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Abstract: In multi-target tracking, the outliers-corrupted process and measurement noises can reduce
the performance of the probability hypothesis density (PHD) filter severely. To solve the problem,
this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed
filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well
as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in
time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach
can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations
with heavy-tailed process and the measurement noises. The simulation results verify that the proposed
filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in
the simultaneous presence of process and measurement outliers.
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1. Introduction

Multi-target tracking (MTT) plays an important role in many sensing systems, such as infrared,
radar, sonar, etc., which uses the sensor data to jointly estimate the target state and the number of targets.
Nowadays it is widely used in civilian and military applications such as air traffic control, remote
sensing, ballistic missile guidance, and computer vision [1,2]. In MTT, the time-varying number of
targets causes a problem in that the associations between state and measurement sets of targets are hard
to know, which makes the traditional data association-based multi-target tracking methods problematic.
In recent years, the random finite set (RFS) theory-based multi-target tracking filters, such as probability
hypothesis density (PHD) filter [3], cardinalized PHD (CPHD) filter [4], multi-target multi-Bernoulli
(MeMber) filter [1] and cardinality-balanced MeMBer (CBMeMBer) filter [5], have attracted much more
attention since they can avoid the combinatorial problem that arises from data association. Moreover,
some labeled RFS-based multi-Bernoulli filters [6,7] which can accommodate target tracks were proposed.

The focus of this paper is the PHD filter, which has relatively simple recursion, making it suitable
for the applications demanding real time results. The PHD filter provides a tractable sub-optimal
strategy for jointly estimating the number and the state of a variable number of targets by propagating
the first-order statistical moment of multi-target posterior probability density in time. It has two
basic implementations: the sequential Monte Carlo (SMC) method [8] and the Gaussian mixture (GM)
method [9] which can solve the problem of computationally intractable multiple integrals involved in
the PHD recursions. Compared to SMC implementation, GM implementation of the PHD filter has the
advantages of simple state extraction and low computational cost, which is suitable for the requirement
of real-time scenes. Moreover, some nonlinear extensions [9-11] and improvements [12-14] extend the
scope of applications for the GM-PHD filter.
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In MTT, noise, as the important part of measurement uncertainty, is an inevitable problem that
reduces estimation accuracy of the PHD filter. Vo [15] thought that the setting of a reasonably large
noise variance can accommodate noise interference in most situations. However, this method is
only suitable for Gaussian noise. In real applications, it is hard for the measurement noise from
sensor data to follow the Gaussian distribution because of electromagnetic interference or sensors’
own unreliability. Such measurements with outliers, which often express heavy-tailed character,
degrade the performance of the PHD filter strikingly. What’s worse, in some real applications,
such as tracking some agile targets with unreliable sensors, outliers may appear in not only the
measurement model, but also the process model. This situation with simultaneous heavy-tailed
process and measurement noises reduces the performance of the PHD filter severely, and can even
make it break down. Although the SMC-PHD filter can deal with the problem to a certain degree,
it has to pay a high computational cost, especially in high dimensions. For the GM-PHD filter,
its foundational Gaussian approximation limits the capability to handle heavy-tailed non-Gaussian
noises. Although Huber’s M-estimation theory [16] or variational Bayesian (VB) method [17] can
be utilized to improve the performance of the GM-PHD filter against outliers in the measurement
model, they both cannot handle the outliers in the process model. More importantly, the two methods
above do not change the foundation of the Gaussian approximation-based GM-PHD filter. This means
that the noise model still cannot match the outliers-corrupted process and measurement noises well,
leading to biased estimates of the target state and the number of targets. Obviously, the Gaussian noise
model cannot handle the heavy-tailed non-Gaussian noise, so how to model the heavy-tailed noise
becomes the key point. As [18] said, Student’s t distribution, which has a heavy tail characteristic, is a
good choice to match the heavy-tailed non-Gaussian noise. Under the Bayesian filtering framework,
the Student’s t approximation-based closed form recursions are obtained for the linear system [18].
Further, the Student’s t approximation-based approach also can be used in the nonlinear system [19-22].
However, up to the present, Student’s t approximation-based approaches to approximate a PHD filter
with heavy-tailed process and measurement noises do not exist.

In this paper, a novel implementation of the PHD filter is proposed based on Student’s t mixture
approximation, intending to improve the estimation accuracy in terms of the target states and the
target number in the presence of heavy-tailed process and measurement noises. The proposed
approach models the process noise and the measurement noise as a Student’s t distribution,
meanwhile, the multi-target prior intensity is approximated as a mixture of the Student’s t distributions.
Then, the Student’s t mixture-approximated predicted intensity and posterior intensity are obtained
through utilizing Student’s t approximation, forming a closed form recursion of the PHD filter.
The Student’s t mixture implementation is proposed in RES-based MTT algorithms for the first time.
Compared to the GM case, it is a Student’s t-based implementation, which propagates a mixture of
Student’s t components. Because it utilizes the heavy-tailed characteristic of Student’s t distribution,
the proposed filter has better accuracy and robustness in MTT scenes with heavy-tailed process and
measurement noises. Moreover, the proposed filter also has relatively low computing cost just like the
GM-PHD filter. The above advantages of the proposed approach are verified by simulations designed
in linear scenario and nonlinear scenario, respectively.

The remainder of this paper is organized as follows: Section 2 presents an overview of the PHD
filter and some properties of the Student’s t distribution. Section 3 presents the proposed filter for
linear system and extends the proposed filter to the nonlinear system. Simulation results are given in
Section 4, and conclusions are drawn in Section 5.

2. Background

2.1. The PHD Filter

The random finite set (RFS) approach [1] provides a mathematically elegant treatment for the
difficult problem that is how to estimate the time-varying number of targets and their states jointly
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in MTT scenarios. According to RFS theory, the collections of target states and measurements
at time k can be represented as finite sets Xy = {xx1,..., X Mm@y} € F(X) (X C R) and Z; =
{zk1, - Zenm } € F(Z) (Z C R%) where M (k) and N (k) are the number of targets and the number of
measurements, respectively, F(X) and F(Z) are the collections of all finite subsets of target states and
measurements, respectively, dy and d, are the dimensions of the state space X and the measurement
space Z, respectively. Let:

Xy =

m&i Sklk—1(x )] U L)&Jk Byjp—1(x )] UT, ¢))

where Sy;_; (x) is the RFS of survival targets at time k from target states Xy 1 and Byj;_;(x) is the RFS
of spawned targets at time k from target states X;_1, and Ty is the RFS of birth targets at time k.
The RFS of measurements Zj is defined as:

7y = [ U Gi(x)| UKy, (2)

xeXp

where Gi(x) and K}, are the RFS of measurements coming from target and clutter at time k, respectively.

Based on the RFS approach, the MTT problem was recast into a Bayesian filtering framework,
but optimal Bayesian recursions are computationally intractable due to their sets integral. Then the
PHD filter, which recursively propagates the first-order moment of multi-target posterior probability
density, was proposed as an approximate solution in [3]. Let Dy_1(x) denote the posterior intensity
function at time k — 1, then the prediction step of the PHD filter is given by

Dyj—1(x) = /(Ps,k(”)fk\kq(ﬂ”) + Brje—1(x[1)) Dr—1 (u)du + i (x), 3

where fyc_1(®|®) is transition density function in a Markov process from time k — 1 to time k, ps x(x)
is the survival probability of each target at time k, Byx_;(x|u) is the intensity function of the RFS
Byjx—1(x|u) of targets spawning from previous state u, 7x(x) is the intensity function of birth targets
at time k.

Given the predicted intensity Dy;_1(x), the update intensity D (x) can be given by:

o P (x)gi(21)
Dulx) =1 =pos®) + X T )y el Dy (00

] Dgj—1(x), 4)

where pp k(x) is the probability of detection at time k, gx(z|x) denotes the measurement likelihood
function at time k, ki (x) is the intensity function of clutter. The integration domain of the integral
functions in (3) and (4) is the state space X C R,

2.2. Review of the GM-PHD Filter

The GM-PHD filter approximates the intensity function of multi-target as Gaussian mixture
components under the assumption of the linear Gaussian dynamical model and measurement
model. In addition, it still needs to satisfy the following assumptions: (1) the survival and detection
probabilities are state-independent; (2) the intensities of the birth and spawn RFSs are Gaussian
mixtures of the form. Then a closed-form solution of the PHD filter can be obtained as follows.

Prediction: The Gaussian mixture formulation of the PHD recursion at time k — 1 is given as:

Je—1

Dk l Zw x mk])l’ 15])1) (5)
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where N(x; e, @) denotes that random vector x follows Gaussian distribution, m,i J) and P( /) | are the
mean and the covariance matrix of the jth item in all Gaussian mixture components, respectwely, w,({]_)l
is the corresponding weight, ], _; is the number of Gaussian components.

Assume that the intensities of survival targets, spawned targets and birth targets are Gaussian

mixtures of the form, the predicted intensity Dy;_q (x) is given by:

D kawkk N(x mr(cju)c 1/1’15\]12 V) (6)
where:
iy = psxes, %
ml(cj\'l)el = Fk—lml(cjzl’ 8)
B 15\271 = R PO FL ) + Qe 9)

Update: Given the PHD predictor as Equation (6), the PHD updater is formulated as:

k-1 n . )
Di(x) = (1= pou)Deer () + 1 3w @IN(; N(xm (2), B0 (2)), (10)
zeZk ]
here:

o . posy 107 (2)

w,(cj)(z) = ' T / (11)
%(2) +pox T w46 (2)

0 (z) = N(z Homy_,, HeP)_ HT + Ry, (12)
m,((j) (z) = mlgj"?ﬁl + K]?) (z— Hkm;({]&,l)/ (13)
PV =pdl |~k HP] |, (14)

(1) _ p{) 0) B
K - pxzk\k l(pz;,k|kfl) ’ (15)

in the above, F,_; and H, are the state transition matrix and observation matrix, respectively, Q;
and R, are the process and measurement noise covariance, respectively.

2.3. Student’s t Distribution

Let a random vector x € RY admit the Student’s t distribution; its probability density function
(PDF) can then be expressed as [23]:

vi2y 1 A2 )
(%) (Uﬂj)d/z det(P) (1+ U)

p(r) = , 6)

where I'(e) denotes Gamma function and A2 = (x — m)" P~1(x — m). The above PDF abbreviated by
St(x;m, P,v) with mean m, scale matrix P and degrees of freedom parameter v. The corresponding
covariance matrix can be calculated as ;%5 P (v > 2) [23].

The tail behavior of the Student’s t distribution is very much influenced by the degrees of freedom
parameter v. The smaller v is, the heavier the tail is, and vice versa. In addition, the Student’s t
distribution reduces to the Gaussian as v tends to infinity, thus includes it as a special case. A number
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of convenient properties are shared by both and can be easily derived. As for the PDF of affine
mappings of Student’s t variables [23] we have that z = Ax + b, with appropriate A and b, admits:

p(z) = St(z; Am +b, APAT, v), 17)

The degrees of freedom parameter remains unaltered. Turning to random vectors x; € R% and
xp € R% that are jointly Student’s t distributed with:

_ x1 | | m Py Prp
e[z [l [ B ] o) o

The marginal PDF of x; can be computed by applying a linear transformation with A = [ O]
to (18):
p(x1) = St(x1;my, Pry, v) (19)

From (18) and (19), the conditional PDF is also a Student’s t as follows:

p(x1|x2) = St(x1|2; myp, P, Ul|2) (20)
with:
myjp = My + P12P2—21(x2 —my), (21)
v+ A% 1T
Pyp = e (P11 — P1pPyy Ppp), (22)
U1 =V +dy, (23)
A} = (xg —ma) Pyt (xg — my), (24)

It can be seen that the conditional mean (21) corresponds to the Gaussian conditional mean.
The matrix parameter (22) is a scaled version of the conditional covariance in the Gaussian case, which is
recovered as v tends to infinity. In contrast to the Gaussian, P;, depends on x;. Also, the degrees of
freedom parameter in (23) increases. Above properties of Student’s t distribution like (17) and (20) are
the foundations of Lemmas 1 and 2 (in Section 3.3) that are the key of our proposed approach.

3. Student’s t Mixture PHD Recursion

Differing from the GM-PHD recursion, the proposed approach approximates the intensity of
multi-target RFS as the Student’s t mixture of the form, which is propagated in the closed-form
recursions. The following gives the novel algorithm for linear system at first and then extends it to
nonlinear system.

3.1. Basic Assumptions for Linear Model
As for the linear system, some foundational assumptions are given as follows.

Assumption 1. Given that the process and measurement noises admit the zero-mean t distribution with scale
matrix Q, _, and Ry, respectively, and the initial state vector also follows a t distribution, each target follows a
linear Student’s t dynamical model and the sensor has a linear Student’s t measurement model, i.e.:

fepe1(x[0) = St(x; B4, Qi_1,11), (25)
8k (z]x) = St(z; Hyx, Ry, v2), (26)

where F,_, and H, denote the transition matrix and measurement matrix, respectively. And assume the matrices
F._,, Hy, Q_; and R, are known.
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Assumption 2. The survival and detection probabilities are state independent, i.e.:
psk(x) = Psi (27)
Pok(X) = PDk- (28)

Assumption 3. The intensities of the birth and spawn RFSs are Student’s t mixtures of the form:

LEgS (i
’)/k(x) = Zw«\r,kSt (x/ m,y,k/ P/y,k/ 03)/ (29)
i-1
Ik ) )
Brip—1 (x[0) = ZwﬁkSt( T /Sk 1'Q/3k 1/113) (30)

Assumption 1 is given according the affine transition nature of Student’s t variables [19].
Assumption 2 is commonly used in GM-PHD filters. Assumption 3 is given in the presence of
process and measurement noises with heavy tails, so it is reasonable in actual applications, i.e., when
using unreliable sensors or sensors suffer from electromagnetic interference while tracking some agile
targets, where both process noise and measurement noise are prone to show a heavy-tailed character.
For illustrating this, a one-dimensional heavy-tailed noise distribution and Gaussian noise distribution
are given as Figure 1.

Gaussian noise
heavy-tailed noise

Probability density

Noise variable

Figure 1. Illustration of heavy-tailed noise distribution and Gaussian noise distribution.

3.2. Student’s t Mixture PHD Recursion

Based on the Assumptions 1-3, the closed solution to the PHD recursion (3) and (4) is presented
as two Propositions. The proposed Propositions show how the Student’s t components of the posterior
intensity are analytically propagated to the next time, analogous to the GM-PHD recursion.

Proposition 1. Suppose that Assumptions 1-3 hold and that the posterior intensity at time k — 1 is a Student’s
t mixture of the form:

Jie=1 ) G 0)
Dy_1( Z w? st(x;m? P vs), (31)

Then, the predicted intensity at time k is also a Student’s t mixture and is given by:

Dije—1(x) = Dg gj—1(x) + Dg gi—1(x) + 74 (x), (32)
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where:
(S0 () ()
Ds kjk—1(%) —PSkak 15H( Mg ki~ l’PS,k\kfl’U:”)’ (33)
gi\k 1= kalml(cjzlr (34)
i i vy — 2
ps({lz|k—1 = R P+ 2 (35)
Jx—1 Jpk
y 1
Dﬁ/klk—l(x) . . 1w1(<) wé}(St(x ml(ijk\)k 1'Pfg]k\)k 17 03), (36)
]: =
gh  _ ) (/) O]
mﬁ],k|k71 = Fﬁ,kflmkjfl +dgyq (37)
Gh  _p) pl) gy T V3—2 U1
P,B]k\k 1_F/3,kflpﬁ{kfl(1:,5,k71) + s Ul_zQﬁ,k—l- (38)

Proposition 2. Suppose that Assumptions 1-3 hold and that the predicted intensity for time k is a Student’s t

mixture of the form:
Mt ) i) pl)
Die—1(x) Z wk\k 15t mk\k 1 P v3), (39)
]_

Then, the posterior intensity at time k is also a Student’s t mixture and is given by:

Dy(x) = (1 = ppi) Dye—1(x) + ) Di(x;2), (40)
ZEZk
where:
e (D )
Di(x;z) = Y w!(2)St(x; mk]‘k( ),Pk‘]k( z),v3'), (41)
j=1
@ G
. w )
i) = —POR e ) (42)

Jrjk—1 ] ]
%(2) +pox & w0y (@)

mily (2) = mify_y + Kz~ Hom]y ), (43)
() _ V3B ) () gy pli)
Py (2) = st ds (Pl — K"HkBg ), (44)
v’ = v3 +dz, (45)
(Z) = St(z Hkml(c\i 1'Pz(?k\k v ) (46)
() _ pli) G o\
K = x]zk\k l(Pzi,k|k71) ’ (47)
2 _ M N\ pl) T ()
A" =(z Hkmk\k ) (Pzi,k|kfl) (z Hkmk\k 1) (48)
() pi) HT v3—2 Uy
Peziko1 = HePjeHic + = — =5 R, (49)
() 0)) T
Px]z,k\k 1 Pk|k 1Hi - (50)
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Aforementioned Propositions 1 and 2 can be established by applying the following approximated
results for Student’s t functions.

Lemma 1. Given that the jointly PDF of the current state and one-step ahead state vectors is Student’s t and F,
Q, m and P of appropriate dimensions and that Q and P are positive definite:

/St(x; FZ,Q,v1)St(Z;m, P,v3)dl = St(x; Fm, FPFT + MQ, v3). (51)
(01 —2)v3

Lemma 2. Given that the jointly PDF of the state and measurement vectors is Student’s t and H, R, m, P of
appropriate dimensions and that R and P are positive definite:

St(z; Hx, R, v2)St(x;m, P,v3) = q(z)St(x;m’, P!, v3'), (52)
where: ( 2)
2) = St(z; Hm, HPHT + Y3 " 2%2p 1, 53
q(z) ( (0 =2)0s 3) (53)
m' = m+ K(z— Hm), (54)
+ A?

p=2 P — KHP
%] + dz ( )l (55)
03/ = U3+ dz, (56)

— 2)02 _

K = PHT(HPHT + (3= 2025 1 57
( (v2 —2)vs ) &7
A2 = (z— Hm)T(HPHT + 2 =202 gy 100y (58)

(v —2)v3

Lemmas 1 and 2 are derived based on the properties of Student’s t distribution listed in Section 2.3.
The detailed derivations of Lemmas 1 and 2 can be seen [19].

Proposition 1 is established by substituting (25), (27) and (29)—(31) into the PHD prediction (3),
and replacing integrals of the form (51) by appropriate Student’s t as given by Lemma 1. Similarly,
Proposition 2 is established by substituting (26), (28) and (39) into the PHD update (4), and then
replacing integrals of the form (51) and product of Student’s t of the form (52) by appropriate Student’s
t as given by Lemmas 1 and 2 respectively. The concrete proofs of Propositions 1 and 2 are given in
Appendix B.

From (45), we know that the degree of freedom vs’ will increase infinitely with recursion
performing, which results in that the Student’s t mixture degrades the Gaussian mixture according
to [18]. It means that the robustness against outliers for the Student’s t mixture PHD filter will be lost
with time going by. To solve the problem, we adapts the moment matching approach [18] to obtain
the correction of posterior intensity at time k given as (59)—(61). A pseudocode of main process of the
proposed algorithm is given by Table Al in Appendix A:

Jk . ) .
Di(x2) = Y w) (2)St(x;m)(2), B (2), v3), (59)
j=1
ml(<]|l)<(z) = m](cjl'l)(/(z), (60)
. _ / .
POz =22 U5 plr(y) (61)

klk vs vy —2 Kk
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Remark 1. The degree of freedom parameters v1, va, U3 for the process noise model, measurement noise model
and the initial multi-target state intensity are different in general. As in the recursion performed from (31)
to (39), there is a problem that how to select the degree of freedom parameter between vy and vs as the degree
of freedom parameter of predicted multi-target intensity to be propagated in the next recursive step. A valid
method [18] is that choose the minimized value between v1 and vs to be propagated. The same problem, existing
in the recursion from (39) to (40), also can be handled by selecting the minimized value between v, and v3.
For simplicity, this paper assumes that the degree of freedom parameters vy, vy, U3 are equal.

Remark 2. Analogous to the derivation of GM implementation of the CPHD filter in [24], the proposed
Student’s t mixture implementation shown as in Propositions 1 and 2 can also be used in the CPHD filter,
forming the corresponding Student’s t mixture CPHD recursion.

3.3. Implementation Issues

Like the GM-PHD filter, the Student’s t mixture PHD (STM-PHD) filter also suffers from the
computation problem that the number of Student’s t components increases endlessly with recursive
time, so a pruning procedure and a merging procedure are necessary for the STM-PHD filter.
The concrete procedures are similar to the procedures in the GM-PHD filter (readers can refer
to [9]). The different point is that the Student’s t components give the scale matrix not the covariance
matrix, so the covariance matrix, calculated by %5 P, should be used in the merging procedure of the
STM-PHD recursion. The estimated number of targets is obtained by summing up the weights of all
the Student’s t components. This procedure for the STM-PHD filter is no different from the GM-PHD
filter. Again, the state extraction is also analogous to the GM-PHD filter as to select the means of the
Student’s t components that have weights greater than some threshold (generally set as 0.5 [9]).

In addition, for the scene with high clutter density, gating strategy is always used to reduce the
computing cost for the GM-PHD filter. It is easy to know that the gating strategy is also suitable for
the STM-PHD filter. The core principle to select the measurement can be expressed as:

. = a0 N Tpi) T (7)
ZI<(1> €z, if3(i))|(z _Hkmk]|k71) (Pzi,k\k—1> (z _Hkmk]\kA) <T 62)

¢ Zk otherwise.

where Zk denotes the reduced set of the measurement at time k, Pz(i )kl (118 the innovation covariance

matrix corresponding to the jth predicted measurement, and T is the gate threshold. In contrast to the
. . T . —1 . .

Gaussian mixture case, the judging variable (z]((l) — Hkm;((]“)(,l) (Pz(gk\k—l) (zl((l) — Hkml(cju)c—l) for the

Student’s t mixture case follows an F-distribution not a chi-squared distribution. It means that the gate

threshold for the STM-PHD filter, which can be chosen from F-distribution table, is different from the

GM-PHD filter at the same probability regions.

3.4. Extension to Nonlinear Model
This section considers the situation that process and measurement models are nonlinear.
The models in Assumption 1 change to become:

Xk = fr(xp—1) + wr—1, (63)

zie = h(xx) + Vg, (64)

where fi. and hy are known nonlinear functions, wy_1 and vy are additional noises, which follow
zero-mean Student’s t distribution with scale matrix Q1 and Ry, respectively.

Different from the GM-PHD filter to cope with nonlinear problems via giving the numerical
solution to Gaussian integrals, the core problem of the STM-PHD filter for nonlinear systems is
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how to compute the Student’s t integrals. Some researchers have given numerical solutions to
Student’s t integrals based on Taylor linearization, unscented transform or cubature rule [19,21,22].
Compared with Taylor linearization and unscented transform, the cubature rule-based filter is a
derivative-free and vigorous method [25], so this paper utilizes the cubature rule to extend the
STM-PHD filter to nonlinear system according to [22]. The proposed algorithm for handle nonlinearity
is given as Table A2 in Appendix A.

4. Simulations and Results

To illustrate the performance of the proposed filter, simulation examples are designed to compare
with standard GM-PHD filter in linear and nonlinear scenarios, respectively. To compare the
performance of two filters, we choose the Optimal Sub-pattern Assignment (OSPA) distance as the
metric, which can comprehensively measure the cardinality and localization errors [26]. The OSPA
distance is defined as follows. Let d()(x,y) := min(c, ||x —y||) for x,y € W, and IT; denotes the
set of permutations on {1,2,...,k} forany k € N={1,2,...}. For p > 1, ¢ > 0, and arbitrary finite
subsets X = {xq,...,x,} and Y = {y3,...,yx} belong to W, where m,n € Nyp = {0,1,2,...}:

1
p

~(©) (L min S d© (2 ) P (n—
d, (X,Y):= <n<7£1€unnngd (xl,yﬂ(,)> +cP(n—m) , (65)

Ifm < nandds (X,Y) = dy(Y,X) if m > nm;and dy) (X, Y) = 4y (Y, X) = 0if m = n = 0.

p is the order parameter that determines the sensitivity to outliers and c is the cut-off parameter
that determines the relative weighting of the penalties assigned to cardinality and localization errors.
The details to choose the parameters p and ¢ can be seen in [26]. In our simulation examples, we set
p = 2 and ¢ = 100.

4.1. Linear Scenario

Consider a two-dimensional scenario where there are twelve targets over region [—1000,1000] x
[—1000,1000] during the interval of 100 s. Assuming no target spawning and each target moves as a
constant velocity model similar to [9] with:

/s T3/2 0 0

/2 T 0 0 5
0 0 T13/s T3)2 T
0 0 1/ T

Q=

S O O -
oo RN
S = O O
= = O O

T . o
where T = 1and g = 5. The state Xy = [pyk, Py Py ko ply,k] of each target consist of position [py x, py
and velocity [p;,k, p’y,k] at time k. Their corresponding initial state and life time of each target are given
as Table 1.

The noisy measurement model is the same as [9] with:

10 100 0
H_loo ’R_[o 100]’

The process and measurement noises with heavy tails are given as (66) and (67):

= O

0
0

” N(0,Q) with probability 0.99 (66)
k N(0,25Q)  with probability 0.01 ’

o N(0,R) with probability 0.99 67)
k N(0,25R)  with probability 0.01 ’
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For the process and measurement noises in (66) and (67), about one percent of process and
measurement noise values are drawn from Gaussian with severely high covariance. This percentage is
also called contaminated rate which can be denoted by ¢ [27].

Table 1. A list of initial target states.

Target Index Life Time (s) Initial States (m, m/s, m, m/s)
#1 (1, 70) [0,0,0, —10]
#2 (1, 100) [400, —10, —600, 5]
#3 (1,70) [—800, 20, —200, —5]
#4 (20, 100) [400, —7, —600, —4]
#5 (20, 100) [400, —2.5, —600, 10]
#6 (20, 100) [0,7.5,0, —5]
#7 (40, 100) [—800, 12, —200, 7]
#8 (40, 100) [—200, —3, 800, —10]
#9 (60, 100) [—800, 3, —200, 15]
#10 (60, 100) [—200, —3, 800, —15]
#11 (80, 100) [0, —20,0, —15]
#12 (80, 100) [—200, 15, 800, —5]

Assuming no spawned target and birth targets appear spontaneously according to a Poisson point
process with intensity function:

4 .
Yr(x) = 0.03)_ St(x; m,(;),PV, v3), (68)
i=1
where mt" = 10, 0,0, 01T, m? = [400,0,—600,01", m® = [—800,0,—200,0]7 and m?¥ =
Y Y Y Y

[—200, 0, 800, O]T, v:%zpv = diag([100, 100,100,1OO]T) and vy = 10. The true trajectories of each
target are shown in Figure 2, while Figure 3 plots these trajectories with Gaussian measurements and
heavy-tailed measurements over time (not plot clutter in figure). From Figure 3, it is can be seen
that the individual heavy-tailed measurements obviously bias the true position compared with the
corresponding Gaussian measurements, which may degrade the estimation accuracy.

The detection probability and target survival probability are pj,, = 0.98 and pg, = 0.99,
respectively. Truncated threshold, merged threshold and the maximum Student’s t components related
to pruning and merging process are T}, = 107, U = 4 and Jmax = 100, respectively. For simplification,
set vy = vy = vz = 10.

1000

True track

O Track start

A Track end
500 - 1

€
= 0 1
-500 - 1
-1000 L - !
-1000 -500 0 500 1000

X/m

Figure 2. True trajectories of each target.
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To evaluate the performance of the STM-PHD filter, we compare it with GM-PHD filter over
100 Monte Carlo (MC) trails with fixed clutter density. Under the uniform distribution assumption,
the clutter density can be given by clutter rate A. with the relationship xx(z) = A/ V. In this simulation,
we set A = 20 (giving an average of 20 clutter returns per scan). Figures 4 and 5 respectively show
the estimated cardinality and the OSPA distance for two filters. The result in Figure 4 shows that
the STM-PHD filter provides a noticeable improvement in terms of cardinality estimation accuracy
compared with the GM-PHD filter, although some biased cardinality estimates appear for the
STM-PHD filter.

1000 100 PRy : True tracks
LS REER] Measurements with Gaussian noise
500-.-100 Measurements with heavy-tailed noise
D oo, B oty e

E = = ()

X /""" B — R ]

-500 e cad _,,/.a—'-"/—ﬂmmw"”“-—\...u._._ |

/ it -

-1000 L L L 1 L L
0 10 20 30 40 50 60 70 80 90 100
time/s
1000 — . : ‘ : : . :
\\\»\ g, e R e
\.._.___'N_ S St
500 '--\.._\__\\ i
-100 e ——

c 20 30 Mw,«}___,;;ﬂgm
SN — = MNWW;TWMggwﬁi;:ﬁ:’;m{:i (b)

SN s et i)

-500 [ —_— I )

[ [ | [ —TW— —

-1000 ;

Figure 3. Measurements and true target positions versus time: (a) in x coordinate; (b) in y coordinate.

12 T T T
True

—6— GM-PHD
—&— STM-PHD I AMAAAA AL

10

Cardinality

0 I L L | | | | 1 1
0 10 20 30 40 50 60 70 80 90 100

time/s

Figure 4. Comparison of cardinality estimation of two filters with fixed clutter rate (A = 20).

In Figure 5 the OSPA distance of the STM-PHD filter is lower than that of the GM-PHD filter.
Especially after 40 s more targets appear, difference of the OSPA distance between two filters is more
noticeable. The main reason is that the STM-PHD filter has more accurate cardinality estimation.

To evaluate the performance of the proposed filter sufficiently, a simulation is executed over
100 MC trials with different contamination rates frome = 0toe = 0.05. Then the time averaged
OSPA distance of the STM-PHD filter and the GM-PHD filter, respectively, are shown in Figure 6.
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From Figure 6, it can be seen that the time averaged OSPA distance of the STM-PHD filter is lower
than that of the GM-PHD filter overall. The time averaged OSPA distances of two filters increases
with the increasing contamination rate. Remarkably, the gap of OSPA distance between the STM-PHD
filter and the GM-PHD filter changes wider frome = 0toe = 0.05. It means that the STM-PHD
filter has strong robustness against the negative effect of outliers, especially for high contamination
rates. This is due to the fact the Student’s t noise model in the proposed approach can match the
heavy-tailed non-Gaussian noise well. On the contrary, the Gaussian-based GM approach matches
such a non-Gaussian noise worse and worse with the increasing of contaminated rate. Additionally,
ate = 0, the OSPA distance for the STM-PHD filter is the same as the GM-PHD filter. It indicates
that the STM-PHD filter and the GM-PHD filter have the same tracking performance when outliers do
not exist.

100 T T T T
—6— GM-PHD

—A— STM-PHD
80 1

OSPA

0 10 20 30 40 50 60 70 80 90 100
time/s

Figure 5. Comparison of OSPA distance of two filters with fixed clutter rate (A. = 20).

100 \ .
—6— GM-PHD

—A— STM-PHD
801 .

OSPA

L 1 | L
0 0.01 0.02 0.03 0.04 0.05
contaminated rate

Figure 6. Comparison of OSPA distance of two filters with different contaminated rate.

To further evaluate the performance of the proposed filter, a simulation is performed over 100 MC
trails with different clutter rates from A¢ = 0 to A¢ = 50. The resulting time averaged OSPA distances of
the proposed filter and the GM-PHD filter are shown in Figure 7. It can be seen that the time averaged
OSPA distances of two filters increase with the increasing clutter rate and the time averaged OSPA
distance of the STM-PHD filter is always lower than that of the GM-PHD filter under different clutter
rates. This means that the STM-PHD filter generally outperforms the GM-PHD filter when outliers
exist, no matter what the clutter rate is.
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In addition, the computational cost for the STM-PHD filter lies at the same level as that of the
GM-PHD filter for the linear system. Running on a computer with an Intel(R) Core(TM) i5-4570 CPU
at 3.2 GHz, the average computing times per execution of the GM-PHD filter and the STM-PHD filter
with different clutter rate are given in Table 2.

Table 2. Average computing time with different clutter rates.

Clutter Rate
0 10 20 30 40 50

GM-PHD 09217 s 0.9917 s 1.0782 s 1.1253 s 1.1938 s 1.2068 s
STM-PHD 09146 s 0.9961 s 1.0780 s 1.1417 s 1.2576 s 1.2486 s

100 T T
—&— GM-PHD
—&— STM-PHD
80 I
60 B
<
o
0
(e}

0 10 20 30 40 50
clutter rate

Figure 7. Comparison of OSPA distance for two filters with different clutter rate.

4.2. Nonlinear Scenario
In this example, we assume a maximum of ten targets appears on the observation region [—7, 7] x
[0,2000] and a nearly constant turn state model and nonlinear bearings and range measurement
. . ~ T . .y .
model are considered according to [9]. The state X; = [x],wy]| consists of position and velocity

Xk = [Pa P K Py p’y’k} T as well as the turn rate wg. The state model is given by:

Xp = Fwg—1)xx1 + Gwr

, 69
wi = w1+ Tug_q (69)
where:

1 sinwT/w 0 —-0-coswT)/w 2/2 0

0 coswT 0 —sinwT T 0

F = ,G = ,T =1,
(@W =110 (-coswnfo 1 sinwT/w 0 h
0 sinwT 0 coswT 0 T

The noisy measurement model with range and bearing measurement z; = [ry, 6] is given by:

2 + 2
7 = \/ Px.k Pyk top, (70)

arctanM
Pxk
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Like the linear scenario, the outliers contaminated process and measurement noises can be

given by:
” N(0,Q) with probability 0.97 71)
k N(0,25Q)  with probability 0.03 ’
’ N(0,R) with probability 0.97 72)
k N(0,25R)  with probability 0.03 ’

with Q = diag([5,5,77/180]")2, R = diag([10,2(7r/180)]")2.
In the simulation, we assume no spawned target and that the birth target is Poisson with intensity:

2 . 4 .
(%) = 0.02) St(x; i), P, v3) +0.03Y St(x;m), P, v3), (73)
i=1 i=3
where m{!) = [~1500,0,250,0,0]", m'? = [~250,0,1000,0,0]", m'* = [250,0,750,0,0]" and m'" =
2
[1000, 0,1500,0,0]", Us"i P, = diag([50,50,50,50,6(7/ 180)]7)" and v3 = 6. (The unit of distance,

angle and time in this paper are meter, radian and second, respectively.)

The initial target states are given by Table 3 and the true trajectories of each target are shown as
Figure 8. In addition, Figure 9 plots corresponding measurements with Gaussian noise and heavy-tailed
noise respectively over time (not plot clutter in figure). In Figure 9, it also shows the results analogous
to the linear case as shown in Figure 3.

Table 3. A list of initial target states.

Target Index Life Time (s) Initial States (m, m/s, m, m/s, rad/s)
#1 (1, 100) [1000, —10, 1500, —10, 27t/ (180 x 8)]
#2 (10, 100) [—250, 20, 1000, 3, —27t/(180 x 3)]
#3 (10, 100) [—1500, 11, 250, 10, —27t/(180 x 2)]
#4 (10, 66) [—1500, 43, 250, 0, 0]

#5 (20, 80) [250, 11, 750, 5, 27t/ (180 x 4)]

#6 (40, 100) [—250, —12, 1000, —12, 27t/(180 x 2)]
#7 (40, 100) [1000, 0, 1500, —10, 27t/ (180 x 4)]
#8 (40, 80) [250, —50, 750, 0, —27t/(180 x 4)]
#9 (60, 100) [1000, —50, 1500, 00, —27t/180 x 4]
#10 (60, 100) [250, —40, 750, 25, 27t/ (180 x 4)]

To evaluate the performance of the CKF based STM-PHD filter to cope with nonlinear problem,
we compare it with CKF based GM-PHD filter [11] over 100 Monte Carlo (MC) trails with fixed clutter
rate Ac = 20. Figures 10 and 11 respectively show the estimated cardinality and the OSPA distance of
two filters. From Figure 10, it can be seen that the STM-PHD filter is superior to the GM-PHD filter in
terms of cardinality estimation accuracy, although the STM-PHD filter has cardinality bias when the
number of targets increases. The main reason for generating cardinality bias is that some necessary
approximations for coping with nonlinear problems induce errors.

In Figure 11 the OSPA distances of the STM-PHD filter and the GM-PHD filter are at the same
level before 65 s and later on the OSPA distance of the STM-PHD filter is obviously lower than that of
the GM-PHD filter. This result matches the result in Figure 10 well. It indicates that the difference of
OSPA distance between two filters is due to the difference of cardinality estimation accuracy.
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1400 i
1200 .
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Figure 8. True trajectories of each target.
2000 T T T T T T T T T
1000 o | e :
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“000F | T o~
500
_2000 10 L L 20 1 1 1 1 I Il 1
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time/s
2000 T T T T ‘__-_‘——“_"_‘__"_,/
—n-/
1000 WM
E 1500 e (b)
> Elrya=-S08
of ] True tracks
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time/s

Figure 9. Measurements and true target positions versus time: (a) in x coordinate; (b) in y coordinate.
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True
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time/s

Figure 10. Comparison of cardinality estimation of two filters with fixed clutter rate (A = 20).
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—e— GM-PHD
—A— STM-PHD

OSPA

20 1

0 I I I | I | I I I
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time/s

Figure 11. Comparison of OSPA distance of two filters with fixed clutter rate (A = 20).

To evaluate the performance of the STM-PHD filter sufficiently, simulation is performed over
100 MC trials with different contaminated rate frome = 0toe = 0.05. Then the time averaged OSPA
distances of the STM-PHD filter and the GM-PHD filter are shown in Figure 12.

Analogous to the linear scenario, it can be seen that the time averaged OSPA distance of the
STM-PHD filter is lower than that of the GM-PHD filter at almost all contaminated rates. The gap of
the time averaged OSPA distance between the STM-PHD filter and the GM-PHD filter also changes
widely as the contamination rates increase. Nevertheless, the gap is not noticeable like in the linear
scenario. This is due to the relatively big approximation error induced in the nonlinear scenario.
The result indicates that the STM-PHD filter still outperforms the GM-PHD filter to cope with outliers
for nonlinear systems.

To further evaluate the performance of the proposed filter, 100 MC trails are performed from
Ac = 0to Ac = 50. The time averaged OSPA distances versus varying clutter rate for the STM-PHD filter
and the GM-PHD filter are shown in Figure 13. It can be seen that the time averaged OSPA distance of
the STM-PHD filter is lower than that of the GM-PHD filter at different clutter rates, and the trend for
two filters goes up with the increase of clutter rate. Generally speaking, the STM-PHD filter is superior
to the GM-PHD filter but the superiority is not noticeable like in the linear scenario. This is due to the
fact the approximation error induced in a nonlinear scenario is bigger than that in a linear scenario.
Nevertheless, the results still indicate that the STM-PHD filter is valid to handle the outliers.

60
‘ —e— GM-PHD
—&— STM-PHD
55 >
A

&
& 50l .
O

45+ .

40 I | L |

0 001 0.02 0.03 0.04 0.05

contaminated rate

Figure 12. Comparison of OSPA distance of two filters with different contamination rates.
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Figure 13. Comparison of OSPA distance of two filters with different clutter rates.

Again, the computing time for each filter under the different clutter rate is given in Table 4.
It shows that the STM-PHD filter has a higher computing cost compared to the GM-PHD filter and
the higher the clutter rate is, much more time is consumed for the STM-PHD filter. The reason
is that computing nonlinear Student’s t integrals is more complex than computing nonlinear
Gaussian integrals.

Table 4. Average computing time with different clutter rate.

Clutter Rate
0 10 20 30 40 50

GM-PHD 1.0142 s 1.3780 s 1.8481 s 2.4988 s 3.3321s 3.9051 s
STM-PHD 1.8534 s 3.3179 s 5.4081s 8.5213s  129163s 16.6113s

5. Conclusions

To solve the problem that the process and measurement outliers degrade the performance of
PHD filter, this paper proposes a Student’s t mixture-based PHD filter, where the prior multi-target
intensities are approximated as a mixture of the Student’s t components to be propagated in time and
the Student’s t mixture approximated posterior multi-target intensity are obtained through a Student’s
t approximation-based recursion. The proposed approach can efficiently suppress the negative
impact caused by the process and measurement outliers, while still maintaining good estimation
accuracy. The advantages of the proposed filter are verified sufficiently by simulation. The simulation
results also imply that the proposed approach outperforms the GM-based approach in scenarios
where outliers appear due to electromagnetic interference or sensors’ own unreliability. In addition,
the proposed approach is also suitable for the CPHD filter. However, the proposed approach has
relatively high computational cost for nonlinear systems. In further study, we will try to improve this.
Moreover, how to combine the proposed Student’s t mixture implementation with the multi-Bernoulli
filters (including CBMeMBer filter and labeled RFS based multi-Bernoulli filter) is also our focus in the
next work.
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Appendix A
Table A1l. Pseudocode for the STM-PHD filter.

given {w 21 mlg % 1P

1) 1+ the measurement set Z; and the degree of freedom parameters vy, Uy, U3
step 1. (prediction for birth targets)

i=0.
forj = 1,...,]%,(
i=i+1.
w (1) @ _ 0 pl (1)
W1 = Wopr Mg = Mo Peq = P
end
fOI‘jZ 1,...,]/5,]{
forl =1,..., k1
=141
w' (ORN0)) (i) (1) (1 (/)
kl\k 17 Wl 1wﬁ]k’ Mg = Fﬁk 121 +dﬁ],k71’
(i) 0 6
Pklk 1 Fﬁk 1P’ 1(1:5] 1) Z;gf—z) Qp-1/

end

end
step 2. (prediction for existing targets)

forj=1,..., k1

i=i4+1.
O (1)
e 0
(1) j (i) j) gT 2)
bkt = Boamly Py = B RO R + Z: 2 Q1
end

Jje—1 = 1.
step 3. (construction of PHD update components)

fOI'j—l "”]k‘k*l
(V) (1) (7 (7) (v3—2)
Mik—1 = By Pozpeoq = HiPie HY + ot Reo
(7) (1) (7)
Pl — K Hkpk\k v

(1) _ p) (1) -1 () _
K =Pl (HIPL )l Bll=Pl
end
step 4. (update)
forj=1,..., k-1
w/) = (1= ppwlfl_,

(1 _ .G (1) _ pli)
my! _mk\kfl’ P = Pk\]k 1

end
I=0.
for each z € Z;
[:=1+1.
fOI'j = l,. . .,]klk_l
Uier+) — () M ()
AUkea ) = \/(Z ~ il 1) (Proi—1)  (Z=p_y)
(U 1) i j
M — pp ,kw]({]“){ilSt(z; 7715]“271,5,9),03),
(Uk\k 11)) (1) (1) (7)
e =M1 K 2 =)
(W) _ v+ (a"5) )
Py He = 2 vstd, Pk|k'
end
) W_a+)
(g—1+i) w, L
Wk - T /:\kfl (T k +) fOI‘] B l/.“/]k‘kil.
ke(z2)+ L wy e
i=1
end
vy =v3+dz,  Jx = ko1 + Jxjk-1-
step 5. (moment matching)
forj=1,...,Jk
(V) () (j) _ v3(v3=2) p/(j)
mys =m, P = U(UZ 2)P
end

output{w,(ci),m(z) P(Z)}l 1
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Table A2. Pseudocode for the cubature rule based STM-PHD filter.

given {w,@l, m,((ill, 1 }1.:1 , the measurement set Z; and the degree of freedom parameters vy, v, v3 .
step 1. (prediction for birth targets)
follow Step 1. of table.

forj=1,...,i
— use the cubature rule suitable for Student’s t integral (see [22]) with m}({]_> 1 and PIEJ—) 1

L
to obtain a set of cubature points and weights, denoted by {x,((lzl, uhy -1
- compute

k\kl f/Sk( DD, 1=1,..,L

o) )5
M1 = ZV Xklk—1/

, L .
pl) ::mfzzlgn(xm — ) W )

—m )T+ U1(U372)Q
klk—1 o5 P11 Kle—1/Fhk—1 klk—1 U3 (01=2) =B k-1

end
step 2. (prediction for existing targets)
forj=1,...,Jk1
i=i+1
= posnls

— use the cubature rule suitable for Student’s t integral with m?  and pY

k=1 k-1
L
to obtain a set of cubature points and weights, denoted by { x;(l_) v V(l) }1:1
— compute
o 0 _
Trlk-1* fk(xk 1) I=1,...,L,
(1) MO
mk|k 1 Z yk 1 k\k 17
G _ (1) ) (1) )
P = D Yhlk—1— k\k—l)(xk\k 17 M- )+ v;(ui—z) Q1
end
Jee—1 = 1

step 3. (construction of PHD update components)
fOI'j = 1, .. "]klk*l
— compute

(O (1 _
Zgor h r(x k|k 1) I=1,...,L,

(7
’7k|k 1= Z ) k|k 1/

0 _ 2 (") My, () T (o2
Pzi,k\kfl o Z (2 Zklk—1 ’Ik]\kfl)(zk\kfl - ’714191) + U3EU272; Ry,
) O ) D M "

Px]z,k\kfl D (x k-1~ k]\kfl)(zk\kfl _Wkikfl)

-1

7

(1) _ pl) ()
Kk _szk|k 1[Pzzk\k71}

G) _ ) () (j) 1 0) T
Pk\]k Pk|k 1 sz klk—1 [Pz,]z,k\kfl} [Px{z,k|k71] ’
end

step 4. (update) and step 5. (moment matching)
D) i)
follow Step 4. and Step 5. of table to obtain {w]((l) , m;{l), pY }ikzl.

k
output {w,((i), m](ci), P,Ei) }l]k:1
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Appendix B

Proof of Proposition 1:

Dyjp—1(x)

f (ps, kSt(x

21 of 23

Jk—1 . . .
Qg 1'Ul)+ Z w St(x ﬁk 1”+d;313<—1'Qg/;<—1fv3)) E] wl(cj—)lst(u;ml(cjzl’Plfjf)l’v3)du
o

+Zw St(xm()P 3)

= Psk Z wk,lf St(x/Fk

Tklﬂk

+Z Zw

+):w

= F’ka

]kl

() 440 (OO
+ Z Z wk w;scht(x ﬁk lmk/—1+d/3,k—1' i-10pk-1(Fgr_1) +

],

Yk, kU3
,114er,1/01)Sf(u;m;(cjzyplgj,)lrvs)d”

JShS SHGF_u+dy QR vs)Stum) | P u)du

St(x mEV)k,P7 V3)

St(x Fr_ 17711(()1,["}( 1P( )1Fk ]+ v3 v — ZQk 1,03)

1 1

F(I) v3—2 vg

by o2 Qpk-1/03)

+Zw St(xm()P v3).

Proof of Proposition 2:

Dy (x)

Using Lamma 2:

vk 'yk’

(1= Pp ) Dije—1(x)
Jlk—1

ppSt(z:Hx,R;,02) Z w,(c“)( 1St(x m]((“)( 1,P]£|],Z oy v3)
JrzeEZk e o o p0
K (2)+ [ ppSt(z:H xR, 02) lgl wk\k—lSt(u;mk\k—l’Pk|k—1’U3)d”

(1= pp ) Dijg—1(x)

T ¢ pl)
PD Z wk\k 1 (szRk,vz)St(xmk‘k 1’Pk|k 1/93)

+ L

ZEZk

4

/k|k 1
( 3)du

#k(2)+Pp Z wk\k 1fSt‘ (z:Hpx,Ry,v2)St(u; m](dl)( 1’Pk|lz Y

St(z; Hyx, Ry, v2)St(x; ml(<|l)< 1,Pk(“2 )
— . () (7) U3-2)v
- St(z,I'{kmk]‘kfl,HkPk‘k HT + %R 03 |
st{wmf) -+ K — Honll_ ) 2% 00— KB )0+ )
=a) @St m]) (2), B (2),v5),
with: .
0 _ pl) () v3-2 v
Ky Pk\]k 1HT(HkPk\k (Hi + o wozRe)
A2 — (ot P T )
(z— kmk\k 1) ( zz,k|k71) (z kmk\k 1)
Using Lamma 1:
I I) !
fSt(z;Hkx,Rk,vz)St(u;ml(d?( 1,Pk(|k 1,v3)du = St(z H.m }((‘3( 1,HkPk(“z 1Hk + %R 123) q,({)(z),

SO:

Dy (x)

= (1—ppx)Dyj—1(x)
iy ]k‘il PDkWIEU)( 1q£)( )ft(x mk‘k '(2),P k‘k ) (2),03 ).
2€7; j=1 0 D ()

()+pDk Z wk\k 19k
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