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Research has been conducted in various fields in an attempt to develop new therapeutic agents for incurable neurodegenerative
diseases. Gastrodia elata Blume (GE), a traditional herbal medicine, has been used in neurological disorders as an anticonvulsant,
analgesic, and sedative medication. Several neurodegenerative models are characterized by oxidative stress and inflammation
in the brain, which lead to cell death via multiple extracellular and intracellular signaling pathways. The blockade of certain
signaling cascadesmay represent a compensatory therapy for injured brain tissue. Antioxidative and anti-inflammatory compounds
isolated from natural resources have been investigated, as have various synthetic chemicals. Specifically, GE rhizome extract and
its components have been shown to protect neuronal cells and recover brain function in various preclinical brain injury models
by inhibiting oxidative stress and inflammatory responses. The present review discusses the neuroprotective potential of GE and
its components and the related mechanisms; we also provide possible preventive and therapeutic strategies for neurodegenerative
disorders using herbal resources.

1. Introduction

Incurable neurodegenerative disorders result in aplastic
impairment of brain function. Many previous studies have
identified the underlying etiology and pathogenesis of
neurodegenerative disorders; however, current therapeutic
strategies provide limited symptom relief or suppression of
disease progression for incurable neurodegenerative disor-
ders, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), stroke, and seizure. For example, AD is clinically
treated using cholinesterase inhibitors, glutamatemodulators
[1], and antiamyloid 𝛽 (A𝛽) peptide agents to mitigate the
symptoms and neurodegeneration [2]. Clinical therapies for
the treatment of PD include L-3,4-dihydroxyphenylalanine
(L-DOPA) for dopaminergic neuron degeneration and
nondopaminergic drugs to alleviate nonmotor symptoms
[3]. Thrombolytic agents have restricted use against acute
ischemic stroke [4]. The development of new therapeutic

agents that effectively treat and promote recovery in neu-
rodegenerative diseases is urgently needed. Here, traditional
herbal medicine is suggested to be a potential therapeutic
approach as an alternative medicine for incurable neurode-
generative diseases.

A combination of several herbs is typically used clinically
in traditional herbal medicine; the interactions among herbs
following decoction of several medical herbs have synergistic
effects that increase their efficacy and reduce possible adverse
reactions by decreasing toxicity [5]. Because the pathogenesis
of certain diseases involves multiple targets associated with
different pathways, a complex prescription, such as decoction
that includes multiple herbs, is an extremely beneficial thera-
peutic approach [6]. Thus, the discovery of new properties of
traditional herbal medicines, such as herb-herb interactions
and multiple targets, may provide a solution to the treatment
of incurable neurodegenerative disorders. However, there
are various limitations to the investigation of such complex

Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2015, Article ID 309261, 14 pages
http://dx.doi.org/10.1155/2015/309261

http://dx.doi.org/10.1155/2015/309261


2 Evidence-Based Complementary and Alternative Medicine

prescriptions. For example, it is difficult to accurately evaluate
the inherent efficacy of each herb in such complexes and
to identify the target component involved in the disease
mechanism and thus the treatment effect.Therefore, we must
first study each individual component of traditional herbal
medicines to determine the pharmacological mechanisms
involved.

Gastrodia elata Blume (GE), which belongs to the Orchi-
daceae family, is a saprophyte that grows in the woods of
East Asia. The dried rhizome (tuber) of this plant (tianma)
is used as a traditional herbal medicine to treat neurological
disorders such as vertigo, general paralysis, epilepsy, and
tetanus.TheGE rhizomehas been used clinically as a complex
prescription rather than as a single herb. For example, Banxia
Baishu Tianma Tang, which is a decoction composed of
GE rhizome and other herbs such as Pinellia ternata and
Atractylodes, is prescribed to treat hypertension in East Asia
[7, 8]. The effects of a complex prescription mixed together
with GE rhizome and other herbs have been demonstrated
in patients with Tourette’s syndrome [9]. Ningdong granule
(i.e., GE rhizome,Codonopsis pilosula,Ophiopogon japonicus,
white peony root, Rhinocerotidae, oyster, earthworm, and
licorice root) attenuated symptoms of Tourette’s syndrome
in children and returned abnormal levels of interleukin-
(IL-) 12 and tumor necrosis factor- (TNF-) alpha in the
serum to normal. In addition, many previous studies have
attempted to elucidate the pharmacological effects ofmultiple
herb decoctions that include GE rhizome to provide new
therapeutic opportunities for neurodegenerative diseases [6,
10, 11]. Additionally, previous studies have investigated the
pharmacokinetics of GE components. While higher relative
bioavailability of gastrodin and parishin was obtained in
rats after oral administration of GE rhizome powder at low
doses, higher bioavailability was shown after administration
of high doses of the GE rhizome aqueous extract [12].
Moreover, a detection technique was developed to determine
the pharmacokinetics of gastrodin in rat blood, brain, and
bile, and this technique might be a useful method for the
determination of the metabolism of gastrodin [13]. However,
further studies are necessary to elucidate the pharmacological
and pharmacokinetic properties of GE and its components in
the context of brain tissue injury.

Most of the previous studies have attempted to identify
the biologically active components of the GE rhizome,
and a variety of compounds have been isolated from the
aqueous or methanol extracts of GE rhizome. Methanol
extracts of GE rhizome reportedly exert neuroprotective
and antioxidant effects [14]. One study isolated and
identified 14 GE compounds using silica gel column
chromatography and fractionated 8 phenolic components
[15]: 4-hydroxybenzaldehyde (4-HBAL), 4-hydroxybenzyl
alcohol (4-HBA), benzyl alcohol, bis-(4-hydroxyphenyl)
methane, 4-(4-hydroxybenzyloxy)benzyl methylether,
4-hydroxy-3-methoxybenzyl alcohol (vanillyl alcohol), 4-
hydroxy-3-methoxybenzaldehyde (vanillin), and 4-hydroxy-
3-methoxybenzoic acid (vanillic acid) (Figure 1). Among
them, several GE compounds, including 4-HBAL, 4-HBA,
benzyl alcohol, vanillyl alcohol, vanillin, and vanillic acid, are
listed on the Everything Added to Food in the United States

(EAFUS) database as Food andDrugAdministration- (FDA-)
approved food additives (http://www.accessdata.fda.gov/
scripts/fcn/fcnnavigation.cfm?rpt=eafuslisting&displayAll=
true). Several new compounds were recently isolated by
various chromatography techniques; in total, 64 compounds
were identified from GE rhizome, including parishin
J and parishin K [16]. A previous study reported the
metabolic profile of parishin in rat plasma and urine after
administration of parishin to investigate the pharmacological
effects [17]. However, among these components of GE,
gastrodin, 4-HBAL, 4-HBA, vanillin, and vanillyl alcohol
are the major active components in terms of their neu-
ropharmacological properties [18]. Gastrodin, the main
bioactive component of GE, has since been obtained
via ethanol and aqueous extraction and is the phenolic
glucoside of 4-HBA [19] (Figure 1). Another main bioactive
component, vanillin, which can be isolated from methanol
extracts, is an aromatic aldehyde that contains a hydroxyl
group para to aldehyde (Figure 1). Vanillin may be effective
as a new antiepileptic drug, as vanillin reportedly has
effects on human epilepsy patients: 184 patients treated with
vanillin monotherapy for 3 months showed improvement
in a previous study [20]. In addition, vanillin is a potent
anti-inflammatory agent that inhibits the generation of
reactive oxygen species (ROS) [21]. Benzyl alcohol, 4-HBAL,
and 4-HBA have anti-inflammatory effects via the inhibition
of the activities of cyclooxygenase- (COX-) 1 and COX-2, and
vanillyl alcohol significantly increases the radical-scavenging
activity of DPPH [21]. In vivo and in vitro experiments have
demonstrated that GE and its components have various
pharmacological actions that result in antioxidant, anti-
inflammatory, and anticonvulsant effects [14, 20]. Here
we report on the potential therapeutic potential of GE for
the treatment of neurodegenerative disorders, including
epilepsy, ischemia, AD, and PD.

In this review, we provide an overview of the efficacy of
GE and its components in a variety of neurodegenerative
models. We also discuss the possible mechanisms involved
in ameliorating a broad range of brain disorders that lead to
neuronal death.

2. Protective Effects of GE and Its Components
in Neurodegenerative Disease Models

Several studies have revealed the effects of GE and its
components on various in vivo and in vitro models of
neurodegenerative disorders, such as epilepsy, ischemia, AD,
and PD (Table 1).

2.1. Induced Seizure Model. Previous studies have demon-
strated the anticonvulsant properties of GE in rodent mod-
els of seizure. Kainic acid (KA) is an excitatory agonist
that induces limbic seizures and excitotoxicity in the hip-
pocampus [22]. The anticonvulsant effect of GE rhizome
extract has been documented in rodent KA models of
temporal epilepsy [23–26]. The ether fraction of GE rhizome
methanol extracts has anticonvulsant effects on this model,
and histopathological findings have shown that treatment
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Figure 1: Chemical structure of representative Gastrodia elata Blume compounds.

with ether fraction of GE rhizome extract attenuates KA-
induced neuronal cell death in the hippocampal cornus
ammonis (CA) 1 and 3 regions [25]. In addition, oral admin-
istration of GE rhizome ethanol extract significantly delayed
the onset time of neurobehavioral change and reduced the
number of seizure-like behaviors, such aswet dog shakes, paw
tremor, and facial myoclonia, consistent with the reduced
level of lipid peroxides in the rat brain [24]. Moreover, a
previous study also demonstrated that GE rhizome aqueous
extract reduced the epileptic attack durations by measuring
behavioral observations, including wet dog shakes, paw
tremor, and facial myoclonia [26]. Cocaine also reportedly

induces seizures by inhibiting gamma aminobutyric acid
(GABA)A currents and enhancing dopamine and gluta-
mate transmission [27, 28]. Treatment with GE rhizome
methanol extract following cocaine administration delays
the onset of neurobehavioral changes and shortens seizure
duration [29]. Animals fed 4-HBAL from the ether frac-
tion of GE rhizome methanol extracts exhibit less con-
vulsant activities than rats who receive pentylenetetrazole
(PTZ) treatment alone [30]. Based on previous studies,
KA-, cocaine-, and PTZ-induced seizures may be suitable
models for identifying the antiepileptic effects of GE and its
components.
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Figure 2: (a) Experimental scheme used to evaluate the effect of
vanillin in a trimethyltin- (TMT-) induced seizure model. Mice
received a single injection of TMT (2.6mg/kg, intraperitoneal (i.p.))
and vanillin (100mg/kg, i.p.) once daily for 3 days at −1 day, 0 days,
and 1 day relative to TMT injection. Behavioral changes used to
measure seizure activity were observed and scored 1, 2, and 3 days
after TMT injection. (b)The anticonvulsant effect of vanillin against
TMT-induced clinical seizure symptoms in C57BL/6 mice. Data are
presented asmeans ± standard errors of themean (SEM). ∗𝑃 < 0.05,
∗∗

𝑃 < 0.01 versus TMT-treated group.

The organotin compound trimethyltin (TMT) is a potent
neurotoxicant whose effects are characterized by selective
neuronal death in the limbic system, including the hippocam-
pus [31]. In addition, we have performed experiments to
identify the antiepileptic effects of vanillin, a GE component,
in a TMT-induced seizure model. The vanillin used in
this study was purchased from Sigma-Aldrich (Cat. number
V1104) and was dissolved in 2% ethanol within phosphate-
buffered saline (pH 7.4). As shown in Figure 2(a), mice

received a single injection of TMT (2.6mg/kg, intraperitoneal
(i.p.)) and a daily injection of vanillin (100mg/kg, i.p.) for 3
consecutive days. Seizure behaviors were examined 1–3 days
after treatment, consistent with previous studies [32–35]. For
statistical analysis, the data are reported as mean ± SEM and
were analyzed by one-way analysis of variance (ANOVA)
followed by the Student-Newman-Keuls post hoc test for
multiple comparisons. In all analyses, 𝑃 < 0.05 was taken
to indicate statistical significance. Vanillin treatment signif-
icantly reduced seizure behaviors induced by TMT treatment
(Figure 2(b)). In addition, during histological examination,
we determined the amount of nuclear pyknosis in the
granular cell layer (GCL) of the hippocampal dentate gyrus
and observed a marked decrease in neuronal cell death, as
in a previous study [33]. Semiquantitative analysis of nuclear
pyknosis revealed that vanillin treatment significantly attenu-
ated neuronal damage induced by TMT treatment (Figure 3).
Thus, GE and its components may be potential therapeutic
candidates for the treatment of epileptic seizures. Further
study is necessary to identify the mechanisms of the anticon-
vulsant action by GE and a variety of its components and to
detect components that are effective against human epilepsy.

2.2. Ischemia Model. Cerebral ischemia-induced neurolog-
ical dysfunction is caused by secondary injury processes,
including excitotoxicity, ionic imbalance, and ROS gener-
ation [36], which lead to neuronal cell death by induc-
ing tissue infarction [37]. Thus, brain ischemia may share
commonmechanismswith neurodegenerative disorders.The
neuroprotective properties of the GE or its components
have been demonstrated in ischemic animal models. Studies
have shown that vanillin, 4-HBAL, and 4-HBA significantly
reduce neuronal cell death in the hippocampal CA1 region
of Mongolian gerbils with transient global ischemia [38].
Further, the ether fraction ofGE rhizome remarkably protects
against hippocampal neuron damage in this model [39].
The phenolic glucoside gastrodin significantly decreased
infarction volume and edema volume in the brain, improved
neurological scores, and ameliorated cerebral injury in a
rat ischemic model with middle cerebral artery occlusion
(MCAO) [40]. In a previous study, involving the same
ischemic model, gastrodin treatment before MCAO oper-
ation decreased the volume of cerebral infarction and the
release of cerebral amino acids [41]. In addition, a previous
in vitro study demonstrated that gastrodin pretreatment
significantly increases neuronal survival in hypoxia-exposed
rat cortical neurons [42]. These findings support the concept
that GE or its components have protective effects against
neuronal damage due to ischemia in in vivo and in vitro
experiments, suggesting that GE and its components may act
as potential preventive or therapeutic agents in human stroke.

2.3. AD and PD Models. AD is an important neurode-
generative disorder characterized by progressive cognitive
impairment. A major pathological hallmark of AD is the
accumulation of senile plaques composed of A𝛽 protein
[43, 44]. Many previous studies have reported on the poten-
tial therapeutic properties of traditional herbs against AD.
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the increased amount of nuclear pyknosis induced by TMT treatment was significantly reduced by vanillin treatment. Semiquantitative
analysis of neuronal cell death, performed by counting nuclear pyknosis, showed that vanillin suppressed neuronal cell death (𝑛 = 10
mice/group). Data are presented as means ± SEMs. Scale bars indicate 40𝜇m.

Among the compounds tested, GE is reportedly a promising
candidate for use in protecting neuronal cells against AD
pathogenesis [45, 46]. In rats injected with A𝛽

25–35 to model
AD, chronic administration of powdered GE rhizome dis-
solved in water markedly reduced amyloid plaque deposition
in the hippocampus and significantly improved impaired spa-
tialmemory in theMorriswatermaze test; these changeswere
consistent with the increased expression of choline acetyl-
transferase in the medial septum and hippocampus [47]. A
previous study demonstrated the neuroprotective effect of GE
rhizome chloroform extract in vitro using rat pheochromo-
cytoma (PC12) cells incubated with A𝛽

1–42 [45]. In addition,
methanol extract of GE rhizome and its pure components,
gastrodin and 4-HBA, have been shown to have protective
effects against A𝛽-induced cell death in BV2 microglial cells,
possibly through upregulation of glucose-regulated protein
78 (Grp78), an antiapoptotic endoplasmic reticulum (ER)
stress protein related to protein-folding machinery [48].

Similar to AD, PD is one of the most common neu-
rodegenerative disorders. It is characterized by a loss of
dopaminergic neurons in the substantia nigra pars compacta,
which leads to symptoms of rigidity, resting tremor, and
bradykinesia [49].Theneurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which can be metabolized into
1-methyl-4-phenylpyridinium (MPP+), induces neuronal cell
death and is widely used in animal models of PD [50, 51].
In a previous study that used the MPTP-induced PD mouse
model, gastrodin had a neuroprotective effect, as demon-
strated by reduced bradykinesia and motor impairment in
the pole and rotarod tests, respectively [52]. In addition,
gastrodin treatment significantly decreased the neuronal cell
viability induced by MPP+ [52]. The protective effects of

ethanol extract of GE rhizome or gastrodin against MPP+-
induced neurotoxicity have also been demonstrated in SH-
SY5Y cells by inhibiting oxidative and apoptotic signaling
[53] and in dopaminergic cells by inducing heme oxygenase-
1 (HO-1) expression [54]. In MN9D dopaminergic cells,
vanillyl alcohol inhibits the cytotoxicity induced by MPP+
[55]. L-DOPA is a dopaminergic drug used to treat PD, but
long-term L-DOPA treatment results in L-DOPA-induced
dyskinesia (LID) [56]. Therefore, GE or its components have
neuroprotective effects on in vivo and in vitro AD and PD
models andmay be potential preventive or therapeutic agents
for human AD and PD.

3. Pharmacological Mechanisms of
GE and Its Components

Several studies have attempted to clarify the pharmacological
mechanisms of GE and its components in neurological
disorders (Table 2).

3.1. Effects of GE and Its Components on Neurotransmission.
GABA is themajor inhibitory neurotransmitter in the central
nervous system (CNS), and malfunction of its transmis-
sion may result in pathological conditions such as seizure,
ischemia, and learning impairment. Previous studies have
shown that GE and its components may confer neuropro-
tection by inhibiting the degradation of GABA and thus
enhance GABA levels [30, 57, 67]. In rats, the decreased brain
GABA content induced by PTZ treatment can be reversed
by treatment with the ether fraction of the methanol extract
of GE rhizome, suggesting that GE may have anticonvulsant
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activity [30]. In Mongolian gerbils, seizure severity can be
attenuated by gastrodin treatment via inhibition of GABA-
degrading enzymes, including GABA transaminase (GABA-
T), succinic semialdehyde dehydrogenase (SSADH), and
succinic semialdehyde reductase (SSAR), in the hippocampal
regions [57]. Moreover, gastrodin has been found to regulate
GABA neurotransmitter levels by inhibiting SSADH [68].
However, another study reported opposite findings regarding
GABA-T levels after treatment with various GE components;
in a transient global ischemia model, 4-HBA treatment
increasedGABA-T levels in the early stage of ischemia, which
might have contributed to cell survival through the energy
supply generated by rapid GABA degradation in neuronal
cells [38]. This discrepancy among results regarding GABA-
T levels may be related to differences in the pathogenesis of
seizure and ischemia.

Methanol extract of GE rhizome delays seizure onset and
shortens seizure duration in cocaine-induced convulsion by
activating the GABAA receptor [29]. A previous in vivo study
showed that GE rhizome ethanol extract increased the total
sleep time and reduced sleep latency in pentobarbital-treated
mice, and an in vitro study also demonstrated an increased
level of GABAA receptors following treatment with GE
rhizome ethanol extract [58]. In another study, the anxiolytic
effects of 4-HBA and 4-HBALwere inhibited byWAY 100635,
a serotonin (5-HT

1A) receptor antagonist, and flumazenil, a
GABAA receptor antagonist, respectively [69]. These results
indicate that GE extract and its components may be involved
in the regulation of GABAA receptor in neurological disor-
ders. However, further studies are required to clarify the pre-
cise mechanisms underlying the effects of GE and its compo-
nents on GABA-degradative enzymes and GABA receptors.

3.2. Effects of GE and Its Components on Oxidative Response.
The level of ROS production is an important factor
determining the severity of neurodegenerative disease, and
enhancing antioxidant activity may be a possible mechanism
involved in the neuroprotective effects of GE [70, 71]. In a
transient global ischemiamodel, 4-HBA treatment decreased
8-hydroxy-2-deoxyguanosine (8-OHdG) immunoreactivity,
which is one of the major products of DNA oxidation [38].
In AD and PD in vivo and in vitro models, GE rhizome
aqueous and ethanol extract ameliorated neurodegeneration
by reducing oxidative stress, respectively [53, 60]. A previous
study also demonstrated that the protective effect of GE
rhizome aqueous extract in an AD model may be related
to inhibition of apoptosis and upregulation of antioxidative
enzymes, including catalase, superoxide dismutase (SOD),
and glutathione peroxidase [60]. In addition, GE rhizome
ethanol extract had a neuroprotective effect, as demonstrated
by reductions in ROS production, Bax/Bcl-2 ratio, cleaved
caspase-3, and PARP proteolysis induced by MPTP in
a PD in vitro model with SH-SY5Y or MN9D cells,
respectively [53, 55]. Gastrodin and vanillyl alcohol reduce
ROS production in MPP+-induced neurotoxicity [54, 55].
Gastrodin may confer neuroprotection by enhancing the
expression of antioxidant enzyme HO-1 via activation of the
p38 mitogen-activated kinase (MAPK)/Nrf-2 pathway

in human dopaminergic cells [54]. This compound
has also been found to have antioxidative effects in a
glutamate-induced injury model by measuring the levels of
malondialdehyde, mitochondrial membrane potential, and
superoxide dismutase [59]. In that study, gastrodin prevented
glutamate-induced oxidative stress in PC12 cells by blocking
[Ca2+]I influx and inhibiting calmodulin-dependent kinase
II (CaMKII) activation, apoptosis signal-regulating kinase 1
(ASK1), and p38 MAPK phosphorylation [59]. In a transient
focal ischemia rat model, water extract of GE rhizome and
4-HBA treatment induced antioxidant gene transcription
in the brain [61]. These studies have revealed parts of the
mechanisms involved in the neuroprotective effects of GE
and its components. Further studies of the mechanisms of
action of other GE components are necessary.

3.3. Effects of GE and Its Components on Neuroinflammation.
The role of the inflammatory response has been investi-
gated in neurodegenerative disorders, including AD, PD,
and epilepsy [72, 73]. Many studies have demonstrated that
amelioration of inflammatory responses might be another
possible mechanism by which GE and its components
exert neuroprotective effects. In rat models of KA-induced
epilepsy, treatment of GE rhizome ethanol extract reduces
the number of activated microglial cells, with a concomi-
tant decrease in neuronal nitric oxide synthase- (NOS-)
stained cells [65]. In a rotenone-induced rat PD model,
gastrodin inhibits microglial activation and inflammatory
cytokines [64]. Depression-like behaviors can be reversed
following gastrodin administration, possibly due to the
inhibition of IL-1𝛽 expression, a proinflammatory cytokine
[62]. In RAW264.7 macrophages, treatment of GE rhizome
ethanol extract inhibits NO production and the expression
of iNOS and COX-2 induced by lipopolysaccharide (LPS)
[66]. In microglial BV-2 cells activated by LPS, GE rhizome
ethanol extract inhibits inflammatory cytokines such as
TNF-𝛼 and IL-1𝛽 and downregulates the c-Jun N-terminal
kinase (JNK) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-𝜅B) signaling pathways [18]. Fur-
thermore, gastrodin significantly reduces the protein and
mRNA expression levels of iNOS, COX-2, TNF-𝛼, IL-1𝛽,
and NF-𝜅B, which may be related to the inhibition of the
NF-𝜅B signaling pathway and phosphorylation of MAPKs
[63].

Resident microglia transform into a phagocytic pheno-
type under stimuli such as cell death, accumulated debris,
excess aberrant protein, or the presence of viral or bacterial
pathogens. Furthermore, microglia serve important func-
tions associated with inflammatory responses, cytotoxicity,
repair, remodeling, and immunosuppression in brain injury
and neurodegeneration [74]. We examined microglial acti-
vation and performed a biochemical analysis to determine
whether vanillin has anti-inflammatory effects (Figure 4).
The expression level of Iba1 immunoreactivity was mea-
sured by Western blotting, to semiquantitatively analyze the
anti-inflammation effects of vanillin, as in previous studies
[32, 34]. The expression level of Iba1 in the hippocam-
pus after TMT administration was significantly increased,
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Figure 4: Inhibitory effect of vanillin on microglial activation in the mouse hippocampus after TMT treatment. Mice received a single
injection of TMT (2.6mg/kg, intraperitoneal (i.p.)) and vanillin (100mg/kg, i.p.) once daily for 3 days at −1 day, 0 days, and 1 day relative
to TMT injection. Mice were sacrificed 3 days after TMT injection. (a) Representative immunoblots show Iba1 (a marker of microglia) and
𝛽-actin expression in themouse hippocampus. Bar graphs show that the increased Iba1 expression in themouse hippocampus following TMT
treatmentwas significantly ameliorated by vanillin treatment.Data are presented asmeans± SEMs. (b) Photomicrographs show representative
images of Iba1 expression in the dentate gyrus (DG), CA1, andCA3.The number of activatedmicroglia, a hypertrophied form, following TMT
treatment markedly decreased following vanillin treatment. Scale bars indicate 300𝜇m in the left panels and 100 𝜇m in other panels.

but the level was attenuated in the vanillin-treated group
(Figure 4(a)). Iba1 immunoreactivitywas assessed 3 days after
TMT administration using immunohistochemical staining
to investigate the histological and morphological changes in
microglia in the hippocampus, as in previous studies [32,
34]. In the vehicle- and vanillin-treated controls, microglia
showed few cell bodies within the GCL. In the TMT-treated
group, activated microglia displaying a hypertrophied form

with long, thickened, branching processes were prominent
throughout the GCL (Figure 4(b)). However, in the TMT +
vanillin-treated group, the density of activated microglia was
reduced throughout the GCL, CA1, and CA3 (Figure 4(b)).
Thus, our results confirmed that TMT-induced microglial
activation was ameliorated by vanillin treatment in the
mouse hippocampus after TMT treatment. Similar to GE
rhizome ethanol extract and gastrodin [62, 65], vanillin, a GE
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Figure 5: Schematic representation of the neuropharmacological effects of Gastrodia elata (GE). Multiple disease mechanisms, such as
neurotransmitter imbalance, oxidative damage, and neuroinflammation, reportedly induce a variety of neurodegenerative disorders. GE has
the potential to positively restore the neuronal cell damage in neurodegenerative diseases via the upregulation of inhibitory neurotransmitters
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component,may have anti-inflammatory effects by inhibiting
microglial activation.

4. Conclusion

Many patients suffer from incurable neurodegenerative dis-
orders, but there are few therapeutic drugs for treating these
diseases. The pathological mechanisms involved in neu-
rodegenerative diseases are mediated by neurotransmitter
imbalance, oxidative stress, and neuroinflammation; how-
ever, treatment efficacy is not satisfactory. Herbal decoctions
including GE rhizome have been used in oriental medicine
in East Asia to treat a variety of diseases. To reveal the
active components within such herbal decoctions, numerous
studies have investigated cellular and molecular mechanisms
using GE and its components. In this review, we summarized
the protective effects of GE against neurodegenerative disor-
ders and proposed the underlying mechanisms of the neu-
ropharmacological potential ofGE and its components.These
mechanisms may be related to the correction of neurotrans-
mitter imbalance and inhibition of oxidative response and
neuroinflammation (Figure 5). In addition, we confirmed
that administration of vanillin, an active component of GE,
ameliorates TMT-induced seizures, which may be related
to the reduced neuronal death and microglial activation.
Therefore, this review encourages the identification of specific
GE components for use in possible preventive or therapeutic
strategies for various neurodegenerative disorders and may
also be helpful for the development of new treatments for
incurable disorders.
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