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ABSTRACT

Microbial ecosystems are commonly modeled by fixed interactions between species in steady expo-
nential growth states. However, microbes often modify their environments so strongly that they are
forced out of the exponential state into stressed or non-growing states. Such dynamics are typical
of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a
phenomenological model, the Community State model, to gain insight into the dynamic coexistence
of microbes due to changes in their physiological states. Our model bypasses specific interactions
(e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological
states, referred to collectively as “community states”, and modeled by specifying the growth pref-
erence of each species along a global ecological coordinate, taken here to be the total community
biomass density. We identify three key features of such dynamical communities that contrast starkly
with steady-state communities: increased tolerance of community diversity to fast growth rates of
species dominating different community states, enhanced community stability through staggered
dominance of different species in different community states, and increased requirement on growth
dominance for the inclusion of late-growing species. These features, derived explicitly for simplified
models, are proposed here to be principles aiding the understanding of complex dynamical commu-
nities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized
inter-species interaction to top-down studies based on accessible macroscopic observables such as
growth rates and total biomass density, enabling quantitative examination of community-wide char-
acteristics.

Introduction

Microbial communities in natural environments are often highly dynamic [1–7]. For example, many environments
feature periodic replenishment of resources (e.g., the gut microbiome [8], the ocean [9]), or resetting of other envi-
ronmental factors with periods of growth between these perturbations [10, 11]. Lab-scale experiments [12–14] on
microbial ecosystems frequently adopt serial dilution cycles with dynamic environments. Recent studies have found
that stable microbial communities do not settle simply into a fixed state, but are instead driven through dynamic phases
involving complex changes in the environment such as depletion of oxygen and build-up of toxic waste [15, 16]. These
changes, in turn, alter the physiological states of the microbes in the community, slowing down or even halting their
growth. Changing physiological states also often change metabolic secretion and uptake profiles, and induce more
complex interactions such as aggregation, motility, toxin secretion, and even contact-dependent killing [17–20].

These observations have been interpreted using models from theoretical ecology that typically explain ecosystem
assembly and stability [21, 22] in terms of resource competition [12, 13, 23], niche differentiation [24] and competitive
exclusion [25]. However, these models typically assume that communities and the organisms in them are at steady
state [21, 26–29]. This difference between empirical observations and theoretical models raises questions about the
role of dynamic physiological state changes in forming complex communities. One possibility is that physiological
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state changes are merely details, not essential for understanding factors that enable community assembly. In this
perspective, nothing is lost by coarse-graining over dynamics and modeling communities as if they are at steady state.
Microbial communities would be expected to show similar complexity and structures if microbes stay in fixed states
(e.g., exponential growth) and independent of whether interactions through metabolic secretion and uptake occur in a
temporally staged manner.

Another possibility is that physiological state changes create dynamic niches that support complex communities. Since
microbes have a plethora of non-growing states, this scenario could significantly expand the ways of generating niches
beyond well-studied cases such as distinct metabolites [28], space [30], and externally dictated temporal epochs (e.g.,
diel or annual cycles) [31]. Further, the nature of such self-generated dynamic niches, if they exist, might have
signatures that are predicted to be observed in microbial communities.

We cannot easily address this question about the role of state changes using the current bottom-up theoretical frame-
works (e.g., Lotka-Volterra or Consumer-Resource models) since these models typically characterize organisms and
their interactions with fixed parameters. In these models, community dynamics only involves changes in species abun-
dances and nutrient concentrations and is justified by assuming organisms are in a fixed physiological state, (e.g.,
Monod growth for exponentially-growing cells [32]). If one is to adopt a model of interactions between each species
and its environment (as in Consumer-Resource Models) or other species (as in Lotka-Volterra Models), then each
physiological state would minimally involve a different set of uptake and excretion parameters; a given species would
effectively be modeled as multiple species over time. Thus, bottom-up models of dynamic communities require ex-
tensive characterization and unconstrained assumptions on specific details about what different cells do in different
conditions.

As a first step towards quantitatively modeling communities of species that undergo physiological changes, we intro-
duce a minimal top-down phenomenological framework, the Community State Model. Our model is phenomenolog-
ical at the level of species density; the physiological state and thus the growth rate of each species in a community is
assumed to depend only on the community biomass at any given time, and as a result, community states are defined
by regions of biomass density. Such a model can be solved explicitly (numerically and in simple cases analytically) to
yield the temporal organization of community dynamics at a quantitative level.

Analysis of the Community State model points to sequential dynamics as a strategy to form a stable community
involving a large number of species [33]. In this simple model, each species grows rapidly in one (or a few) community
states that persist over specific intervals of biomass accumulation, with slower or even no growth in other parts of
the inter-dilution period (hereby referred to as the growth period). This strategy is a distinct alternative to the co-
growth strategy based on steady-state models with fixed physiological states where species grow on resource niches
simultaneously.

For this sequential coexistence strategy, our model allows us to uncover a number of key features of community
dynamics. We find (a) tolerance of community diversity to fast-growing species if such growth is limited to specific
community states, (b) enhanced community stability through staggered dominance of different species in different
community states, and (c) a requirement of increased growth dominance for late-growing species. These features
counteract the dominant notions regarding species competition derived from analysis of steady-state systems, and
serve as principles to guide the understanding of complex dynamical ecosystems

Results

Case study of community dynamics during serial-dilution cycles

The model of microbial community dynamics developed here is inspired by dynamics revealed by a recent study of
a seemingly simple cross-feeding system subjected to repeated serial-dilution cycles [16]: Two species of marine
bacteria, Vibrio sp. 1A01 and Neptunomonas sp. 3B05, isolated from a chitin-degrading coastal community [34], were
grown on N-acetyl glucosamine (GlcNAc) as the sole carbon and nitrogen sources in batch culture. 1A01 consumes
GlcNAc and excretes acetate and ammonium, while 3B05, which does not consume GlcNAc, can grow on the acetate
and ammonium excreted by 1A01 (Fig. 1A). Because 1A01 grows on GlcNAc faster than 3B05 grows on acetate,
acetate inevitably accumulates in the medium, becoming toxic when reaching the buffer capacity of the medium
(which is low for seawater). In canonical syntrophy, toxicity would slow down the toxin-excreting species more than
the toxin-clearing species, resulting in a stable state where both species grow exponentially [35]. This is not the case
for 1A01-3B05 co-culture: acetate accumulation in the environment slows down the growth of 3B05, the acetate-
consumer, more than that of 1A01, the acetate excretor. Thus acetate is expected to accumulate, with the arrest of the
co-culture once acetate exceeds the buffer capacity. Yet, as shown in Fig. 1B, when this system was subjected to 24-h
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Figure 1: Sequential transitions in a community’s state revealed in a simple co-culture of a sugar consumer and
an organic acid consumer. (A) Schematics describing the dynamics of a co-culture of marine bacteria Vibrio sp. 1A01,
a sugar consumer, and Neptumonas sp. 3B05, an organic acid consumer, growing on N-acetyl glucosamine (GlcNAc)
under repeated serial-dilution cycles: the co-culture passes from an initial unstressed state in which 1A01 grows faster
than 3B05 (pink box), to an acid-stressed state in which 3B05 grows but 1A01 does not (blue box). Pointed gray arrows
indicate metabolic flow (thickness indicates flow magnitude) and blunt-end arrows indicate growth inhibition. (B)
Experimental investigation by Amarnath et al. [16] revealed coexistence only if serial-dilution cycles were sufficiently
long to allow for an intricate sequence of ‘community states’, i.e., different combinations of the physiological states of
each species and media conditions, labeled by the numbers in (C,D). (C) shows changes in 3 major metabolites while
Table (D) describes the community states along the green path in (C). (E) The growth rate of each species along the
path in (C), i.e., between two serial dilutions (steady state cycle shown).

growth-dilution cycles, the system miraculously cured itself of acetate accumulation, with the two species reaching a
stable, comparable abundance ratio according to samples taken at the end of each cycle after a few cycles.

Detailed analysis of the two-species dynamics revealed that stability was achieved through physiological transitions
during the 24-h growth period, as shown in Fig. 1C-E: The first phase 0 after nutrient replenishment is a lag phase
for 1A01; in the next phase 1 , acetate accumulated and pH dropped; 1A01 grew fast with slower growth for 3B05.
Phase 2 commenced when the pH hit a critical threshold (set by the pKa of acetic acid) which caused 1A01 and
3B05 to enter growth arrest, with 1A01 excreting large amounts of glycolytic intermediates (e.g., pyruvate). This
stress-induced excretion played a key role in stimulating the growth of 3B05 (phase 3 ), with the consequence of
removing acetate from the medium and restoring pH (phase 4 ). This in turn allows 1A01 to avoid death and be
available for dilution into the next cycle (phase 5 ).

Amarnath et al.[16] showed that this highly dynamical mode of coexistence is not specific to the marine species
studied: dynamic coexistence through similar acid shock and recovery was shown also for co-culture of species taken
from a soil community or even between enteric and soil bacterium. Metabolic analysis in [16, 36] suggests that such
interactions are generic between species with complementary sugar-preferring vs. acid-preferring bacteria, or between
glycolytically-oriented vs. gluconeogenically-oriented modes of metabolism. Thus, dynamic coexistence with each
species passing through multiple physiological states in a cycle may be the norm rather than the exception [12, 37–39].
The lack of reports of such dynamical features may reflect the lack of time-resolved measurements, which occurred
within a few-hour window of the 24-hour growth-dilution cycles. The focus of existing theoretical studies in ecology
on steady-state characteristics and stable coexistence of many species [22, 40] may also contribute to the lack of
measurements on dynamic characteristics.
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Figure 2: Benefits of indexing community states by the accumulated community biomass. When plotted as a
function of time during a growth period, different initial conditions (here, relative species abundances of A:B=1 for
top row, A:B=0.66 for bottom row) for the system in Fig. 1 lead to (A) different growth rate curves of each species
and (B) accumulated community biomass density. (C) However, growth rate data as a function of community biomass
density is relatively reproducible. Results shown from second cycle (before reaching stable cycle). (D,E) Experimental
data from [16] on cell densities and acetate concentration during a growth dilution cycle. (D) The most important
physiological changes that underpin coexistence in [16] occur in a short window of time (gray) where acid stress
causes dramatic changes in acetate concentration (black curve) and other metabolites (not shown). However, without
prior knowledge of the acetate stress mechanism, sampling uniformly in real-time will dedicate many time points to
the lag phase (relatively unimportant for coexistence [16]) and may miss the critical gray region. (E) In contrast,
sampling evenly in community biomass naturally emphasizes the gray region. Thus investigating metabolites that
change dramatically between biomass density intervals can assist in identifying the mechanistic basis of community
assembly. (F) A mutation that changes physiology in specific environments (here, reducing log phase crossfeeding)
will change growth curves in community biomass intervals corresponding to those environments (here, the light blue
growth curve for 3B05 is lowered to the dark blue curve in the pink biomass interval). In this work, we derive a
formula relating growth rate curves as a function of biomass to coexistence. Consequently, our top-down framework
can relate changes in physiological properties to community assembly.
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Benefits of indexing community dynamics by community biomass

How can we effectively capture the key drivers of the complex dynamics underlying this system? We propose a
phenomenological and experimentally accessible description, using “community biomass” as a proxy for key drivers
of community dynamics.

One advantage of this biomass-based description is that the community state changes at reproducible values of the
accumulated biomass for perturbations in external parameters. This robustness arises because changes in environmen-
tal parameters like pH and oxygen levels are typically accompanied by biomass accumulation. In contrast, the most
direct description based on time has several drawbacks. As shown in Fig. 2A, community dynamics during a growth
cycle in real time are highly variable as initial species or nutrient abundances are varied. However, this variance is
mostly counteracted by the variation in the real-time accumulation of biomass; Fig.2B. Hence, combining Fig. 2A
and 2B, we find that the growth rate as a function of accumulated biomass is relatively reproducible; see Fig.2C. See
Supplementary Supplementary Figures S1-2 for other ecosystems with even higher reproducibility of biomass. While
biomass values corresponding to community state changes will be different when, say, a given species is part of a
novel community, these results suggest that total biomass could be part of a useful top-down description of a given
ecosystem.

Another advantage of indexing the community dynamics by total biomass is that it naturally emphasizes growth phases
most relevant for community assembly. As shown in Fig. 2D, when plotted in real time, the most critical physiological
changes occur in a relatively brief period indicated by the gray band (where acetate buildup hits a threshold, leading
to subsequent stress-induced crossfeeding of pyruvates and other metabolites). There would have been no reason to
sample the short time period represented by the gray band in Fig. 2D, without data on acetate (black curve) and other
results of the detailed mechanistic study in [16]. More generally, the drawback of real time is because environmental
change is a result of absolute biomass growth, and for an exponentially-growing culture, the same absolute amount of
environmental change takes exponentially less time as the culture grows. Instead, sampling the ecosystem uniformly
in accumulated community biomass density (Fig. 2E) emphasizes important periods such as the gray region, even if
the role of acid stress was unknown.

Finally, as we will detail later, the accumulation of sufficient biomass is the necessary and sufficient requirement for
each species to be maintained in stable cycles. Consequently, we can use this picture based on biomass to predict
the impact of, e.g., altered physiology in an organism due to mutations, on coexistence. For example, consider a
change that decreases cross-feeding during exponential growth as shown in Fig. 2F. Naively, such a change would be
expected to destabilize coexistence as cross-feeding is believed to enhance coexistence [12]. But our biomass-based
results derived below will predict the opposite; the depicted physiological change causes 3B05 will grow slower dur-
ing 1A01’s growth phase. We will show that reducing co-growth in intervals of the biomass coordinate will generally
favor coexistence since each species will get guaranteed (but capped) growth in the community state that it domi-
nates. Consequently, our framework will predict reducing cross-feeding during the exponential phase can stabilize the
community, counter to intuition.

A top-down model for complex communities

We propose a general model - the Community State (CS) Model - for investigating multi-species dynamics in microbial
communities in cyclic environments. In this top-down model, we take the growth rate, rα(S), of each species α to
depend on the community state S, which progresses through multiple states due to various environmental changes
driven by the microbes themselves as shown in Fig. 3. In the simplest model, we assume that the community state S

can be parameterized by the community biomass, taken to be the total cell density ρ
(j)
tot (t) ≡

∑
α ρ

(j)
α (t), where ρ(j)α (t)

is the cell density of species α at time t in the jth cycle. (Here, we assume all species to have the same biomass per
cell. More generally, a scaling factor can be introduced to absorb the species-dependent cell mass.) Thus, the growth
of species during the jth cycle is described by

d

dt
ρ(j)α = rα

(
ρ
(j)
tot (t)

)
· ρ(j)α (t) for 0 ≤ t ≤ T. (1)

When t reaches the growth period T , all densities are reduced by a common factor δ < 1, i.e.,

ρ(j+1)
α (t = 0) = δ · ρ(j)α (T ). (2)

Eqs. [1] and [2] define an effective “map” for the density of each species at the beginning of each cycle, ρ(j)α (0) starting
from the initial composition ρ

(1)
α (0). For convenience, we choose the growth period T to be sufficiently long such that

the total cell density has time to reach the maximum ρmax
tot where rα = 0 for all species. Thus, the dynamics of this
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Figure 3: Top-down description of ecosystems in the Community State Model. We consider ecosystems that
grow, gaining biomass for a period T , before being diluted into a fresh environment. During the growth period, the
community changes its environment through many complex processes shown, leading to a sequence of community
states. The Community State model assumes these processes to be turned on and off at different points along a
one-dimensional phenomenological coordinate that parameterizes the sequence of community states. In the simplest
version of the model shown, this coordinate is taken to be the accumulated community biomass ρtot(t) since nutrient
depletion, buildup of toxins, and spatial structure, etc. are accompanied by biomass growth. Each species is assigned
a different set of growth rates rX(ρtot). At any given stage of the growth cycle, indexed by ρtot, growth dominance
p(ρtot) is the ratio of the growth rate of the fastest-growing species to that of other species. As suggested by the
cartoon, different species might dominate at different ρtot and to different extents p(ρtot).

model are governed by the growth rate functions rα(ρtot), the maximal cell density of the system ρmax
tot , and the dilution

factor δ < 1, independent of the growth period T .

The assumption that growth rates depend only on accumulated community biomass can be justified mechanistically
in some cases; see Supplementary Text S2.2 and Supplementary Figures S1-2. But from a phenomenological point
of view, this assumption can be viewed as the minimal closure of the equations describing an ecosystem that results
in a coexistence criterion. Such a coexistence criterion is derived in Supplementary Text S2.6 for mutual invasibility
between two species. E.g., for the ability of one species, A, to invade a monoculture of species B, we find

IA,B ≡
∫ ρmax

tot

δ·ρmax
tot

rA(ρtot)

rB(ρtot)
· dρtot

ρtot
> log (1/δ) . (3)

Similarly, the invasion of a species A monoculture by species B requires IB,A > log (1/δ).

Intuitively, these conditions suggest that coexistence imposes conditions on the relative growth rate rA(ρtot)/rB(ρtot)
in different intervals of community biomass ρtot. For example, consider the growth curves rA(ρtot), rB(ρtot) shown
in Fig. 4A. Species A grows faster than B for low biomass ρtot < ρc, with a growth dominance p1 = rA,1/rB,1.
Conversely, species B grows faster for higher biomass ρtot > ρc, with growth dominance p2 = rB,2/rA,2. Applying
Eq. 3 to this toy model with step-like growth curves as shown in Fig. 4A and C, we find conditions for mutual
invasibility and thus for stable coexistence:

p1 log(ρ
c
tot/(δ · ρmax

tot )) > log 1/δ − log(ρmax
tot /ρ

c
tot)

p2
, (4)

p2 log(ρ
max
tot /ρ

c
tot) > log 1/δ − log(ρctot/(δ · ρmax

tot ))

p1
. (5)

When the growth dominances p1, p2 and the width of biomass interval ρctot satisfy these conditions (Eq. 4, Eq. 5), serial
dilution cycles starting from any initial condition converge to a unique fixed point where both species are present; see
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grows rapidly in the early community state that lasts for community biomass ρtot < ρc; species B grows faster when
ρtot > ρc. (B) Species densities at the end of consecutive serial dilutions from different initial conditions (black open
circles) for growth curves in (A) converge to a stable coexistence point (black solid circle). (C,D) Same as (A,B)
but the modified growth curves in (C) lead to extinction of species A shown in (D). While growth curves in (A),(C)
are visually similar, Eq.4,5 predict that the two community states can support two species in (A) but not in (C). Key
features: (E) We increase growth dominance p1 = rA,1/rB,1 of species A in the first community state. (F) Steady-
state abundance of species A as a function of growth dominance p1 shows a quickly saturating effect. (G) We consider
a coordinated change of growth dominance p1, p2 across multiple community states. (H) Rate of convergence back to
stable coexistence point (i.e., Lyapunov exponent of stability) as a function of growth dominances p1, p2; ecosystem
stability increases without saturation for coordinated changes in dominance. (I) A 10-species ecosystem with each
species “dominant” with high growth rate r+ in a unique community state and r− elsewhere; all community states last
equal intervals of normalized community biomass η ≡ (ρtot/ρ

max
tot − δ)/(1− δ). (Here δ is the dilution factor between

growth cycles. Growth dominance p = r+/r− = 5.) (J) Stacked chart shows species abundance at the end of each
cycle (in fraction of total biomass) over multiple serial-dilution cycles. (K,L) Same as (I,J) but with wider biomass
intervals for later community states (see Eq.6). The wider intervals for later species compensate for the priority effect
enjoyed by early species.

Fig. 4B. Outside of this regime, e.g., with visually similar growth curves shown in Fig. 4C, one of the two species goes
extinct over multiple cycles as shown in Fig. 4D. See Supplementary Text S2.4 for more analyses.

It is tempting to interpret community states in the two intervals of biomass shown in Fig. 4A as two dynamic ‘niches’
where species A and B dominate respectively, thus guaranteeing their coexistence. However, as the distinct steady-
state compositions for similar growth curves in Fig. 4A and C show (coexistence and competitive exclusion respec-
tively), community states can serve as distinct niches that support distinct species only under specific conditions. Thus

7



Dynamic coexistence driven by physiological transitions in microbial communities A PREPRINT

the nature of niches that arise from community states remains unclear – what is the impact of the width of biomass
intervals over which a community state persists, what effect does their temporal ordering have, and can community
states support complex communities with many species? The phenomenological Community State model can be used
to address these questions and makes non-trivial predictions on how growth and non-growth states must be structured
across a community for stable coexistence. Below, we highlight three insights derived from these equations into the
nature of niches based on community states:

Tolerance to growth dominance: As shown in Fig. 4E and F, the growth dominance p1 of species A in the first
biomass interval negatively impacts the steady state coexistence ratio at small p1 but saturates at larger values, being
limited by the value of the other growth dominance, p2. This diminishing damage to coexistence by a species with
strong growth dominance can also be quantified by the tolerance range of parameters like ρc that allows for coexistence
(see Supplementary Figure S3), follows from the structure of Eq. 3.

The tolerance to growth dominance contrasts sharply with one of the most basic tenets of ecology, that faster-growing
species drive slower ones to extinction, which is at the root of the “paradox of the plankton” [28]. It allows individual
species with significant growth advantages to coexist with other slower species (thus retaining “services” by the latter
in other more challenging community states), provided that these advantages are limited to some specific physiological
states. This effect plays a pivotal role in the coexistence of larger communities to be described below.

Community stability through staggered growth dominance: While coexistence tolerates strong individual growth
dominances as described above, the coexistence regime is broadened if both p1 and p2 are large, i.e., if the species
stagger their dominance in distinct community states. The impact of staggered dominance is seen also in the robustness
of coexistence, measured by the convergence rate to the stable cycle following small perturbations (the Lyapunov
exponent); see Fig. 4G, H. This metric is also a measure of the stability of the ecosystem against environmental or
physiological fluctuations.

Since enhancement in the size and stability of the coexistence region requires increases in growth dominance in
distinct community states (i.e., p1 and p2), such a communal effect is aided by different species coordinating their
growth dominance across multiple community state. However, individual species can also contribute to such staggered
growth dominance since a species can increase the growth dominance of another species in another community state
by reducing its own growth rate in that state; e.g., species A can increase p2, the dominance of species B in state 2, by
decreasing rA,2. Thus, this global coordination is facilitated by individual species specialized to dominate in distinct
community states.

Increased growth dominance for late species: The coexistence criteria IA,B , IB,A are not symmetric between
species A and B. This asymmetry can be traced to a “priority effect” where species A capitalizes on early growth,
accumulating large numbers while species B’s growth occurs in a later biomass interval [41–43]. The consequences of
this priority effect are shown for a N -species community in Fig. 4I,J: if each species is dominant in a unique biomass
interval of equal width (with growth dominance p = 5 in each community state), late-growing species are driven
extinct after several cycles.

We find that members of such a community can all coexist despite the priority effect if early-growing species occupy
narrower biomass intervals. Based on Eq. 4 and Eq. 5, we were able to derive a special distribution of biomass interval
(see Supplementary Text S2.8) for coexistence. Expressed in the normalized biomass coordinate η = ρtot/ρmax, if the
width interval ∆ηn for the species growing in the nth-state follows an exponential distribution

∆ηn ∼ (1/δ)n/(N+p−1), (6)

then late species coexist with early species and are, in fact, equi-abundant (provided that growth dominance p does not
greatly exceed N ); see Fig. 4K, L. Thus, an appropriate choice of transition points between community states favoring
the late-growing species can counteract the priority effect. Alternatively, the priority effect can be counteracted by
stronger growth dominance of the late-growing species even if the biomass intervals of the different states are equal;
see Supplementary Figure S6. These results underscore and quantify the large (exponentially increasing) burden faced
by the late-growing species to be included stably in large communities.

Complex communities

We next consider a multispecies Community State model in which different species can grow (and hence compete)
in the same community state. This model can be represented by a “preference matrix” where each element of the
matrix denotes the community states in which each species grows preferentially and the boundaries of the community
states are common to all species and given by defined biomass values (ηi−1 and ηi for the ith community state). We
allow for multiple species to grow preferentially in any community state. This structure allows us to see the effect of
competition between species growing preferentially in the same community states.
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Figure 5: Competition and coexistence in complex communities. (A) Ks model of random preferences: Ks ran-
domly chosen species are given high growth rate r+ in each community state that lasts for a fixed interval of community
biomass η; all other species are set to slow growth r− in that interval. Illustrative example shown in (A) with Ks = 4,
N = 10 total species and growth dominance p = r+/r− = 100. After many serial-dilution cycles, some species
persist (blue) while others go extinct (red). (B) Average number of surviving species with N = 100 exceeds naive
expectation N/Ks (black line). (C) The average number of ‘state shares’ for surviving species and extinct species as
a function of Ks; here, ‘state share’ is the share of community states that each species grows quickly in. For example,
Species A in Fig. 5A receives 1/4 of each state in grows quickly as it shares the fast growth with three other species,
and thus has a total of 1.25 state shares. (D) Kn model of random preferences: Each species is assigned a high growth
rate r+ in Kn randomly chosen community states and slow growth r− in other states. Illustrative example shown with
Kn = 4, N = 10. (E,F) Same as (B,C) but for the Kn model. (F) Average number of ‘state shares’ for surviving
species and extinct species as a function of Ks; ‘state share’ is defined as in (C), but here each species may share
each state with a different number of species. (G) Time course of normalized biomass for the surviving species over
a stable cycle in an illustrative example of 10 species with Ks = 4 preferred niches and Kn = 4 competitors in each
niche (imposing constraints of both Ks and Kn models). Species show a complex disordered pattern of growth and
no-growth states with subtle correlations that enable coexistence. (Error bars in all panels indicate standard deviation
from 10 simulations of different growth matrices with 30% variation in r+, r−, and ∆η.)

We first explored the case where each community state can support the rapid growth of a fixed number Ks of species.
An example of a preference matrix is shown in Fig. 5A; each community state was assumed to last for the same average
interval ∆η of biomass. In each community state (i.e., column of matrix shown), we assigned a high growth rate r+
for Ks randomly chosen species and a low growth rate r− that is a p = 100 times lower than r+ for all other species.
30% random variation added to each parameter; see Supplementary Information for other details. The results, shown
in Fig. 5B), show an expected decrease in steady-state diversity with an increasing number of species Ks competing
in each community state. However, the decrease in surviving species is slower than a naive expectation of N/Ks.

To gain insight into which species survive, contrast rows of the matrix corresponding to surviving (blue) and extinct
species (red) in Fig. 5A. Survivors (blue) tend to grow fast in five or more community states while extinct species (red)
have mostly three preferred states. To test this hypothesis, we plotted the average number of preferred states (states in
which a species grows at r+) for the surviving and extinct species for the N = 100 system (Fig. 5C); we see that the
surviving species are generalists who can grow rapidly in multiple community states.

We next explore the situation where each species has a fixed number Kn of preferred states, i.e., now, all species are
generalists to an equal extent. However, the identity of the preferred community states for each species is randomly
chosen; see Fig. 5D for an example matrix. The number of surviving species is now clearly increased compared to
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the Ks model; compare Fig. 5E to Fig. 5B. What factors distinguish the surviving and extinct species? The specific
example in Fig. 5D suggests that extinct species had more competitors in their preferred community states. To confirm
this, we calculated the average number of preferred states for each species, weighted by the number of competitors
that also grow fast in that state. Plotting this competition-weighted average state share for the N = 100 system, we
find the surviving species (blue) indeed have a higher share of their preferred community states compared to extinct
species (red). See Fig. 5F.

In Supplementary Figure S7 and S8 and Supplementary Text S2.9, we consider a Consumer Resource model in a
chemostat with each species growing on multiple resources. We explored similar constraints as above, with the total
number of species growing on each resource (Ks) fixed or the number of resources each species grew on (Kn) fixed.
We find that the fraction of surviving species for fixed Kn (43% for Kn = 10) is lower than in the CS Model (52%
for Kn = 10) and higher for fixed Ks (34% for Ks = 10) than in the CS Model (28% for Ks = 10).

Discussion

In this work, we have investigated models of growth and survival of microbial species in communities subjected to
cyclic environmental fluctuations, focusing on the case of prolonged periods between nutrient replenishment as seen
often in the wild [34, 44]; under these conditions, exponential steady-state growth cannot be sustained. In the lab,
non-steady-state growth can occur during serial-dilution cycles where the cycle length is long enough for nutrient
depletion or build up for toxic waste that limits growth [12, 36, 45]. Accurate bottom-up models are not feasible given
our limited understanding of microbial behaviors outside of exponential growth [44, 46].

Inspired by a model experimental system, we investigated the creation of dynamical niches by a combination of
physiological states taken by members of a community in response to self-generated environmental changes. In our
model, each species X is assigned a growth rate rX(S) in each state S of the community. A community state S was
taken to last for an interval of total community biomass ρtot accumulated during the growth of the community, and the
corresponding growth rate of each species in that community state S reflects the physiological state each species is in as
well as its environmental context (which includes the physiological states of all other species). Using total community
biomass ρtot as a driver of community state transitions gives a simple model that allows us to derive quantitative self-
consistency conditions on temporal dynamics during serial-dilution cycles using experimentally measurable quantities:
Suppose a set of species in repeated serial-dilution cycles are observed to grow at growth rates {rα} at time t where the
community has total biomass ρtot(t), to what extent can the set of data {rα, ρtot} recapitulate the existence of species
and the dynamics of their abundances during the cycle? And how robust is the observed dynamics to perturbations
in environmental factors and community composition? Most of the results derived in this study are centered around
these questions.

One major finding is that community states cannot be taken for granted as “niches” - even when species “take turns”
dominating growth in different community states, many species can go extinct. Instead, we find quantitative constraints
on how fast or for how wide an interval the dominant species in each community state niche can grow. These con-
straints can be summarized as: (1) Tolerance to growth dominance: increasing the growth rate of an individual species
in its favored community state beyond a point does not impact coexistence. This effect contrasts starkly with steady-
state coexistence, where the increased growth rate of one species can drive other species extinct. (2) Community
stability through staggered growth dominance: Stability of a diverse community requires minimizing simultaneous
fast growth of multiple species; that is, stability requires that species stagger their growth dominance across distinct
community states. (3) Increased growth dominance for late species: species growing in late community states must
grow faster or for larger biomass intervals than species in early states.

By showing that such niches can arise for a distinct mechanistic reason – transitions between physiological states – the
Community State model makes distinct predictions about the relationship between physiology and ecology. Unlike in
many other models, niches here are not created by a balance between microbes in exponential growth but originate
through an interplay of switches between multiple growing and non-growing states. Our mutual invasibility criteria
Eq. 3 offer a quantitative and intuitive understanding of the nature of these niches, factors that widen them, and the
nature of competition between species in overlapping niches. The explicit dependence on the ratio of the growth
rate of the invading species to that of the resident species in IA,B and IB,A make them a fitness-like measure for the
current context (cyclic environments with multiple physiological states) where other fitness measures (e.g., growth
rate difference) are not applicable.

These effects persist in extensions of the model to many-species communities provided that the number of community
states does not greatly exceed the growth dominance p, where p is the ratio of the growth rate of the dominant species
in a community state to the basal growth rate of subordinate species in that state. Trajectories of species abundances
(Fig. 5H) show that the dynamics in such systems no longer follow orderly succession dynamics but instead, show
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a seemingly-disordered array of growth curves that are nevertheless cyclic and hence maintain coexistence. To our
knowledge, such disorderly, yet cyclic growth characteristics represent a new class of non-steady-state dynamics that
has not been described in the ecology literature.

The tendency in ecology, with an emphasis on steady states, has been to “coarse-grain” or ignore dynamics seen in
real systems. Indeed, dynamics in some communities are merely complications (e.g., periodic perturbations about a
stable steady state) that can be coarse-grained without any loss of understanding. In fact, in 1973, Stewart and Levin
noted mathematically that two species could survive on a single “seasonal resource” [47]. Their work has often been
dismissed (including in their own paper [47]) as a mathematical observation relevant only for an assumed growth-
affinity trade-off, narrow resource competition, and other idealizations. Our work argues that their simple mechanism
of dynamic coexistence – also explored in recent works [41, 48–52] – is more relevant, not less, given the observed
complex physiology and nonlinear growth dependencies in real microbial ecosystems. If physiological state changes
turn out to be dominant drivers of dynamical niches, as seen in [12, 16, 53], dynamics cannot be “averaged” over but
become the essential link between physiology and ecology.

We regard an attractive feature of the top-down Community State model to be its direct quantitative connection to
experimentally-accessible variables, as well as its avoidance of often inaccessible interaction parameters. Instanta-
neous growth rates of individual species can be obtained from transient changes in species abundances (via e.g., 16S
sequence as proxy), and the total community biomass can be obtained by measuring total protein or total RNA as
proxies, or simply by the optical density if the culture does not aggregate. The model studied here, therefore, provides
a roadmap for the quantitative analysis of community-wide data to learn about community dynamics, going beyond
taxonomic characterization, without invoking fitting parameters. This contrasts starkly with dynamical analysis based
on commonly used bottom-up models which invariably involve a large number of unconstrained interaction param-
eters (e.g., the species interaction matrix in generalized Lotka-Volterra models, or the nutrient consumption matrix
in Consumer-Resource models). Additionally, it emphasizes intra-cycle dynamics which has been largely neglected
except for a few recent studies [16, 50, 51, 53], and gives concrete predictions, e.g., on the growth rate and duration of
early vs late species, that can be tested directly by data. In this sense, the Community State model is a phenomenolog-
ical model that can be updated directly from data.

Our approach shares common elements with other top-down approaches like the Stochastic Logistic Model [54, 55]
and recent data-driven models [56, 57] without explicit interspecies interactions. While these other models attribute
growth rate fluctuations to external factors, our model focuses on endogenously-driven environmental change. Our
model can be extended to incorporate external fluctuations that randomly perturb growth niches, either across hosts or
across cycles, predicting various abundance distributions as in [54]. However, a key distinction is that our approach
imposes closure conditions on growth rate variations in repeated cycles needed for stable but dynamic coexistence.

The key idea in our work is the existence of global community states that can be sensed by microbes in that community.
Our results suggest that it would be advantageous for organisms to use this information to adjust their behavior and
grow in specific community states since such regulation would maximize their chance of survival in the community.
For example, organisms occupying early phases of the cycle may benefit from limiting their own growth so as not to
eliminate other species active later in the cycle, as late species could be important for the survival of all species in later
phases of the cycle – as is the case for acid-induced stress relief [16], the early blooming acid-producing sugar eater is
rescued from death by the late-blooming acid consumer which removes the excreted acid and restores the environment.

A more speculative aspect of the Community State model is that the sequence of community states can be parameter-
ized by a one-dimensional eco-coordinate (as opposed to environmental factors or abundances of individual species).
A further assumption that allowed for deriving quantitative coexistence criteria and relating them to empirical data is
that community biomass can serve as this coordinate parameterizing the sequence of community states. We believe
this hypothesis is biologically plausible: First, a number of key physiological parameters, e.g., pH, oxygen content,
waste products, and iron availability, change with the accumulation of community biomass [58], and the values of
these parameters to cause transitions in the physiological states of individual organisms are known. Other physiologi-
cal effects such as lag time and cell death might introduce limitations for our framework that require further study [50,
51, 59]. Second, it is known that several autoinducers are produced and sensed by a wide range of both gram-positive
and gram-negative bacteria [60–62]. In fact, AI-2 has been proposed to serve as a “universal signal” for inter-species
communication [63–65]. Third, it is common for microbes to develop sensors to detect important features of their
environment [66–69]; as total community biomass is clearly an important dynamical variable that can be used to fore-
cast the fate of the community (e.g., how close to the carrying capacity), it would not be surprising if organisms have
evolved various proxy schemes to sense the total biomass. As bacteria feature multiple sensors and regulatory pro-
cesses, they may detect various (and possibly distinct from other species) aspects of the global state of the community
and integrate the available information through diverse regulatory mechanisms. Thus, community biomass may be
viewed as a simplified description to summarize the effects of the different sensors.
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The defining feature of the Community State model is the ability of organisms in a community to sense common fea-
tures of the community and their ability to modulate their own physiology in response to such community-wide signals.
Indeed, the existence of a group of organisms that can sense and respond to common features in the environment may
be taken as a key characteristic that defines a “community”.
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Methods

All numerical results in Figs. 1 and 2 were obtained by simulations performed in Matlab (code available at
https://github.com/avaneeshnarla/dynamic-metabolic). All other results were obtained using simulations performed
in Python 3 using forward Euler integration. For the results in Fig. 4, the integration was performed in time with a
growth period of 20 units and a time resolution of 0.001 units. For Fig. 5, the integration was performed in the normal-
ized biomass coordinate (η) ranging from 0 to 1, with a resolution of 0.001 units distributed evenly between the niches
(such that each niche required the same number of forward integration steps). The initial population abundances in all
cases were random fractions of δ · ρmax

tot , a dilution of the maximum biomass attainable by the population as per our
model. Random numbers were drawn from a uniform distribution using Python 3’s Random package.
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Figure S1: Growth transitions arising in oxygen depletion and diauxic shift. Illustrations are made for two species,
A (red) and B (blue), whose growth rates, rA and rB , respectively, vary due to changes in the concentrations of
nutrients or toxins in the common media due to a variety of interactions. Growth curves are shown as red and blue
solid lines in the middle column, with nutrient/toxin concentrations shown as green dashed or dotted lines. Growth
rates are plotted against the accumulated total biomass density in the right column. A. Species A grows faster than
B aerobically. However, after the depletion of oxygen, only B continues to grow anaerobically, although at a slower
rate. B. Species A grows faster than B on nutrient 1. Species A stops growing after the depletion of nutrient 1 but
B continues to grow on nutrient 2 after a classic diauxic shift, reflected by a lag in the growth curve (middle column
of panel B). Note that when plotting the growth rate against the total biomass accumulated in the community, the lag
does not show up as there is no biomass accumulation during this period. More such examples are provided in Fig. S2
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Figure S2: Growth transitions arising in antibiotic inhibitions, detoxification, and quorum-sensing. Illustrations
are made for two species, A (red) and B (blue), whose growth rates, rA and rB , respectively, vary due to changes
in the concentrations of nutrients or toxins in the common media due to a variety of interactions. Growth curves are
shown as red and blue lines in the middle column, with nutrient/toxin concentrations shown as the green dashed or
dotted lines. Growth rates are plotted against the accumulated total biomass in the right column. A. Species A grows
faster than Species B, but Species B excretes an antibiotic which inhibits the growth of Species A when accumulated
to a sufficient level. B itself is not sensitive to the antibiotic. B. A toxin in the medium inhibits the growth of Species
B, but is consumed by Species A. After toxin removal, A continues to grow (at a moderately reduced rate) while B
can grow at a fast rate. C. Both species secrete autoinducers. After the autoinducer concentration reaches a threshold
value, B grows faster than A.
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Figure S3: Partitioning of growth rates reveals quality of coexistence. Features from growth rate dependences on η
can be understood by considering perturbations to a piece-wise linear growth rate dependence of two species as shown
in (A) and hereby denoted by (i). For all parameters, the coculture eventually arrives at a steady-cycle frequency at
the end of the cycle that does not change in subsequent cycles as shown in (B). All results indicated below are for the
steady cycle. (C,D) The variation of selection coefficient of A with initial frequency of A for different growth rate
dependences (shown in insets and labeled). If the selection coefficient is not 0 for any initial frequency, the two species
will not coexist. The effect of the perturbations can be understood more systematically in phase plots where either the
environment (in panels E,G,I) or the physiology (in panels F,H,J) of the two species is varied while holding all other
parameters constant.
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Figure S4: Biologically-motivated modifications to the Monod growth relation enlarge the coexistence region
of phase space. A. Plot showing the standard Monod Growth relation for the dependence of the growth rate on the
nutrient concentration of the medium. Two species with different constants describing the growth rates (ri and Ki)
are shown and labeled as Species A and B. B, E, and H. Plot showing the fitness of species A over species B over
one cycle after 100 cycles (common colorbar shown to the right) for different values of rA/rB and KA/KB for the
respective growth functions of each row. The black lines indicate the boundaries of the analytically determined phase
boundaries of coexistence. B. Plot showing the fitness of species A over species B over one cycle after 100 cycles
(common colorbar shown to the right) for different values of environmental parameters (the nutrient supplied at the
beginning of each growth cycle and the dilution factor). The black lines indicate the boundaries of the analytically
determined phase boundaries of coexistence. C. Plot showing the fitness of species A over species B over one cycle
after 100 cycles (common colorbar shown to the right) for different values of physiological parameters of species A,
shown as ratios rA/rB of the two growth rates and KA/KB of the two saturation constant. The black lines indicate
the boundaries of the analytically determined phase boundaries of coexistence.
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Figure S5: Assembly of complex communities can be understood by the mutual invasibility criterion for coexis-
tence. A. The growth functions of two species in competition (either of the species can be replaced by a community
with the growth rate indicating the growth rate of the entire community, averaged by the frequency of each member
of the community). This is determined entirely by the physiological parameters of the two strains. B. The ratios of
the two growth rates indicate the differential fitness within the cycle. C. The differential fitness needs to be weighted
by a resource consumption kernel, given by ω(s) which is a function of the environmental variables, s0 and δ. If the
integral of rA(s)/rB(s) curve is ≥ 1, Species A can invade the monoculture of B, and similarly for A. D. Iterative
flow maps for both Species A and species showing that if both monocultures are invadible, then one fixed point must
exist. The invasibility criteria allows one to infer the existence of a coexistence fixed point. If either monoculture is
invadable, the trivial fixed point of that monoculture is unstable. As shown in the text, only one non-trivial fixed point
can exist.
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Figure S6: Impact of disorder and relative changes in growth rate across niches on coexistence (A) Model with
exponential niche width, with the value of growth rate for each diagonal entry (i.e., during the preferred niche) assigned
randomly within a range of r+, each off-diagonal entry (non-preferred niches) assigned randomly within a range of
r−. (B) The abundance of each species at the end of the stable cycle, obtained for the model parameters indicated,
with p ≡ r+/r− being the growth preference. The black lines indicate the standard deviation. (C) The fraction of
models where each species is maintained, for the same set of parameters as those indicated in the legend of panel B.
(D, E) Abundance of the surviving species for different number of niches N and different growth preferences. Panels
F, G, H are the same as panels A, B, C, except that niche widths are fixed to a constant, but the growth preference
r+/r− is varied using Eq. S123
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Figure S7: Average Fraction of Surviving Species with Kn = M : The plot shows the average fraction of surviving
species in a chemostat model where the number of resources consumed per species (Kn) is held constant. The survival
fractions are plotted against varying numbers of resources consumed per species (M ). Each line represents a different
total number of species/resources (N ). The solid black line is 1/M .
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Figure S8: Average Fraction of Surviving Species with Ks = M : The plot shows the survival fractions of species un-
der the condition where the number of species consuming each resource (Ks) is constant. The plot shows how species
survival varies with the change in the number of resources consumed per species (M ). Different lines correspond to
different total numbers of species/resources (N ). The solid black line is 1/M .

S2 Supplementary Text

S2.1 Context on the Competitive Exclusion Principle

The Competitive Exclusion Principle (CEP) states that complete competitors cannot coex-
ist [hardin1960competitive]. The statement originates with Volterra who used a mathematical model
to demonstrate that two species whose growth is limited by the same resource cannot coexist in-
definitely [volterra1928variations]. This idea was further explored, developed, and disseminated
by Lotka [lotka1978growth], Gause [gause2019struggle, gause1934experimental], and Hutchin-
son [hutchinson1957population]. Subsequent theoretical work by MacArthur, Levins, and oth-
ers [macarthur1964competition, macarthur2016theory, levins1968evolution, rescigno1965competitive]
extended the CEP to state that, in general, there can be no more species than resources.

The CEP is also closely tied to the notion of an ecological niche [grinnell1904origin, grinnell1917niche]
and is alternatively stated as “No two species can indefinitely continue to occupy the same ecological
nich” [slobodkin1961growth]. Levin showed that two species cannot occupy a niche (defined as the hy-
pervolume where the dimensions are environmental conditions and resources, following Hutchinson’s defini-
tion [hutchinson1957population]) unless their limiting factors (for example, nutrients) differ and are indepen-
dent [levin1970community]. This echoes MacArthur when he says that the proper statement of the CEP is
that “species divide up the resources of a community in such a way that each species is limited by a dif-
ferent factor.” [macarthur1958population]. We must note that this holds for both biotic and abiotic fac-
tors [volterra1928variations, macarthur1964competition, levins1968evolution, levin1970community].

All the attempts described above contained the assumption that the specific growth rates of the competing species are
linear functions of resource or factor densities [armstrong1980competitive]. Further, most attempts (with the excep-
tion of Levin [levin1970community]) only considered coexistence at fixed densities. In fact, it can be shown that coex-
istence at fixed densities is limited by the number of resources the species can grow on [armstrong1980competitive],
regardless of the form of the growth rates. When both these constraints are simultaneously relaxed, many species can
coexist on a few biotic resources [koch1974competitive, mcgehee1977some, armstrong1980competitive]. A key
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result was provided by Levins who showed that the number of effective resources is the number of original resources
plus the number of distinct non-linearities in the system [levins1979coexistence].

Constructive examples rely on the periodic solutions of the Lotka-Volterra model [volterra1928variations] and differ-
ent points of saturation in the non-linearities of the specific growth rates (we note that nonlinear saturating functional
responses are more biologically accurate than linear growth rates [holling1959components]). For the case of abiotic
resources, Smale showed that that the ordinary differential equation commonly used to describe competing species are
compatible with any dynamical behavior provided the number of species is greater than three [smale˙1976]. Follow-
ing this, systems have been constructed that have periodic orbits [armstrong1976coexistence] with more than three
species. Even chaotic behavior has been observed for the case of essential nutrients [huisman1999biodiversity].
However, such constructed examples require a large number of species and/or nutrients, need to be carefully con-
structed, and there is no evidence that they occur naturally. Concurrently, in the 1970s, the importance of non-
equilibrium interactions of competing populations in establishing species diversity was emphasized in several investi-
gations [huston1979general] (See Chapter 15 of [mittelbach2019community]).

S2.2 Mapping between different mechanistic models for step-wise growth

S2.2.1 Base Model

We first describe the base model for the growth step of the growth-dilution cycle, and below we will map different
consumer-resource models to the base model mathematically.

We take ρA to be the population of Species A, ρB to be the population of Species B, and η to be the eco-coordinate.

˙ρA = rA(η) · ρA, (S1)

where rA(η) = rA,1 when η < ηk and rA(s) = rA,2 when η > ηk.

˙ρB = rB(η) · ρB , (S2)

where rB(η) = rB,1 when η < ηk and rB(s) = rB,2 when η > ηk.

η̇ = rA(η) · ρA + rB(η) · ρB . (S3)

η starts at 0 and ends at 1.

S2.2.2 Step-Wise Growth

We take NA to be the population of Species A, NB to be the population of Species B, and s to be the nutrient. The
consumer resource model is given by

ṄA = rA(s)NA, (S4)

where rA(s) = rA,1 when s > sk and rA(s) = rA,2 when s < sk.

ṄB = rB(s)NB , (S5)

where rB(s) = rB,1 when s > sk and rB(s) = rB,2 when s < sk.

ṡ = −rA(s)NA/YA − rB(s)NB/YB . (S6)

The environmental variables are given by s0, the total amount of nutrient supplied at first, and δ, the dilution fold.
We redefine the variables as follows:

η ≡ 1− s

s0
(S7)

ηk ≡ 1− sk
s0

(S8)

ρA ≡ NA

s0 · YA
(S9)

ρB ≡ NB

s0 · YB
(S10)

This creates an exact equivalence to the base model.
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S2.2.3 Diauxie

We take NA to be the population of Species A, NB to be the population of Species B, s1 to be the concentration of
the first nutrient consumed and s2 to be the concentration of the second nutrient consumed. The consumer resource
model is given by

ṄA = rA,1(s1)NA + rA,2(s1, s2)NA, (S11)

where rA,1(s1) = rA,1 ·Θ(s1) and rA,1(s1, s2) = rA,2 ·Θ(−s1) ·Θ(s2). Θ is the Heaviside step-function

ṄB = rB,1(s1)NB + rB,2(s1, s2)NB , (S12)

where rB,1(s1) = rB,1 ·Θ(s1) and rB,1(s1, s2) = rB,2 ·Θ(−s1) ·Θ(s2).

ṡ1 = −rA,1(s1)
NA

YA · Y1
− rB,1(s1, s2)

NB

YB · Y1
. (S13)

ṡ2 = −rA,2(s2)
NA

YA · Y2
− rB,2(s1, s2)

NB

YB · Y2
. (S14)

The environmental variables are given by s10 and s20, the total amount of nutrients supplied at first, and δ, the dilution
fold.
We redefine the variables as follows:

η ≡
{
1− Y1·s1+Y2·s20

(Y1·s10+Y2·s20)
, s1 > 0

1− Y2·s2
(Y1·s10+Y2·s20)

, s1 = 0
(S15)

ηk ≡ 1− Y1 · s10
(Y1 · s10 + Y2 · s20)

(S16)

ρA ≡ NA

YA · (Y1 · s10 + Y2 · s20)
(S17)

ρB ≡ NB

YB · (Y1 · s10 + Y2 · s20)
(S18)

This gives us that:

˙ρA = rA(η)ρA, (S19)

where rA(η) = rA,1 ·Θ(ηk − η) and rA(η) = rA,2 ·Θ(η − ηk) ·Θ(1− η).

˙ρB = rB(η)ρB , (S20)

where rB(η) = rB,1 ·Θ(ηk − η) and rB(η) = rB,2 ·Θ(η − ηk) ·Θ(1− η).

η̇ = rA(η)ρA + rB(η)ρB . (S21)

This creates an exact equivalence to the base model.

S2.2.4 Oxygen Depletion

We take NA to be the population of Species A, NB to be the population of Species B, s to be the concentration of the
nutrient, and x to be the concentration of oxygen. The consumer resource model is given by

ṄA = rA(s, x)NA, (S22)

where rA(s, x) = rA,1 ·Θ(x) + rA,2 ·Θ(−x) ·Θ(s).

ṄB = rB(s, x)NB , (S23)

where rB(s, x) = rB,1 ·Θ(x) + rB,2 ·Θ(−x) ·Θ(s).

ṡ = −rA(s, x)NA/YA − rB(s, x)NB/YB . (S24)

ẋ = (−rA,1 ·
NA

YA · Yx
− rB,1 ·

NB

YB · Yx
)Θ(x). (S25)
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The environmental variables are given by s0 and x0, the total amount of nutrient and oxygen supplied at first, and δ,
the dilution fold. For oxygen to deplete first, we need x0 < s0 · Yx

We redefine the variables as follows:

η ≡ 1− s

s0
(S26)

ηk ≡ 1− x0

s0 · Yx
(S27)

ρA ≡ NA

s0 · YA
(S28)

ρB ≡ NB

s0 · YB
(S29)

This creates an exact equivalence to the base model.

S2.2.5 Quorum Sensing

We take NA to be the population of Species A, NB to be the population of Species B, s to be the concentration of the
nutrient, and q to be the concentration of autoinducer. The consumer resource model is given by

ṄA = rA(s, x)NA, (S30)
where rA(s, x) = rA,1 when q < qk, rA,2 when q > qk, and 0 when s = 0.

ṄB = rB(s, x)NB , (S31)
where rB(s, x) = rB,1 when q < qk, rB,2 when q > qk, and 0 when s = 0.

ṡ = −rA(s, x)NA/YA − rB(s, x)NB/YB . (S32)

q̇ = rA,1 ·
NA

YA · Yq
+ rB,1 ·

NB

YB · Yq
. (S33)

The environmental variables are given by s0, the total amount of nutrient supplied at first, and δ, the dilution fold. For
the autoinducer to accumulate first, we need qk < s0 · Yq

We redefine the variables as follows:

η ≡ 1− s

s0
(S34)

ηk ≡ 1− qk
s0 · Yq

(S35)

ρA ≡ NA

s0 · YA
(S36)

ρB ≡ NB

s0 · YB
(S37)

This creates an exact equivalence to the base model.

S2.2.6 Acid Stress

We take NA to be the population of Species A, NB to be the population of Species B, s to be the concentration of the
nutrient, x to be the concentration of acid, and p to be the concentration of pyruvate. The consumer resource model is
given by

ṄA = rA(s, x, p) ·NA, (S38)
where rA(s, x) = rA,1 when x < xc, rA,2 when x > xc, and 0 when s = 0.

ṄB = rB(s, x, p) ·NB , (S39)
where rB(s, x) = rB,1 when x < xc, rB,2 when x > xc, and 0 when s = 0.

ṡ = −rA · NA

YA · Ys
. (S40)

ẋ = rA · NA

YA · Yx
· fx − rB · NB

YB · Yx
. (S41)

ṗ = rA · NA

YA · Yp
· fp − rB · NB

YB · Yp
. (S42)
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such that fx + fp < 1 and the fractions of the nutrient consumed that Species A converts to acid and pyruvate. The
environmental variables are given by s0, the total amount of nutrient supplied at first, and δ, the dilution fold. We
redefine the variables as follows:

η ≡ 1− Ys · s+ Yx · x+ Yp · p
Ys · s0

(S43)

ρA ≡ NA

s0 · YA
(S44)

ρB ≡ NB

s0 · YB
(S45)

All that remains to resolve is the question of ηk since in the actual system, it is only given by the acetate concentration,
xc. However, we can take xc to be a function of η if s(t) ∝ x(t):

η(x = xc) ≡ 1− Ys · s(xc) + Yx · xc

Ys · s0
(S46)

In reality,

s(t) = NA · (exp(rA,1 · t)− 1) · 1

YA · Ys
(S47)

x(t) = NA · (exp(rA,1 · t)− 1) · 1

YA · Yx
−NB · (exp(rB,1 · t)− 1) · 1

YB · Yx
(S48)

= s(t) · Ys

Yx
− NB

YB · Yx
· (exp(rB,1 · t)− 1) (S49)

= s(t) · Ys

Yx
− NB

YB · Yx
·
(
YA · Ys · s(t)

NA

)rB,1/rA,1

(S50)

Thus, s(t) ∝ x(t) if rB,1 ≪ rA,1 (or NB ≪ NA). This creates an exact equivalence to the base model.

S2.3 Rescaling

Here, we discuss the rescaling of the time spent in each phase/niche and the transition points in the piece-wise linear
models discussed in the paper. The rescaling of the transition points amounts to a redefinition of the units with ρmax

tot
declared to be 1, with an appropriate normalization of all transition points by ρmax

tot . For the many species model, we
additionally define a parameter, η ≡ (ρtot/ρ

max
tot −δ)/(1−δ), for simplification of the results such that the cycle starts at

η = 0 and ends at η = 1. For rescaling the time spent in each phase, we first note that in the limit of large time between
dilution events, there is no activity once the system reaches the total biomass density of the system reaches ρmax

tot . Thus,
we may ignore the timescales associated with dilution. Next, we consider the dynamics within niche/phase, n:

d

dt
ρ(j)α = rα,n · ρ(j)α (t) for ηn−1 ≤ η ≤ ηn−1. (S51)

The dynamics in this interval is essentially independent of every other phase as the system is autonomous in time.
Thus we may define, for example, the dimensionless time, τn ≡ t · ⟨αrα,n⟩α ̸=α(n). Hence, rescaling t by τn, we
obtain that the dynamics of ρ(j)α in niche n given by

d

dτn
ρ(j)α =

rα,n
⟨αrα,n⟩α̸=α(n)

· ρ(j)α (t) for ηn−1 ≤ η ≤ ηn−1. (S52)

This allows us to define pn ≡ rα,n

⟨αrα,n⟩α ̸=α(n)
. Thus, in the cases without noise described in this manuscript, each niche

is effectively described by one number: the domination of the fast-growing species in niche n over the slow-growing
species.

S2.4 Mathematical Results for the Simple Toy Model

Though we have shown that two species may coexist in growth-dilution cycles, understanding the dynamics of the
co-culture system mathematically can be significantly difficult because of the non-linear growth rates involved. To
simplify the system, we consider a piece-wise linear approximation of the system (as shown in Fig. 3A). In this Toy
Model, we take Species A to grow at a constant rate rA,1 and Species B at rB,1 while biomass values are above a
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threshold sk (we call this the first phase and call the time taken to complete it τ1). And in the 2nd phase (biomass
from 0 to ηk, taking time τ2), we take Species A to grow at rA,2 and Species B at rB,2 (this toy model is described in
Fig. 3A). When biomass reaches ρmax

tot , we assume that both species stop growing.

If two species coexist in such a system, it implies that the net growth rate is the same over the steady-state cycle, i.e.,

rA,1τ1 + rA,2τ2 = rB,1τ1 + rB,2τ2 = − log δ. (S53)

We call the time taken to complete the first phase, τ1, and the time taken to complete the second phase, τ2. If two
species coexist in such a system, it implies that the net growth rate is the same over the steady-state cycle, i.e.,

rA,1τ1 + rA,2τ2 = rB,1τ1 + rB,2τ2 = − log δ. (S54)

For our purposes, we assume that the time between dilution steps, T , is longer than τ1 + τ2. We note that as long
as there is a trade-off in the growth rates (such that neither species is growing faster than the other species at all
biomass values), there exists a positive τ1 and τ2 that can solve Eq. S53. However, Eq. S53 is also coupled with a
set of equations describing the biomass increase that feature the populations of both species, ρA(0) and ρB(0), at the
beginning of the cycle:

ρtot,c − δ · ρmax
tot = (erA,1τ1 − 1)ρA(0) + (erB,1τ1 − 1)ρB(0), (S55)

ρmax
tot − ρtot,c = (erA,2τ2 − 1)erA,1τ1ρA(0) + (erB,2τ2 − 1)erB,1τ1ρB(0). (S56)

We obtain the equations above as the total amount of biomass produced by both species must be ρtot,c − δ · ρmax
tot in the

first phase (as the co-culture starts with biomass of δ · ρmax
tot after dilution by a factor of δ from the maximal biomass

value of ρtot, and ρmax
tot − ρtot,c in the second phase. The solution to Eq. S55-Eq. S56, however, may not yield a viable

positive solution for ρA(0) and ρB(0). For viable solutions, we require that the two species must necessarily engage
in resource sharing in the steady-state cycle described by τ1 and τ2 that solve Eq. S53, as otherwise they would not
be able to accumulate all of the biomass by themselves. If any resources remain unconsumed in a monoculture (say
of Species A), a very small population of Species B can consume the remaining resources and grow more than the
dilution fold. Eventually, the very small population grows larger and the factor of growth decreases until both species
grow at the dilution fold.

Thus, to get ρA(0) > 0, we must have (assuming rA,1 > rB,1 > 0, rB,2 > rA,2 > 0):

ρA(0) > 0 ⇐⇒ ρtot,c − δ · ρmax
tot︸ ︷︷ ︸

Biomass produced in phase 1

> (erB,1τ1 − 1)︸ ︷︷ ︸
Net Growth of B in τ1

· δρmax
tot︸ ︷︷ ︸

Max population of B at start of phase 1

(S57)

And similarly, requiring that ρB > 0, we have that

ρB(0) > 0 ⇐⇒ ρtot,c − δ · ρmax
tot︸ ︷︷ ︸

Biomass produced in phase 1

< (erA,1τ1 − 1)︸ ︷︷ ︸
Net Growth of A in τ1

· δρmax
tot︸ ︷︷ ︸

Max population of A at start of phase 1

(S58)

Or by looking at phase 2,

ρB(0) > 0 ⇐⇒ ρmax
tot − ρtot,c︸ ︷︷ ︸

Biomass produced in phase 2

> (erA,2τ2 − 1)︸ ︷︷ ︸
Net Growth of A in τ2

· δρmax
tot · erA,1τ1

︸ ︷︷ ︸
Max population of A at start of phase 2

(S59)

But Eq. S57 and Eq. S58 are just saying that resource sharing must be possible for the necessary τ1 as we require
that the resources consumed by the co-culture in τ1 be greater than the resources that a monoculture of B would have
consumed, and less what a monoculture of A would have consumed (we need the second requirement as otherwise
you do reach phase 2 before τ1, and thus you cannot have coexistence). Similarly, we get that the resources in phase
2 should be more than the monoculture of A could consume on its own. In fact, if we add up the two conditions, we
get that you need resource sharing of total biomass must be possible). We note that both Eq. S57 and Eq. S58 are not
necessarily true (trivially, we can move ρmax

tot − ρtot,c so that either Eq. S57 or Eq. S58 are not satisfied as the RHS is
independent of ρmax

tot − ρtot,c). Thus, only certain monocultures permit resource sharing. Further, we note that the ones
that do, are stable since if there’s resources that could be consumed that a monoculture cannot consume, it allows for
invasion that can grow in a time period given by matrix inversion.

We now solve for ρA(0) and ρB(0) that satisfy Eq. S53-S56. First, from Eq. S53, we obtain,

τ1 = − log δ ·
(

rA,2 − rB,2

rB,1 · rA,2 − rB,2 · rA,1

)
(S60)

= log(1/δ) · 1

rB,1

(
pB − 1

pA · pB − 1

)
. (S61)
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And similarly, we obtain

τ2 = − log δ ·
(

rA,1 − rB,1

rA,1 · rB,2 − rA,2 · rB,1

)
= log(1/δ) · 1

rA,2

(
pA − 1

pA · pB − 1

)
. (S62)

We note that this value is independent of ρtot,c and ρmax
tot . To obtain the steady-state values of ρA(0) and ρB(0), which

we denote with ρ∗A and ρ∗B (note that ρ∗A + ρ∗B = δ · ρmax
tot ), we use Eq. S55-S56 to obatin

ρtot,c − δ · ρmax
tot = (erA,1τ1 − 1)ρ∗A + (erB,1τ1 − 1)(δρmax

tot − ρ∗A) (S63)

=⇒ ρ∗A =
ρtot,c − erB,1τ1δρmax

tot

erA,1τ1 − erB,1τ1
(S64)

=
ηc − δ

pA−1

pA−1/pB

δ
1−pB

pB−1/pA − δ
1−pB

pA·pB−1

· ρmax
tot , (S65)

and similarly,

ρ∗B =
ρtot,c − erA,1τ1δρmax

tot

erB,1τ1 − erA,1τ1
(S66)

=
δ

pA−1

pA·pB−1 − ηc

δ
1−pB

pB−1/pA − δ
1−pB

pA·pB−1

· ρmax
tot . (S67)

Thus, while there is a non-trivial dependence on δ, pA, and pB , there is a linear dependence on ηc and ρmax
tot . Below,

we explore the non-trivial dependence on pA, and pB . This analysis also tells us that there can only be one viable
non-trivial solution for ρ∗A and ρ∗B (in other words, there can only be one non-trivial fixed point for the discrete map
given by one growth-dilution cycle). This is why the complete system at steady-state can be understood by studying
the trivial fixed points (i.e., the respective monocultures) as if both trivial fixed points are unstable to invasion, the
system must have a non-trivial fixed point. Further, we can show that if it exists, the non-trivial fixed point must be
stable. Intuitively, this is because if the frequency of Species A is increased, the amount of time it would take for
the population to produce all of the allocated biomass in its preferred phase will be shorter, thus harming Species A.
Similarly, the amount of time it would take for the population to accumulate all of the biomass in the phase that it is
growing slower will be longer, once again harming Species A. Thus, there can only be one stable fixed point in the
system.

We note that this method can be extended to many species and many phases as well. While it can be difficult to infer
the final solution as it requires solving a system of transcendental equations of many variables, this approach does
tell us that there can be exactly one solution for {ρ∗α}. This is because there is an unknown variable for each species
(ρ∗α), and a corresponding equation (similar to Eq. S53) for each species. While this system of equations for each
species features an unknown variable for each phase (τi), the equations for resource constraints provide another set
of equations for each τi (which is the transcendental system of equations). Thus, unless the system of transcendental
equations produces a degeneracy for τi, there is exactly one {ρ∗α} that solves the system of equations.

S2.5 Negative frequency-dependent selection in growth-dilution cycles

Here, we discuss the stabilizing mechanism for coexistence in growth-dilution cycles. We may understand this by
considering only the dynamics of frequency of one species, say Species A, denoted by x(t):

x(t) ≡ ρA(t)

ρA(t) + ρB(t)
. (S68)

By changing variables in Eq. S1, we arrive at the following equation for the dynamics of x:

ẋ = (rA − rB) · x · (1− x). (S69)

This is the logistic growth equation with time-varying growth rates. This gives us that the frequency of Species A at
the end of the cycle, x(T ), given that its frequency at the beginning of the cycle is x0, is

x(T ) =
x0

x0 + (1− x0)e−q(x0)
, (S70)

where q(x0) is the average fitness of Species A over Species B over one cycle:

q(x0) =

∫ T

0

(rA(s(t))− rB(s(t)))dt. (S71)
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This shows that x(T ) is uniquely determined by x0 as s(t) can be uniquely determined by solving the initial value
problem given in Eq. S1-Eq. S3. Further, from Eq. S70 we note that the change in frequency of A, x(T )− x0, has the
same sign as q(x0), and x(T ) = x0 ≡ x∗ if q(x∗) = 0. This just reiterates that the frequency of A will be determined
by its average relative fitness over one cycle. Such a point, x∗ would be a fixed point of the map that describes how
the frequency changes over one cycle, x0 → x(T ), since for x = x∗, the frequency doesn’t change.

Thus, the dynamical behavior of the growth-dilution cycle is determined by q(x0). While determining q is very difficult
as we cannot know s(t) without solving the dynamical system given by Eq. S1-Eq. S3, we can show that q′ < 0 for all
x0 (Section S2.5.2). This shows that q = 0 for at most one value of x0 and allows us to construct a Lyapunov function,

V (x) =

∫ x∗

x

q(x′)dx′. (S72)

If no x∗ exists such that q(x∗) = 0, x∗ can be taken to the value closest to 0 (which is necessarily unique as q′ < 0).
As verified in Section S2.5.2, V (x) fits all the requisite criteria for a discrete-time strict Lyapunov function that leads
to global asymptotic stability. Thus, for any two growth dependences, the system always relaxes to the same steady
state.

This result that q′ < 0 can be restated as saying that the average fitness of a species has a negative frequency depen-
dence in growth-dilution cycles. This result holds for all rA and rB . Further, the magnitude of q′ reveals how stable
the system is. If q′ is very large, then the system quickly converges to the fixed point (Fig. 3G). A greater negative
value of q′ indicates that the difference in growth rates is much larger than the mean growth rate. We note that this is
the case when the growth dependences are highly non-linear.

S2.5.1 Stabilization of Resource Trajectories

A different perspective on the stabilizing nature of resource sharing can be obtained by looking at the trajectory that
the co-culture traverses in the space of environmental variables. The key feature in the consumer-resource models that
we use is that the trajectory is determined by the growth of the species. This is because the populations affect the
environment through growth (either by consuming resources or secreting pollutants). Let us consider perturbations
to the resource trajectory corresponding to a fixed point. Higher growth during a section of the trajectory means
faster movement along the trajectory and less time spent at that section. But growth is also proportional to the time
spent along the resource trajectory. Conversely, slower growth means more time at that section and thus the initial
perturbation is countered. This leads to negative feedback for growth and, as a result, for resource change, thus
stabilizing the resource trajectory. For the case of many environmental variables, movement along the trajectory can
be projected onto the axis corresponding to each environmental variable, and the trajectory along each environmental
variable can be considered independently. As movement along each projection is stabilized independently (such that at
every point in time, there is a unique stable value of each environmental coordinate), the entire trajectory is stabilized.

A similar understanding can be obtained by considering perturbations in the resource trajectory itself rather than
perturbations in growth as we did above. A perturbation in the resource trajectory will either slow down or speed up
growth, and this perturbation in growth will counteract the original perturbation in the resource trajectory.

However, this stabilization is local along every point on the resource trajectory, while coexistence is a global property
of the entire trajectory. In other words, a negative frequency dependence of fitness does not mean that fitness ever has
to be negative. Coexistence requires that each species have a negative fitness over the other species for some frequency,
especially when it is abundant. This leads us to a simple necessary and sufficient criterion for coexistence: mutual
invasibility (discussed in Section S2.6.

S2.5.2 Proof of Negative Frequency Dependence

Consider the frequency of Species A,

xA =
ρA∑
α ρα

(S73)
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Taking the time derivative, we have that

ẋA =
˙ρA ·∑α ρα − ρA ·∑α ρ̇α

(
∑

α ρα)2
(S74)

=
rA · ρA ·∑α ρα − ρA ·∑α rAρα

(
∑

α ρα)2
(S75)

=
rA · ρA ·∑α̸=A ρα − ρA ·∑α̸=A rαρα

(
∑

α ρα)2
(S76)

=
rA · ρA ·∑α̸=A ρα − r̄ · ρA ·∑α ̸=A ρα

(
∑

α ρα)2
(S77)

where r̄ ≡
∑

α ̸=A rαρα∑
α ̸=A ρα

=

∑
α̸=A rα · xα

1− xA
. (S78)

= (rA − r̄) · xA · (1− xA) (S79)

Thus, for any time t, we have that

xA(t) =
x0
A

x0
A + (1− x0

A)e
−q(x0

A,t)
(S80)

where x0
A = x(t = 0) and

qA({x0
A}, t) =

∫ t

0

(rA − r̄)dt (S81)

This gives us that

xA(T ) =
x0
A

x0
A + (1− x0

A)e
−qA(x0

A,T )
. (S82)

Since this calculation holds for all species, we have a map from the species population at the beginning of the cycle to
the species population at the end of the cycle. We define the Lyapunov function, V , such that

VA({xα(0)}) ≡
∫ {x∗

α}

{xα(0)}
qA({xA}, T ) · d({xA}). (S83)

For discrete time dynamics, the requirement for global convergence to {x∗
α} is that VA({x∗

α}) = 0 (by definition),
VA({xα(0)}) > 0, and VA({xα(T )})− VA({xα(0)}) < 0 [bof2018lyapunov]. We note that

VA({xα(T )})− VA({xα(0)}) = −
∫ {xα(T )}

{xα(0)}
qA({xA}, T ) · d({xA}) (S84)

But d({xA}) has the opposite sign as qA({xA}, T ) (as if xA(T ) > xA(0), then qA > 0) and thus the last requirement
is also satisfied. All that is left for us to demonstrate convergence is to show that V is positive. We do so by showing
that ∇2V < 0. This requires that

∂qA({xA}, T )
∂x0

A

< 0 (S85)

⇐⇒ ∂qA({xA}, T )
∂xA

∂xA

∂x0
A

< 0 (S86)
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But ∂xA

∂x0
A
> 0 if ∂qA({xA},T )

∂xA
< 0 so it suffices to show that

∂qA({xA}, T )
∂xA

< 0 (S87)

⇐⇒ 0 >

∫ s(t)

s(0)

∂

∂xA

rA(s)− r̄(x, s)

ds/dt
ds (S88)

⇐⇒ 0 >

∫ s(0)

s(t)

∂

∂xA

rA − r̄∑
rαρα

ds (S89)

⇐⇒ 0 >

∫ s(0)

s(t)

−r̄′ · (∑ rαρα)− (rA − r̄)(
∑

rαρα)
′

(
∑

rαρα)2
ds (S90)

⇐⇒ 0 >

∫ s(0)

s(t)

−r̄′ · (rA · x+ r̄ · (1− x))− (rA − r̄)(rA · x+ r̄ · (1− x))′

(
∑

rαρα)2/(
∑

ρα)
ds (S91)

⇐⇒ 0 >

∫ s(0)

s(t)

r̄′ · (rA · x+ r̄ · (1− x)) + (rA − r̄)(rA + r̄′ · (1− x)− r̄)

(
∑

rαρα)2/(
∑

ρα)
ds (S92)

For the case of two species, r̄′ = r′B = 0. Thus, the condition is satisfied.

S2.5.3 Unique Fixed Point for Discretized Growth Functions

Assume that the range of ρtot can be discretized into N niches such that each species α (out of M total species) has a
constant growth rate rα,n in niche n < N . If there is a stable steady state, then

N∑

n

rα,nτn = − log δ, ∀α. (S93)

where τn is the time spent by the community in niche n in the steady cycle. Further, for each niche n, we have the
following constraint:

ηn =
∑

α

ρ∗α(0) exp(
∑

i<n

rα,iτi)(exp(rα,nτn)− 1), (S94)

where ρ∗α(0) is the steady cycle population density of species α at the beginning of the cycle. Eq. S93 and Eq. S94
thus give us N +M constraints for the N +M unknown variables (taun and ρ∗α(0)). Thus, unless there is a strong
degeneracy such that the transcendental equation in Eq. S94 yields multiple possible solutions (for example, if rα,n is
the same for all α in each niche n), there can only be one solution to the system of equations Eq. S93 and Eq. S94.

S2.5.4 Existence of non-trivial solutions can be inferred by mutual invasibility

Inferring when a possible frequency exists such that q = 0 can be very complicated because the time dependence
of the growth rates cannot be inferred without solving the ODEs numerically. However, because we know there is a
negative frequency dependence, we can infer if such an x∗ exists by asking what the values of q(0) and q(1) are. If
q > 0 for all x, that would mean that Species A always has a fitness advantage over Species B. Similarly, if q < 0 for
all x, that would mean that Species B always has a fitness advantage over Species A.

The ability to understand the necessary and sufficient conditions for coexistence by considering only the cases that
either species is present (as x = 0 is the case when only Species B is present, and x = 0 is the case when only Species
A is present) is very valuable when studying systems with non-linear growth rates. The study of these cases, also
known as invasion analysis, is ordinarily sufficient to demonstrate coexistence. But because of the result that q′ < 0,
it is also necessary.

For our case, mutual invasibility can be verified without any numerical simulations. This is because the condition
q = 0 can be written as E(rA/rB) > 1, where E(·) is the time-averaged expectation value. Mathematically, E(·) is
the integral of the argument from the lowest biomass value to the highest biomass value attained in the monoculture,
weighted by ω(s) ≡ [− log δ · ( n0

1−δ −s)]−1. ω(s) is the equivalent of the partition function for biomass accumulation.

Similarly, q(1) < 0 can we written as E(rB/rA) > 1. If both monocultures are invadable, then there necessarily is
coexistence.1

1This also allows us to see that there cannot be bistability, as that would require that E(rA/rB) < 1 and E(rB/rA) < 1 but
E(rA/rB) + E(rB/rA) > 2 for all rB and rA as x+ 1/x > 2 for all x > 0.
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This criterion provides a general intuition of when there is coexistence: when both rA/rB and rB/rA are large for
different parts of the growth step, both monocultures are invadable and there is coexistence. Thus, we need a range of
biomass values when A grows much faster than B, and a range when B grows much faster than A. Various trade-offs
can facilitate such a separation of biomass ranges, as does the strength of the non-linearity. This indicates to us why
coexistence is increased when biologically-motivated modifications are introduced.

This criterion also indicates when interactions between two species can facilitate coexistence: when the interactions
between two species lead to the initially slower-growing species eventually growing faster than the initially faster-
growing species. This is highlighted in Amarnath et al. [amarnath2021stress] showing how stress-induced cross-
feeding leads to stable coexistence in a marine co-culture. Species A grows faster than Species B initially, but then
pollutes its environment by secreting acetate as a by-product of growth. This pollution leads to the supression of its
own growth and the leakage of metabolites. Species B can thus consume these metabolites to grow. Thus, this leads
to the creation of periods when A grows much faster than B, and a period when B grows much faster than A. Though
the experiment was performed in growth-dilution cycles, in natural settings the periodic supply of food describes a
very similar dynamic in the system. The experimental result was surprising because if the coexistence were due to the
standard picture of commensal/mutualistic cross-feeding where one species steadily secretes a metabolite consumed
by the other, there would be no coexistence for this pair of species as under ideal conditions, one species always grows
faster than the other.

Thus, this mutual invasibility criterion provides a counter-point to the standard conception of coexistence due to
mutualism in which both species promote each others’ growth. In time varying environments, both species can end
up limiting their own growth rates and thus coexist. This suggests that self-organized mechanisms by which species
inhibit their own growth may facilitate coexistence.

S2.6 Mutual invasibility criterion

Here, we derive the criterion presented in Eq. 3. Let’s consider a monoculture of Species A with a minimal amount of
Species B such that (ρ(j)A (0), ρB(0)) = (ρ0A, ϵ) and ρ0A ≫ ϵ. Thus,

log
ρ
(j+1)
B (0)

ρ
(j)
B (0)

=

∫ T

0

rB(ρtot(t)) · dt+ log δ (S95)

Since ρtot is monotonic in t, we can substitute t with ρtot

=

∫ T

0

rB(ρtot) · dρtot

dρtot/dt
+ log δ (S96)

=

∫ ρmax
tot

ρ0
A+ϵ

rB(ρtot)

rA(ρtot) · ρ(j)A (t)(ρtot) + rB(ρtot) · ρ(j)B (t)(ρtot)
dρtot + log δ (S97)

Assuming rA(ρtot) > 0, we can always choose ϵ such that ρ(j)B (ρtot) ≪ ρ
(j)
A (ρtot), ∀ρtot, and thus ρ(j)B (ρtot) ≪ ρ

(j)
A (ρtot)·

rA(ρtot)/rB(ρtot) and ρtot = ρ
(j)
A (ρtot)

≈
∫ ρmax

tot

ρ0
A

rB(ρtot)

rA(ρtot)

dρtot

ρtot
+ log δ. (S98)

Similarly,

log
ρ
(j+1)
A (0)

ρ
(j)
A (0)

≈
∫ ρmax

tot

ρ0
A

rA(ρtot)

rA(ρtot)

dρtot

ρtot
+ log δ = log ρmax

tot − log ρ0A + log δ (S99)

=⇒ ρ
(j+1)
A (0) = δρmax

tot . (S100)

Thus, in subsequent cycles,

log
ρ
(j+k+1)
B (0)

ρ
(j+k)
B (0)

≈
∫ ρmax

tot

δρmax
tot

rB(ρtot)

rA(ρtot)

dρtot

ρtot
+ log δ. (S101)

=⇒ log
ρ
(j+k+1)
B (0)

ρ
(j)
B (0)

≈ k

∫ ρmax
tot

δρmax
tot

rB(ρtot)

rA(ρtot)

dρtot

ρtot
+

∫ ρmax
tot

ρ0
A

rB(ρtot)

rA(ρtot)

dρtot

ρtot
+ (k + 1) log δ (S102)
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For k → ∞,

ρ
(j+k+1)
B (0) ≫ ϵ if IA,B ≡

∫ ρmax
tot

δρmax
tot

rB(ρtot)

rA(ρtot)

dρtot

ρtot
> log δ. (S103)

This is the invasibility criterion in Eq. 3. If both IA,B > log δ and IB,A > log δ, then there must be a non-trivial fixed
point of the system, and by the proof in Section S2.5, it must be stable and further, the only stable solution.
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S2.7 Continuous Growth Relations

S2.7.1 Monod Relation

A popular choice in microbiology and ecology for ri is the Monod relation [monod1949growth], also known as
the Michaelis-Menten function or the Holling’s type II functional response. It is chosen to describe growth that is
proportional to the nutrient availability at low nutrient concentrations but saturates at high nutrient concentrations to a
maximal rate.

We first consider the effect of varying the two environmental parameters, s0 and δ for Species A and B with growth
rates as described in Fig. S4A. We simulated six-hours long growth dilution cycles. In general, we find that the system
is in the vicinity of a steady-state in less than ∼ 100 cycles (our results did not change significantly for longer cycles
or for more cycles). The steady-state cycle is defined as having population densities and nutrient concentrations that
are exactly the same in consecutive cycles.

As can be seen in Fig. S4A for our choice of physiological parameters (rmax
i and Ki), Species A (shown in red) has

a higher growth rate than Species B (shown in blue) when the nutrient concentration is high (because rmax
A > rmax

B ),
while Species B has a higher growth rate when the nutrient concentration is low (because Kmax

A > Kmax
B ). Such

a trade-off is known as the opportunist-gleaner trade-off [grover1997resource]. Although the empirical existence of
such a trade-off is debated [kiorboe2020heterotrophic, letten2021gleaning, fink2022microbial], we note that in this
simplest case which has no other interactions, such a trade-off is necessary for coexistence as otherwise one species
will always have a lower growth rate than the other and thus eventually be out-competed.

In Fig. S4B, we report the average fitness (average difference in growth rate over one cycle) of Species A over Species
B after 100 cycles for different environmental parameters. A positive fitness value (denoted by red shading) indicates
that the population of Species A is driving the population of Species B down, and thus Species B will eventually be
removed from the system. A negative fitness value (denoted by blue shading) indicates that the population of Species
A is being driven down and will eventually be removed from the system, while a near-zero fitness value (denoted
by white shading) means that both species have reached a non-zero steady state population and thus will coexist
indefinitely. As can be seen and as would be expected, high nutrient supply favors the species with the higher value
of rmax

i , while low nutrient supply favors the species with the lower Ki. Similarly, a lower dilution factor favors the
species with the higher value of rmax

i as the relative amount of time spent in higher nutrient concentrations is higher.

We also report the average fitness of Species A over Species B for different physiological parameters and fixed envi-
ronmental parameters (δ = 0.1, s0 = 10KB) in Fig. S4C. As would be expected, if there is no opportunist-gleaner
trade-off, as in the top left and bottom right quadrants of the phase plot, there would be no coexistence. Further, even
if there is a trade-off, coexistence is not guaranteed as can be seen in the other two quadrants which have red, white,
and blue regions. Thus, coexistence is not a trivial consequence of the trade-off. However, there is a narrow parameter
regime of coexistence between the region where Species A dominates and where Species B dominates.

In 1972, Stewart and Levin showed mathematically that two species with an opportunist-gleaner trade-off may coex-
ist indefinitely in growth-dilution cycles (Fig. 1C).They also demonstrated that such a coexistence was “structurally
stable”, i.e., it was robust to noise in the environmental/experimental parameters (Fig. S4B). As can be seen, this
coexistence is also robust to small physiological perturbations (Fig. S4C) and there exists an entire region in the envi-
ronmental and physiological parameter phase space (shaded in white) where the two species coexist, rather than just
being a boundary between the two regions. This is a key result as it shows that this kind of coexistence is not a result
of narrow fine-tuning, but seems to incorporate stabilizing mechanisms that promote coexistence. While this was a
crucial novel result, it has been mostly dismissed in literature [grover1997resource], due to the relatively small region
of coexistence in parameter phase space. However, as we will see below, this region of coexistence is significantly
broadened when biologically-realistic effects are considered. As such, it indicates a more general emergent principle
for self-stabilized coexistence rather than serving as just a niche special case.

S2.7.2 Cut-off due to Maintenance Energy

Bacterial species require a certain minimum amount of energy, known as maintenance energy, to be able to grow. If
sufficient non-zero amount of nutrients to generate this energy are not supplied, the bacteria cease to grow. This effect
can be incorporated by subtracting a constant value of maintenance energy consumption rate, given by Ji, from the
growth rate of each species and setting the minimal growth rate to be 0 (i.e, we exclude death). This leads to the
following form for the growth rate:

ri(s) = rmax
i · s

s+Ki
− Ji. (S104)
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This expands the coexistence region of phase space considerably. In fact, for almost any two species defined by the
physiological parameters ri, Ki, and Ji, the coexistence region of the environmental phase-space occupies an entire
half-plane (see Fig. S4E). This is because at very low resource concentrations, one of the species necessarily grows,
while the other doesn’t. The species that grows at very low resource concentrations will subsequently always survive
for all environmental parameters.

The coexistence region in physiological parameter space is also extended, with species benefiting from even relatively
minor differences in resource affinities. This is because strict coexistence only requires sufficient fold change between
cycles rather than any minimal abundance.

S2.7.3 Hysteretic Growth Kinetics

We note that the Monod relation is obtained empirically for a perfectly-adapted bacterial population, i.e., the bacterial
population is grown at a static nutrient concentration and its growth rate is measured for that nutrient concentration. In
a growth-dilution cycle, the bacterial population may not have adapted to the nutrient concentration it experiences at
any instant as the nutrient concentration is constantly changing. This can be viewed as a hysteresis in the growth-rate
due to the slow adaptation of the internal state of the cells that constitute the population. Similar hysteretic effects
are modeled by the Droop model which is popular in studying algae [wang2022mathematical] and is also seen in
macroscopic organisms as a predator’s searching, attacking, or handling efficiency often empirically increases as prey
density increases. This is because the feeding response of organisms often display some form of learning behavior, as
a predator must have a minimal encounters with its prey before the predator is maximally efficient at feeding on that
prey item.

Such a growth dependence is known as a Type III functional response and is described by the Hill function Eq. S105,

ri(s) = rmax
i · sk

sk + (Ki)k
, (S105)

where k > 1 is a positive number that denotes the number of minimal encounters the consumer must have with its
food to increase its efficiency [real1977kinetics].

We note that the Monod relation is a special case of the Hill function (when k = 1), and increasing k leads to an
increase in the coexistence region of phase-space (see the case of k = 2 shown in Fig. S4D-F).

S2.7.4 Lag Time

Another effect that can be incorporated is the presence of a lag-time, such that both species do not grow for a short
period of time at the beginning of each cycle. By design, the presence of lag times benefits the species with the shorter
lag-time. This does not significantly increase (or decrease) the coexistence region of the physiological and environmen-
tal phase spaces but rather shifts it in favor of one species. We note that though previous studies [manhart2018trade]
found coexistence and bistability for species with constant growth rates and lag times in growth-dilution cycles, these
studies require the dilution step to be a bottleneck step such that the total initial population is fixed (which requires
changing the dilution amount every cycle). These studies also required very large differences in the yield (of the factor
of ∼100-1000) between the two species. In the absence of these two effects, the coexistence disappears for constant
growth rates [lin2020evolution] but persists for nonlinear growth rates.

A result that has been indicated numerically by previous studies for the case of Monod
growth [stewart1973partitioning, wortel2023evolutionary, smith2011bacterial] and is implicit in the phase
diagrams of Fig. S4 is that there is no initial condition dependence in this system. Thus, there are only three
steady-state possibilities that are determined by environmental and physiological parameters alone and hold for all
initial conditions: that Species A eventually takes over the system, that Species B eventually does so, or that both
species coexist indefinitely in a defined steady-state cycle. In other words, there is no bistability or multistability. We
also note from Fig. S4 that coexistence is determined by all six parameters that effectively describe the system and
that each parameter can be varied to lead to any of the three possible outcomes. This implies that the system cannot
be described as being a trivial outcome of a simple characteristic of the environment or physiology of the two species,
but requires an interplay of the environment and the physiologies. Thus, though it is necessary that the growth rate
dependences of the two species intersect, it is far from sufficient.

We note that if all ri are linear in the concentration of the nutrient (also known as a Holling’s type I functional
response), coexistence is not possible and only one species can survive [armstrong1980competitive]. This is because
one species will always grow faster than the other species and thus out-compete the other species over many cycles.
Thus, nonlinear growth dependences on nutrient concentrations are required for coexistence and reflect a trade-off in
the growth process.
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Thus, we note that even for two species competing for a single nutrient, the coexistence region of parameter phase
space is not necessarily small, but possibly a result of multiple physiological trade-offs between growth rate, resource
affinity, adaptation time scale, and survivability in low resource conditions. For other systems shown in Fig. 1, the
trade-offs could be due to susceptibility to a pollutant, cross-feeding, or anomalous response to environmental stress.
Accordingly, growth-dilution cycles result in a consumer-resource analog to winnerless competition models, where
transient dynamics enable multiple species to persist [afraimovich2008winnerless].

S2.8 Derivation of Equi-abundance Solution

We take each species, α, to have growth rate r− basally and r+ in its preferred growth rate. In the steady cycle, we
look for the solution where there are N species, each with abundance 1/N . First, since this is the steady cycle, we
require

∑

i

rα,i · τi = log(1/δ), (S106)

where τi is the time spent passing through each niche i. Plugging in the growth rates, we have

r+τα + r−(T − τ+) = log(1/δ), (S107)

where τα is the time spent in the preferred niche. Since the rest of the equation carries no parameters unique to species
α, τα must be the same for all species. Thus, we have that

τ ≡ τα =
log(1/δ)

r+ + r−(N − 1)
, ∀α (S108)

Now, we seek to find ∆ηn for each niche. Since this is the biomass consumed by all species in that niche, we have

∆ηn =
∑

i<n

1

N
exp((n− 2)r−τ + r+τ)(exp(r−τ)− 1)

︸ ︷︷ ︸
Species that have a preferred niche before the nth niche

+
1

N
exp((n− 1)r−τ)(exp(r+τ)− 1)

︸ ︷︷ ︸
Species that prefers the nth niche

(S109)

+
∑

i>n

1

N
exp((n− 1)r−τ)(exp(r−τ)− 1)

︸ ︷︷ ︸
Species that have a preferred niche after the nth niche

(S110)

After some simplification,

∆ηn =
exp((n− 1)r−τ)(exp(r−τ)− 1)

N

(∑

i<n

exp((r+ − r−)τ) +
exp(r+τ)− 1

exp(r−τ)− 1
+
∑

i>n

1

)
(S111)

=⇒ ∆ηn =
exp((n− 1)r−τ)(exp(r−τ)− 1)

N

(
(n− 1) exp((r+ − r−)τ) +

exp(r+τ)− 1

exp(r−τ)− 1
+N − n

)
(S112)

In the case that the correction term is independent of n, i.e.,

n(exp((r+ − r−)τ)− 1) ≪ exp(r+τ)− 1

exp(r−τ)− 1
+N − exp((r+ − r−)τ), (S113)

we have that

∆ηn ∝ exp(nr−τ) =⇒ ∆ηn ∼ δ
n

p+N−1 (S114)

and the niche widths must be exponentially spaced. We now explore the cases where this is true. This is obviously the
case if r+ = r− as then exp((r+ − r−)τ)− 1 = 0.
In the case that N ≫ p ≡ r+

r−
> 1, we have that

exp(rτ) = exp(
r/r− · log(1/δ)

p+N − 1
) ≈ 1 +

r/r− log(1/δ)

N
(S115)

Thus, the LHS in correction term is given by

n

(
p− 1− log(1/δ)

N

)
≪ N (S116)
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while the RHS is given by
p−log(1/δ)

N
1−log(1/δ)

N

+N − p− 1− log(1/δ)

N
− 1 ≈ N. (S117)

Thus, Eq. S113 is satisfied. Also, in the case that p ≫ N > 1,

exp((r+ − r−)τ → exp(r+τ) = exp

(
log(1/δ)

1 + N−1
p

)
≈ 1

δ
. (S118)

and

exp(r− · τ → exp

(
log(1/δ)

p+N − 1

)
≈ 1 +

log(1/δ)

p+N − 1
. (S119)

Thus,

∆ηn =
exp((n− 1)r−τ)

N

log(1/δ)

p+N − 1

(
n(1/δ − 1) +

1
δ − 1

log(1/δ)
p+N−1

+N − 1

δ

)
(S120)

=
exp((n− 1)r−τ)

N
log(1/δ)

(
n(1/δ − 1)

p+N − 1
+

1
δ − 1

log(1/δ)
+

N − 1
δ

p+N − 1

)
(S121)

≈ exp((n− 1)r−τ)
N

(
1

δ
− 1

)
∝ δ

n
p+N−1 (S122)

S2.9 The diagonal preference model

Based on the equiabundance solution, we consider a “diagonal model” in growth preference, in which each niche n
has a dominant species α̂(n) whose growth rate rα̂(n),n well exceeds the growth rate of other species in that niche,
and each species is dominant only in one unique niche.

We anticipate the equi-abundance case to be highly stable. We validated this expectation by creating ensembles of
rα,n and ∆ηn values fluctuating within ±30%. Notably, every species persists in ∼ 80% of scenarios with near
equi-abundance (Fig. S6B, S6C). We also found that higher growth preference p species in its main niche (with the
accompanying change in the exponential niche distribution) increased survival rates of over 95%. In fact, even with
just a 3-fold growth preference and ±30% noise, all species remained in 45-65% of cases. This nonlinear reliance on
growth preference indicates diminishing returns.

Yet, as Fig. S6D illustrates, the proportion of preserved species for a set growth preference (p) declines as species
and niche counts rise. The drop depends on N/p (Fig. S6E), emphasizing enhanced competition from the growing
collective of slow-growing species.

Alternatively, the priority effect can be overcome by having the species preferred in earlier niches take on reduced
growth preferences but equal niche widths. We find that exponentially-distributed growth rates for species in their
preferred niches,

r+(n) ∝ (1/δ)n/(N+p−1), (S123)

with r− fixed, retains a similar diversity (Fig. S6G, S6H) as for exponentially distributed niche widths (Fig. S6B,
S6C). See Fig. S6.

Collectively, these results underscore the tremendous (exponential) growth advantage of species specializing in early
niches if p is not too large, and hence the much higher relative dominance required for species specializing in the late
niches to be maintained in the community.

S2.10 Resource Sharing in Consumer-Resource Models in a Chemostat

One might interpret the states in the Community State (CS) Model as analogous to resources in a Consumer-Resource
model. In the case of large communities, it leads to the question of how many species can be expected to coexist if N
species shared N resources, with each species growing on multiple resources.

In the context of the CS Model, species coexist by occupying distinct niches, with niche width and overlap playing
critical roles in determining community structure. Translating this to the CR model framework, we postulated that the
allocation and consumption of resources could be a surrogate for these niche dynamics. Thus, we simulated the CR
model in a chemostat. Each species was described by a consumption/growth matrix with diagonal elements set to 1
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(such that each species invariably consumed a specific resource) and off-diagonal elements set randomly as 1 or 0 with
the constraints described below. The growth rates, We considered two distinct cases:

Ks = M Case: In this case, we fixed the number of species that show rapid growth per resource. This setup parallels
a situation in the CS Model where each niche supports a similar number of species. The results can be seen in
Supplementary Figure S7.

Kn = M Case: In this case, we explored a scenario where each species is allocated a fixed number of resources, akin
to each species in the CS Model occupying M niches. The results can be seen in Supplementary Figure S8.
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