chosen. The shape difference between each other is not as evident as the trees 
from Scenario 1; there is a clear increase in the proportion of internal nodes with a one tip descendant (standard-
ised ILnumber) from case 5 (11 nodes, 23 tips), to case 8 (14 nodes, 24 tips).

As in Scenario 2, Scenario2-large shows an increased level of uncertainty (high p); see Fig. 7 and Table 2 for 
a summary of the results. Compared to Scenario 2, in Scenario 2-large the Colless and Sackin imbalance for 
cases 5–8 is decreasing (p of 3.5 ⋅  1− −4 and 6.0 ⋅  10−4) instead of uncertain; the frequency of pitchfork for cases 
1–4 increases (p =  7.7 ⋅  10−4) and is unchanged in cases 5–8; the standardised maximum height has an opposite 

Shape 
topology

Behaviour p-value

Cases 1–4 Cases 5–8 Cases 1–4 Cases 5–8

Scenario 1

Tips decrease decrease < 10−15 < 10−15

Colless increase increase < 10−15 1.4 ⋅  10−9

Sackin increase increase < 10−15 1.8 ⋅  10−14

Cherries inconclusive decrease 0.48 < 10−15

Pitchforks increase decrease 1.3 ⋅  10−6 1.5 ⋅  10−4

Stairs2 increase decrease 1.4 ⋅  10−4 < 10−15

ILnumber increase increase 1.9 ⋅  10−5 < 10−15

MaxHeight increase increase < 10−15 < 10−15

avgLadder increase increase 9.9 ⋅  10−9 < 10−15

Scenario 2

Colless inconclusive inconclusive 0.28 0.03

Sackin inconclusive inconclusive 0.71 0.48

Cherries decrease decrease 2.6 ⋅  10−4 < 10−15

Pitchforks inconclusive decrease 0.9 5.4 ⋅  10−4

Stairs2 decrease decrease 6.1 ⋅  104 < 10−15

ILnumber increase increase 3.9 ⋅  10−3 < 10−15

MaxHeight inconclusive increase 0.47 3.9 ⋅  10−3

avgLadder inconclusive increase 0.23 1.1 ⋅  10−4

Scenario 2-large

Colless inconclusive decrease 0.77 3.5 ⋅  10−4

Sackin inconclusive decrease 0.46 6.0 ⋅  10−5

Cherries decrease decrease 2.3 ⋅  10−4 < 10−15

Pitchforks increase inconclusive 7.7 ⋅  10−4 0.05

Stairs2 decrease decrease 8.0 ⋅  10−3 < 10−15

ILnumber increase increase 6.1 ⋅  10−3 < 10−15

MaxHeight inconclusive decrease 0.70 3.7 ⋅  10−3

avgLadder inconclusive inconclusive 0.82 0.29

Table 2.   Relation between shape topologies and memory, as included in our simulations. Memory is 
introduced by means of step-like intensity functions which vary by step position and height; refer to Table 1 for 
the details of each simulation. For both groups (cases 1–4 and cases 5–8) and for each shape topology, a straight 
line was fitted to the data and here it is reported whether the slope was negative, positive or if the linear fitting 
was inconclusive because of a p-value greater than 0.01. Similar p-values were also obtained with an ANOVA 
test. Specific values for intercept and slope are not reported, because of the high specificity of parameters used in 
the simulations and the standardization of the shape topologies.
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behaviour for cases 5–8; and the standardised average ladder for cases 5–8 does not show a statistically significant 
linear increase.

We used two posterior collections of phylogenetic trees derived from the Kelowna TB outbreak in Canada 
(see Methods). From the collection of BEAST60 estimates of the trees, birth and death rates were estimated. The 
estimated values were used to simulate the homogeneous trees in scenario BDFit, please refer to Table 1 for 
the input values used. Data-derived trees had slightly lower imbalance and slightly lower normalised maximum 
height than the simulated trees once size was controlled (Fig. 6); the two inference methods differed more with 
each other in several shape parameters (cherries, IL number and stairs) than the data trees differed from the 
simulations. Comparing to Scenario 1, the variability in the data-derived trees was typically much lower than that 
in the constant-rate models and more closely matched the tightly defined simulations in cases 3, 4, 7, and 8, but 
then the number of tips in the data is fixed, and the numbers of tips in cases 3, 4, 7 and 8 were the most narrowly 
distributed as well. Comparing to Scenario 2, where we controlled the average size, all of the tree shape features 
from the data are consistent with the simulations except for imbalance, maximum height and avgLadder feature. 
The BEAST trees were always closer to the constant-rate birth death model than the MrBayes trees, consistent 
with our having used the birth-death prior in BEAST.

The fact that the number of tips varies dramatically while R0 or M are fixed means that memory affects the 
number of lineages in the tree. This led us to wonder whether memory would affect the results of inference 
approaches that assume a memory-less model and use the timing of branching events. We estimated the birth 
rate using the pureBirth function in the laser package in R63. We found that the estimates varied, and that mem-
ory resulted in some bias. Since the trees are ultrametric, the estimate of the birth rate should be equal to the 
Malthusian parameter. With reference to Fig. 8, the median estimate (shown by the horizontal bar in the box-
plots) is too high in cases 1–4, correct in cases 5–8 in Scenario 1, but too high in cases 5 and 8 in Scenario 2. We 
also used Pybus’ γ64 to analyse the timing of branching events; this is possible for the ultrametric trees (Scenarios 
1 and 2). We found that both memory, as we have explored it, and the distribution of the number of secondary 
infections, can affect whether trees appear consistent with the Yule model (see Supplementary Material).

We compared branching trees from a set of more extremely varying intensity functions such that the R0 val-
ues differed greatly. Fig. 2(a) illustrates the intensity functions, which range from infectivity beginning immedi-
ately to infectivity beginning much later. We found that high R0 values combined with a late intensity function 
resulted in marked differences in tree shapes, particularly in the numbers of cherries, pitchforks, the stairs feature, 
and the IL number, all with p <  10−15. The marked difference in shape is also evident in the examples in Fig. 5. 
Imbalance is increasing with R0, with p 8,06 ⋅  10−10 and 4.1 ⋅  10−3 for Colless and Sackin respectively, as well 
as the maximum height (p = 2.0 ⋅  10−9). The number of tips and average ladder length are the only two shape 
features with no statistically significant difference among the three cases (p 0.87 and 0.06 respectively). A long 
delay between infection and start of infectious period causes the tree have only a few individuals with numerous 
offspring as in (S3 case2) and (S3 case3), compared to a more “normal” shape of (S3 case1). The extreme case  
(S3 case3) is composed by a handful of long caterpillars which imply low frequency of cherries and pitchforks and 
a high ILnumber, validating the results in Fig. 2.

Some of the shape features are naturally related to each other. For instance, connected “ladder” configurations 
will occur more frequently in imbalanced trees and cherries will be more numerous in balanced ones. Among 
measures of balance, Rogers65 showed high correlation between Sackin and Colless imbalance, under the equal 

Figure 4.  Boxplots describing shape features of branching trees from Scenario 1. Cases 1–4 have the same R0 
(1.5) and cases 5–8 have the same Malthusian parameter (1). BD refers to the constant-rate birth-death process 
with R0 =  1.5, and BDFIT refers to the constant-rate birth-death process with parameters inferred from data. 
BST and MB are trees inferred from data using BEAST and MB respectively. (see Table 1)
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rates Markov model and the equal probability model. With a simulation approach, Shao and Sokal66 evaluated the 
correlation matrix of nine indices of tree balance under the equal probability model. Similarly, they found that 
Colless and Sackin are highly correlated with each other.

We explored these correlations across our simulations and data (Supplementary Figures S3–S6). We found 
that the correlations are remarkably preserved across the simulations, but that Case 8 and the latter 2 cases from 
Scenario 3 (all with high R0 and delayed transmission), as well as the data, had correlation patterns which differed 
from the rest. Colless and Sackin imbalances are highly correlated in every simulation case, scoring a minimum 
of 0.88 (p <  10−15) in Scenario 2 case 8. We did not find negative correlations between cherries and imbalance, 

Figure 5.  Example of trees from each scenario and case. The example trees were chosen because they have a 
number of tips close to the median of each group. Please note that the time (horizontal axis) does not have the 
same scale for different graphs.
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though cherries indicate symmetry (near the tips) and imbalance indicates asymmetry (over the whole tree). 
Unlike other cases, case 8 consistently has a negative correlation between the ILnumber feature and the pitch-
forks: − 0.82 (p <  10−15) in Scenario 1 and − 0.52 (p = 3, 5 ⋅  10−12) in Scenario 2. This negative correlation also 
occurs in the high R0 cases from Scenario 3. In both data-derived groups of trees, the ladder numbers were 
not correlated with the imbalance measures whereas in most simulations these were tightly correlated. In the 
data-derived trees there were significant negative correlations between the stairs feature and the imbalance, height 
and ladder number, which were not present in any of the simulations. The data-derived trees had a weaker corre-
lation between the ladder number and the imbalance than the simulations. In Scenario 3, many small but consist-
ent correlations amongst tree shapes are reversed compared to the rest of the simulations; in particular, imbalance 
and tree height are not negatively correlated with cherries, pitchforks and stairs. These trees can have a high 

Figure 6.  Boxplots describing shape features of branching trees from Scenario 2, where the size of the 
tree is controlled by varying the times of the simulations. Cases 1–4 have the same R0 (1.5) and cases 5–8 
have the same Malthusian parameter (1). BD refers to the constant-rate birth-death process with R0 =  1.5, and 
BDFIT refers to the constant-rate birth-death process with parameters inferred from data. BST and MB are trees 
inferred from data using BEAST and MB respectively. (see Table 1).

Figure 7.  Boxplots describing shape features of branching trees from Scenario 2-large, where the tree has a 
mean number of tips between 98 and 102, obtained varying the simulation time. Cases 1–4 have the same R0 
(1.5) and cases 5–8 have the same Malthusian parameter (1).
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imbalance simultaneously with high values of symmetric shapes such as cherries, for example. There are strong 
negative correlations between the number of ladder nodes (ILnumber) and the cherries and pitchfork numbers.

Overall, when we compare how shape features have depended, or not depended, on the variations we have 
explored, we note that there are several shapes whose distributions were quite tightly constrained by data com-
pared to their variability in simulations. These were the maximum height of the tree, the avgLadder feature and 
both measures of imbalance. In contrast, several shape features emerge as being sharply determined by the com-
bination of high R0 and M: the numbers of cherries and pitchforks, the stairs feature, and the number of internal 
nodes with a single tip descendant (ILnumber).

Discussion
A “process with memory” is simply a process that is non-Markovian, and there are many ways that memory can 
be introduced. Here, introducing memory in a simple way affected many shape features of branching trees, but 
also affected the timing of new infections (via the intensity function), the offspring distribution, the Malthusian 
parameter and the tree size distribution. This makes disentangling the effects of non-exponential waiting times 
on tree shapes quite complex. We have attempted to construct our study to best explore these different effects, 
and within this context we have found that tree shapes are quite robust to the non-exponential waiting times we 
have used. However, the memory in our processes did affect estimates of the birth rates and the Pybus γ statistic.

We explored memory using a collection of simple step-like intensity functions with a delay between a host 
becoming infected, and infecting others. When the delay is much larger than the pulse width (the duration of 
infectiousness), the branching events of each individual occur in a short time compared to the individual’s life 
span, very much like a burst. In the limit where the “burst” becomes very short, each individual spawns offspring 
at a fixed time after infection. In this case, when we observe the tree, each individual has either reached this time, 
infected others and completed the infectious burst or not. In such a tree, shape features such as imbalance, the 
cherry-to-tips ratio and so on remain essentially unchanged over time. In contrast, if the delay is comparable to 
the pulse width, the first offspring of an individual may infect others before her “youngest sister” is born. This 
overlap can influence the shape because some part of the tree may not be born when the tree is observed at the 
cut-off time or when a chosen number of individuals is reached.

Like most other works in the field of phylodynamics, we have implicitly assumed that the true branching tree, 
or at least a good posterior distribution approximating it, can be estimated using pathogen genetic data. This is a 
limitation, as branching events in phylogenies may not always correspond to transmission events in the outbreak. 
However, when within-host diversity is low, the pathogen evolves in a clock-like manner and accrues sufficient 
genetic diversity, the branching points in a phylogeny are likely to be very close to transmission events. A related 
complication is that the “transmission bottleneck” is not typically known; hosts may initially be infected with 
more than one pathogen lineage. Finally, hosts may be re-infected and carry multiple lineages as a consequence. 
We have chosen not to add these additional complexities to our exploration of memory and tree shapes. Indeed, if 
under models that capture within-host diversity or other complex features, transmission trees can be inferred8,67, 
then comparing the shapes of those transmission trees to what might be expected under different intensity func-
tions, as presented here, remains relevant. Challenges in the next generation of phylodynamics have recently been 
discussed elsewhere10.

We have not focused on how sampling affects tree shapes, but the question of how sampling affects phylody-
namic inference is a challenging one10. The density, timing and uniformity of sampling can be expected to affect 
shapes; in the limit of very low sampling density, we would expect the effects of non-exponential waiting times 
between infection events to be washed out by the fact that lineages in the sampled branching tree would change 

Figure 8.  Pure birth rate fits to ultrametric simulated branching trees from Scenarios 1 (a) and 2 (b). Red 
dots are the correct best estimate, namely the Malthusian parameter M (see Table 1).
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hosts many times between branching events (unless the low sampling is highly non-uniform). If sampling occurs 
through contact tracing, snowball sampling or respondent-driven sampling then this could have substantial 
effects on tree shapes, which are as yet uncharacterised.

In outbreak settings, many factors can impact tree shape, including R0, M, non-exponential distributions of 
waiting times (which we have explored here), but also including selection, population structure, host behaviour, 
super-spreading, host contact network structure21,44,45,47,68 and other factors. The complexity of the underlying 
models and the computational challenges associated with large datasets make likelihood-free inference an appeal-
ing tool in this domain69–71. However, this approach requires informative summary features that can be compared 
to properties of sequence data or to trees inferred from these data.

Tree shapes are potentially an important source of such summary features. The number of possible tree shapes 
explodes exponentially in the number of tips, so specifying a shape in principle specifies a lot of information. 
Using shapes as informative summary features will require much more finely-resolved shape statistics than the 
few that are currently in use – mainly imbalance and the number of cherries. We have found that tree shapes are 
quite robust to variations in the waiting times between the onset of infection and infecting others. However, in 
our study, some shapes were strongly constrained by data (tree height, the average length of connected “ladder” 
components and the imbalance) and some were strongly affected by high R0 and M (cherries, pitchforks, stairs 
and ILnumber). If this robustness to memory together with sensitivity to other aspects of the data, carries forward 
to an informative suite of tree shapes, shapes could provide an alternative approach to estimating epidemiological 
parameters such as R0 and M using sequence data.
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