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Objective:Metabolites in body fluids, such as lactate, glucose, and creatinine, have been
measured by conventional methods to evaluate physical function and performance or
athletic status. The objectives of the current study were to explore the novel metabolite
biomarkers in professional swimmers with different competition levels using nuclear
magnetic resonance (NMR) metabolomics, and try to establish a model to identify the
athletic status or predict the competitive potential.

Methods: Serum samples were collected from 103 elite and 84 sub-elite level Chinese
professional swimmers, and were profiled by NMR analysis.

Results: Out of the thirty-six serum metabolites profiled, ten were associated with the
athletic status of swimmers (with p < 0.05). When compared with sub-elite swimmers, elite
swimmers had higher levels of high-density lipoprotein (HDL), unsaturated fatty acid, lactic
acid, and methanol. Elite swimmers had lower levels of isoleucine, 3-hydroxybutyric acid,
acetoacetate, glutamine, glycine, and α-glucose. A model with four metabolites, including
HDL, glutamine, methanol, and α-glucose, was established to predict athletic status by
adjusting with different covariates. The area under the curve (AUC) of the best model was
0.904 (95% CI: 0.862-0.947), with a sensitivity and specificity of 75.5 and 90.2%,
respectively.

Conclusion: We have identified ten metabolite biomarkers with differentially expressed
levels between elite and sub-elite swimmers, the differences could result from genetic or
sports level between the two cohorts. A model with four metabolites has successfully
differentiated professional swimmers with different competitive levels.
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INTRODUCTION

For competitive sports, identification of competition status or
predicting the development trend of competition level has been a
topic discussed in the fields of sports training, monitoring, and
talent identification (Johnston et al., 2018). In some studies,
certain metabolites in blood and urine, such as lactate, glucose,
and creatinine have been measured by conventional methods to
evaluate physical function and performance or athletic status
(Papassotiriou and Nifli, 2018). Other metabolites have not been
detected due to their low concentration in the blood or urine,
which could still be important in the biological reactions of
exercise processes (Alosco et al., 2020). More sensitive
methods are in need to detect those lowly expressed
metabolites, so that their potential important information will
not be omitted.

Metabolomics is an important part of systems biology, apart
from genomics, transcriptomics, and proteomics (Nicholson and
Lindon, 2008; Baharum and Azizan, 2018). Nuclear magnetic
resonance (NMR) is a commonly used analytical method in
metabolomics (Markley et al., 2017; Ragavan and Merritt,
2019). The NMR method has a few advantages, such as simple
sample pretreatment and the capacity to analyze several biological
fluids including blood, urine, and saliva (Emwas, 2015; Bingol,
2018). Because of these advantages, NMR has been widely used in
sports and exercise science (Sun et al., 2017; Heaney et al., 2019;
Pitti et al., 2019).

Metabolomics analyses have been employed to monitor the
metabolic profile of elite athletes. A pilot metabolomics analysis
compared the metabolic profile between high- and moderate-
endurance and power elite athletes, and reported that high-
endurance and high-power athletes present a different
metabolic profile, which includes metabolites related to energy
production, fatty acid metabolism, oxidative stress, and steroid
biosynthesis (Al-Khelaifi et al., 2018). Another study investigated
the metabolic fluctuations in saliva samples of professional
basketball players during a game, and showed that quarters 1
and 3 had similar saliva metabolic profiles, while quarters 2 and 4
also demonstrated similar saliva metabolic profiles, but metabolic
profiles after quarters 1 and 3 were different from those after
quarters 2 and 4 (Khoramipour et al., 2021). The metabolic data
also suggested that the first and third quarters relied more on
anaerobic energy contribution, whereas the second and fourth
quarters utilize more aerobic energy (Khoramipour et al., 2021).
These studies suggested that metabolic files can be altered after
both acute exercise and chronic training. Therefore,
metabolomics analyses can be utilized to identify athletic
ability, training level, and state of a certain event athlete.

Swimming is a sporting event requiring great physical fitness
(Burkett et al., 2018). The growth cycle of elite swimmers is very
long; therefore, even small differences at a certain stage of athletes
could affect their athletic capacity, which might result in them to
be either elite athletes or sub-elite athletes (Haugen et al., 2019).
Metabolites in body fluids have been used to monitor the training
effects in swimmers. A study measured the urine metabolites
before and after a swimming training session of elite swimmers
with metabolomics analyses and reported peaks of ketone bodies,

creatine, phosphate, and nitrogenous compounds after a 150 min
training session (Khoramipour et al., 2021). Moreover, the
metabolites of elite swimmers prior to the training session
were different from those of controls (Khoramipour et al.,
2021). The authors suggested the peaks of metabolites in urine
can be used to evaluate and to adjust the physical training of elite
swimmers (Moreira et al., 2018). However, it is still not clear
whether there is any difference in the blood metabolomics
characteristics between swimmers from different athletic
statuses or levels. And if present, whether we can establish a
prediction model for athletic status or level based on the different
metabolites.

In this current study, we recruited swimmers from different
athletic statuses as the research participants and investigated the
characteristics of the blood metabolomics with the NMRmethod.
With this cross-sectional study, we performed an untargeted
metabolic analysis to determine the serum metabolites
associated with athletic status in swimmers. Furthermore, we
aimed to explore specific metabolites that could serve as
biomarkers to identify the athletic status and evaluate athletes’
potential to achieve an elite level. By establishing the model with
serum metabolites, coaches and researchers might be able to
better assess the athletic status and competitive level of swimmers.

MATERIALS AND METHODS

Ethics Approval
This study was conducted according to the Declaration of
Helsinki and approved by the Ethics Committee at the School
of Life Sciences, Fudan University, China. Written informed
consent was obtained from all participants.

Study Design and Participants
All participants (swimmers) were in their post competition
recovery period. Two weeks before the blood sample
collection, all swimmers adopted a training program with
similar exercise volume and intensity (30 min of land exercises
before swimming, including 15 min of stretching exercises and
15 min of relaxation exercises; swimming session lasting about
80–90 min, 4000 m swimming at around 60% of the maximum
intensity; 15 min of relaxation exercises after the swimming
session). The daily diet was carried out according to the
unified recipe (a unified diet menu for athletes from Monday
to Sunday at the training base), supervised by the coach in charge.
In two weeks, athletes who took medicine did not follow the
training program or who did not follow the diet were excluded
from the study. After two weeks, all qualified swimmers (n = 187)
were categorized into two groups (elite group and sub-elite
group) according to their officially certified level of sports
competition.

A total of 103 international- and national-level swimmers were
from the Shanghai and Zhejiang professional swimming teams as
the elite group. Athletes in the elite group have participated in
international or national swimming competitions. There were 53
male athletes (height = 184.7 ± 5.2 cm, body mass = 78.7 ± 9.3 kg,
age ranges: 18–29 years, training years: more than 10 years) and
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50 female athletes (height = 171.8 ± 5.0 cm, body mass = 62.2 ±
6.3 kg, age ranges: 16–27 years, training years: more than 8 years).

Eighty-four first- and second-grade swimmers were from the
Shanghai professional swimming team, Shanghai University of
Sport, Shanghai Jiao Tong University, and Tong Ji University as
the sub-elite group. Athletes in the sub-elite group have
participated in provisional or universities swimming
competitions. There were 52 male athletes (height = 180.1 ±
6.3 cm, body mass = 77.1 ± 10.1 kg, age ranges: 17–23 years,
training years: more than 9 years) and 32 female athletes (height =
168.7 ± 4.9 cm, body mass = 59.8 ± 8.6 kg, age ranges:
16–22 years, training years: more than 8 years).

Blood Samples Collection and
Metabolomics Analysis
Blood samples (5 ml) were collected in tubes without
anticoagulant from swimmers in the morning after overnight
fasting. The samples were kept at room temperature for 30 min
and then centrifuged at 4°C at 4000 rpm for 15 min (Centrifuge
5702R, Eppendorf AG, Hamburg, Germany). The serum samples
were aliquoted into freezing tubes (Corning 430,659, 2 ml,
United States), frozen immediately in liquid nitrogen, and
stored at -80°C for around 1 week without a second freeze-
thaw cycle before testing. On the day of NMR analysis, 170 ul
serum sample was mixed with 340 μl PBS (phosphate buffer
saline) in a 5 mm NMR tube and used directly for 1H NMR
detection.

All NMR spectra were acquired at 298 K via Bruker AVIII
600 MHz NMR spectrometer (600.13 MHz for proton
frequency), equipped with a cryogenic probe (Bruker Biospin,
Germany). For the analysis of serum samples, we used the Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence (RD-90°-(τ-180°-
τ)n-ACQ), where τ = 350 ms and n = 100. A total of 32 transients
for all samples were collected into 32K data points over a spectral
width of 20 ppm with a 90° pulse length adjusted to 11.3 ms.

The free induction decays were multiplied by an exponential
window function with the line-broadening factor of 1 Hz prior to
Fourier transformation. Each spectrum was corrected for phase
and baseline deformation manually using Topspin 2.1(Bruker
Biospin) and the chemical shift (α-glucose at δ 5.237). The
spectral region (0.4–8.6) was integrated into bins with a width
of 0.002 ppm using the AMIX package (v3.9.2, Bruker Biospin).
Some noise signals, such as water signals (δ 4.200–5.152) were
removed. The areas of all bins were then normalized to the
volume. The normalized data was used for multivariate
analysis, and the model was constructed using the orthogonal
projection to latent structure-discriminant analysis (O-PLS-DA)
with unit variance (UV) scaling and validated with a 7-fold cross-
validation method using soft independent modeling by class
analogy (SIMCA)-P1(van 12.0, Umetrics, Sweden). The
parameter R2Y is indication of the Y variables being explained
by the model and Q2 represents the predictability of the model.
The significance of the model was also validated by CV-ANOVA
(p < 0.05). To assist the biological interpretation of the loadings
generated from the model, the loadings were firstly back-
transformed and then plotted with color-coded O-PLS-DA

coefficients in MATLAB 7.1. The color code corresponds to
the absolute value of the O-PLS-DA correlation coefficients |r|,
which indicated the contribution of the corresponding variable to
the group separation.

Assessment of Covariates
The gender, birth date, and years of professional training of all
participants were obtained with a questionnaire. Body mass index
(BMI) was calculated as the weight in kilograms divided by the
square of the height in meters. Body fat percentage was measured
with Inbody720 (InBody Co., Ltd., Seoul, South Korea). Physical
performance and function covariates were measured with
standardized test methods (Yang and Shen, 2019) including
grip, back strength, standing long jump (SLJ), standing vertical
jump (SVJ), abdominal curl, vital capacity, sit-and-reach, acoustic
reaction time, and quiet heart rate, which were closely related to
the physical performance of swimmers. Health covariates were
tested with an automatic biochemical instrument (Access2,
Beckman Inc., United States) including hemoglobin,
erythropoietin (EPO) and myoglobin (MYO).

Statistical Analysis
Continuous variables of baseline characteristics and physical
performance were presented as mean (standard deviation, SD)
or median (with interquartile range, IQR), and categorical
variables were expressed as frequencies (%) when appropriate.
The Student’s t-test or Mann–Whitney U test was used to
compare the continuous variables, and the Pearson’s χ2 test
was used for comparisons of categorical variables.

The Student’s t-test was used to compare the serum
metabolites between elite and sub-elite swimmers, and to
determine the significantly different metabolites. Using the
method of Lasso regression, the obtained significant different
metabolites were screened to further be reduced. Based on the
results of Lasso regression, logistic regression was performed
using the R package “glmnet” for dimensionality reduction to
select metabolomic markers (Friedman et al., 2010).
Correlation analysis was performed between the significant
metabolites and the baseline characteristics. Based on the
selected metabolites and different covariates, three models
were established using multivariate logistic regression,
model 1 was unadjusted by any covariate, model 2 was
adjusted by baseline covariates, and model 3 was adjusted
by baseline and physical performance covariates. The receiver-
operating characteristic (ROC) curve was analyzed for every
model, with area under curve (AUC) calculated to evaluate its
effect for identification and prediction of athletic status. To
avoid biased estimation, average values of AUC were generated
from 10-fold cross-validation (the dataset was randomly
divided into ten parts, using nine of them in turn as the
training set and one as the test set) in ROC analysis (Cui
et al., 2020). The optimal combination of specificity and
sensitivity was determined by the Youden index method
(Youden, 1950).

All the above analyses were used with the IBM-SPSS 24.0 for
WINDOWS and R Studio (R core 3.5.3), and the differences were
considered to be statistically significant when p < 0.05.
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RESULTS

Baseline Characteristics and Covariates of
Swimmers
The baseline characteristics, physical performance, and health
indicators of all participants by athletic statuses were summarized
in Table 1. Their average age (SD) was 19.3 (2.7) years, and 56.1%
of them were men. Interestingly, sub-elite level swimmers had
longer trained years than elite level swimmers (p < 0.001). Elite
level swimmers had higher values in physical performance
covariates of abdominal curl/min and sit-and-reach (p <
0.001), and lower values in BMI, body fat percentage, vital
capacity, and resting heart rate (with p < 0.05, p < 0.01, and
p < 0.001, respectively) than sub-elite level swimmers. Other
baseline characteristics, physical performance, and health
covariates were not significantly different between the two
groups (p > 0.05).

Analysis of NMR Spectra and Significant
Metabolites
Typical 1H NMR spectra of serum samples were obtained from elite
level and sub-elite level swimmers (Supplementary Figure S1).
Resonance peaks were assigned to specific metabolites based on
published data and 2D NMR spectra with further confirmation by
using public databases HMDB (human metabolome database) and
BMRB (biological magnetic resonance bank) (Jiang et al., 2012; Song
et al., 2015). 36 metabolites were assigned, involving multiple
metabolic pathways such as carbohydrates, amino acids, and
nucleotides (Supplementary Table S1).

The differences in serum metabolite profiles between elite and
sub-elite level swimmers were investigated using the SIMCA

statistical methods of PCA (Figure 1A) and O-PLS-DA
analysis (R2 = 0.551, Q2 = 0.417, p < 0.001) (Figure 1 B).The
coefficient plots showed that there were 14 metabolites with
distinct patterns between the two groups, including high-
density lipoprotein (HDL), leucine (Leu), isoleucine (Ileu),
valine (Val), 3-hydroxybutyric acid (3-HB), lactic acid (Lac),
acetone, acetoacetate, glutamine (Gln),
Glycerophosphorylcholine (GPC), methanol, Glycine (Gly), α-
glucose (α-Glc), and unsaturated fatty acid (UFA), but lower
concentrations of Glycine (Gly) and α-glucose (α-Glc)
(Figure 1C). If only male athletes were included, there are 10
metabolites that showed distinct patterns, including HDL, Ileu,
Val, 3-HB, Lac, Gln, methanol, Gly, a-Glc, and UFA
(Supplementary Figure S2); when only female athletes were
included, 11 metabolites were different between the two
groups, including HDL, 3-HB, Lac, acetone, acetoacetate, Gln,
GPC, methanol, Gly, a-Glc, and UFA (Supplementary Figure
S3). Since the metabolites screened out by male and female
gender were all included in the 14 metabolites screened
regardless of gender, the subsequent analysis included all the
14 metabolites.

Metabolites Selection and Establishment of
Discrimination Models
Among the 14 metabolites, ten of them were differentially
expressed between the elite and sub-elite level swimmers. The
elite-level swimmers showed significantly higher levels of high-
density lipoprotein (HDL), lactate (Lac), methanol, and UFA, but
lower concentrations of isoleucine (Ileu), 3-hydroxybutyric acid
(3-HB), acetoacetate, glutamine (Gln), Glycine (Gly), and α-
glucose (α-Glc) (p < 0.05) (Table 2;Figure 2).

TABLE 1 | Baseline, physical performance and health characteristics of swimmers.

Characteristics All subjects Elite level swimmers Sub-elite level swimmers p value

Participants, n (%) 187 (100.0) 103 (55.1) 84 (44.9) --
Gender
Male, n (%) 105 (100) 53 (50.5) 52 (49.5) 0.152
Female, n (%) 82 (100) 50 (61.0) 32 (39.0)

Age, years, mean (SD) 19.3 (2.7) 19.0 (3.3) 19.5 (1.7) 0.167
Years of professional training, median (IQR) 7.3 (4.7,11.5) 6.2 (3.9,7.7) 11.1 (7.3,13.1) <0.001
BMI, kg/m2, mean (SD) 22.5 (2.6) 22.1 (2.2) 22.9 (2.9) 0.027
Body fat percentage, %, mean (SD) 16.8 (6.5) 15.4 (5.9) 18.6 (6.7) 0.001
Grip, kg, mean (SD) 39.1 (10.1) 39.3 (10.4) 38.9 (9.8) 0.761
Back strength, kg, mean (SD) 100.6 (28.8) 103.3 (28.9) 97.3 (28.4) 0.167
SLJ, cm, mean (SD) 224.7 (31.2) 228.6 (31.7) 220.0 (30.1) 0.064
SVJ, cm, mean (SD) 38.7 (8.4) 39.2 (8.8) 38.2 (7.9) 0.458
Abdominal curl, n/min, mean (SD) 55.2 (8.6) 57.7 (8.2) 52.1 (8.1) <0.001
Vital capacity, liter, mean (SD) 5.1 (1.2) 4.8 (1.1) 5.4 (1.1) <0.001
Sit-and-reach, cm, mean (SD) 20.0 (8.3) 22.0 (8.1) 17.6 (7.9) <0.001
Acoustic reaction time, ms, mean (SD) 260.6 (28.1) 258.0 (26.8) 263.7 (29.5) 0.169
Resting heart rate, n/min, mean (SD) 73.1 (11.2) 71.1 (11.0) 75.8 (10.9) 0.005
Hemoglobin, g/l, mean (SD) 141.4 (14.7) 139.8 (14.9) 143.4 (14.3) 0.095
EPO, mIU/ml, mean (SD) 8.6 (3.4) 8.4 (2.5) 8.8 (4.2) 0.446
MYO, ng/ml, median (IQR) 19.3 (15.8,23.4) 18.9 (15.7,22.5) 19.8 (16.0,24.3) 0.141

BMI, body mass index; SLJ, standing long jump; SVJ, standing vertical jump; EPO, erythropoietin; MYO, myoglobin; SD, standard deviation; IQR, interquartile range. p < 0.05 marked
in bold.
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These ten significantly different metabolites by athletic
statuses were then analyzed by LASSO regression to screen
and select candidate metabolomic biomarkers, which would be
used to identify and predict the athletic status of swimmers. After
the LASSO regression analysis, eight metabolites, including HDL,

lac, acetone, Gln, methanol, Gly, α-Glc, and UFA, were selected
for subsequent modeling analysis (Supplementary Figure S4).

After log2 transformation, the eight selected metabolites were
taken into a multivariate logistic regression to establish models. Out
of the eight metabolites, four metabolites showed significance after

FIGURE 1 | PCA, O-PLS-DA analysis and coefficient of metabolites. (A) PCA analysis. (B)O-PLS-DA score plot; R2 = 0.551, Q2 = 0.417 (p < 0.001); (C)Multicolor
loading graph of multivariate metabolites analysis. 1: sub-elite level swimmers, 2: elite level swimmers

TABLE 2 | Serum metabolites with significant differences between elite and sub-elite level swimmers.

Metabolites Elite level swimmers vs. sub-elite level swimmers

Fold (Elite/Sub-elite) p value adj.p value

High-density lipoprotein 1.123 8.63E-04 1.78E-03
Leucine 0.963 5.70E-02 6.65E-02
Isoleucine 0.923 8.89E-04 1.78E-03
Valine 0.942 8.06E-02 8.28E-02
3-Hydroxybutyric acid 0.904 3.22E-02 4.51E-02
Lactic acid 1.123 3.39E-04 1.19E-03
Acetone 0.886 5.52E-02 6.65E-02
Acetoacetate 0.934 2.78E-02 4.32E-02
Glutamine 0.936 2.44E-05 1.71E-04
Glycerophosphorylcholine 1.063 8.28E-02 8.28E-02
Methanol 1.292 2.97E-04 1.19E-03
Glycine 0.945 5.66E-04 1.58E-03
α-glucose 0.931 4.09E-09 5.73E-08
Unsaturated fatty acids 1.110 1.19E-02 2.08E−02

p < 0.05 marked in bold. adj.p value: p value after FDR (false discovery rate) correction by the Benjamini Hochberg method.
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the multivariate logistic regression analysis. Correlation analysis was
conducted between the four significant metabolites (HDL, Gln,
methan,ol and α-Glc) and baseline characteristics. The four
significant metabolites were significantly correlated with a small
number of baseline characteristics (p < 0.05), but the correlation was
low (Table 3).

Three models were generated, including four metabolites
unadjusted or adjusted for different covariates. Model one
included four metabolites without any covariates, model two was
adjusted for baseline characteristics (gender, age, years of professional
training, BMI, and body fat percentage) based onmodel 1, andmodel
three was further adjusted for physical performance (SLJ, abdominal
curl, vital capacity,y and sit-and-reach) based on model 2. In these
models, the four metabolites were all independent influencing factors
on athletic statuses in swimmers (p < 0.05) (Table 4).

The unadjusted model one identified or predicted the athletic
status of swimmers reasonably well, holding an AUC of 0.835
(95% CI: 0.776-0.894) with the internal validation. The ROC
curve analysis showed that the AUC increased significantly to
0.882 (95% CI: 0.835-0.929) and 0.904 (95% CI: 0.862-0. 47),
when baseline characteristics (age and years of professional
training) were included and baseline characteristics plus
physical performance (age, years of professional training,
abdominal curl and sit-and-reach) were included, respectively
(Figure 3). According to the AUC value of ROC curve analysis,
model three had the best identification or prediction ability in
three models (AUC >0.9), of which the optimal sensitivity and
specificity were 75.5 and 90.2%, respectively. Of note, when only
age and year of training were included for ROC analysis, the AUC
was 0.769; when all the covariates were included in ROC analysis,

FIGURE 2 | The violin plots of serummetabolites with significant differences between elite and sub-elite level swimmers. (A)Comparison of High-density lipoprotein
between Elite and Sub-elite swimmers. (B) Comparison of Leucine between Elite and Sub-elite swimmers. (C) Comparison of Isoleucine between Elite and
Sub-elite swimmers. (D) Comparison of Valine between Elite and Sub-elite swimmers. (E) Comparison of 3-Hydroxybutyric acid between Elite and Sub-elite swimmers.
(F) Comparison of Lactic acid between Elite and Sub-elite swimmers. (G) Comparison of Acetone between Elite and Sub-elite swimmers. (H) Comparison of
Acetoacetate between Elite and Sub-elite swimmers. (I) Comparison of Glutamine between Elite and Sub-elite swimmers. (J) Comparison of Glycerophosphorylcholine
between Elite and Sub-elite swimmers. (K) Comparison of Methanol between Elite and Sub-elite swimmers. (L) Comparison of Glycine between Elite and
Sub-elite swimmers. (M) Comparison of α-glucose between Elite and Sub-elite swimmers. (N) Comparison of Unsaturated fatty acids between Elite and Sub-elite
swimmers. ***p < 0.001, **p < 0.01, *p < 0.05.
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the AUC was 0.815. Both the AUC values were less than those
with metabolites, suggesting the models with metabolites were
better.

DISCUSSION

In this current study, using the high-throughput 1H-NMR
method, we conducted a broad search for serum biomarkers

on professional swimmers’ athletic status. We detected 36 serum
metabolites with the NMR platform, most of them being amino
acids. Ten of the metabolites were significantly different between
elite and sub-elite swimmers, with four higher and the other six
lower in the elite swimmers. After the LASSO and logistic
regression analysis, four serum metabolites were identified
significantly associated with the athletic status of elite
swimmers. Furthermore, our study showed that the model of
four metabolites adjusted for baseline characteristics and physical
performance indicators could identify or predict the athletic
status of swimmers reasonably well.

Metabolomics is currently widely used in many disciplines,
due to its systematic, comprehensive, and high-throughput
advantages (Youden, 1950; Jiang et al., 2012; Song et al., 2015;
Sket et al., 2020). For example, metabolomics can be used to find
trace changes in biological samples such as blood and urine,
which are difficult to achieve with traditional detection and
analysis techniques (Kingsbury et al., 1998). In the field of
sports science, metabolomics has been demonstrated as a very
promising research and analysis tool, which can not only obtain
comprehensive information on athletes’metabolites at baseline or
after training (Heaney et al., 2019), but also systematically
monitor the physiological state of athletes (Lavoie et al., 1983;
Richard et al., 2008; Brites et al., 2017). In recent years, sports
researchers have been using the methods of metabolomics to
study the blood or urine metabolome characteristics of swimmers
in various physiological states (Knab et al., 2013; Couto, et al.,
2017; Al-Khelaifi et al., 2018; Pla et al., 2021). Among these
studies, some scholars have studied the changes of the metabolic
profile of elite athletes (including swimmers) in different events
(Al-Khelaifi et al., 2018), some have studied the metabolic
response of high-level swimmers under specific intensity

TABLE 3 | Correlation analysis between four significant serum metabolites and baseline characteristics.

Characteristics High-density
lipoprotein

Glutamine Methanol α- glucose

r p-value r p-value r p-value r p-value

Gender −0.083 0.259a −0.276 <0.001a −0.095 0.195a −0.167 0.023a

Age −0.036 0.626a 0.226 0.002a −0.249 0.001a 0.055 0.454a

Years of professional training 0.048 0.519a 0.183 0.013a −0.129 0.078a 0.116 0.116a

BMI 0.079 0.291a 0.002 0.980b −0.007 0.931c 0.149 0.046d

Body fat percentage 0.004 0.955a 0.051 0.504b −0.170 0.023c 0.152 0.042d

Grip 0.042 0.570a 0.011 0.878b 0.073 0.328c −0.024 0.743d

Back strength <0.001 0.996a −0.071 0.348b 0.142 0.057c −0.059 0.428d

SLJ 0.067 0.374a −0.232 0.002b 0.127 0.091c −0.207 0.005d

SVJ 0.049 0.509a −0.131 0.080b 0.112 0.133c −0.123 0.101d

Abdominal curl −0.065 0.384a −0.180 0.016b 0.101 0.180c −0.113 0.131d

Vital capacity −0.231 0.002a −0.045 0.542b 0.031 0.674c 0.024 0.746d

Sit-and-reach −0.047 0.527a −0.053 0.478b −0.008 0.914c −0.017 0.817d

Acoustic reaction time −0.023 0.753a 0.168 0.024b 0.053 0.476c 0.120 0.106d

Resting heart rate −0.028 0.713a 0.085 0.259b −0.066 0.381c 0.143 0.056d

Hemoglobin −0.339 <0.001a −0.138 0.064b −0.125 0.091c 0.002 0.977d

EPO −.065 0.382a −0.061 0.409b 0.006 0.931c 0.064 0.390d

MYO −0.133 0.072a −0.043 0.564b 0.047 0.527c −0.117 0.113d

r: correlation coefficient.
a: correlation analysis adjusted with sports level (elite and sub-elite).
b: correlation analysis adjusted with sports level, gender, age and years of professional training.
c: correlation analysis adjusted with sports level and age; d: correlation analysis adjusted with sports level and gender. p < 0.05 marked in bold.

TABLE 4 | Association analysis between significant serum metabolites and
athletic status in swimmers.

Metabolites Elite athletic status

OR 95%CI p value AUC

High-density lipoprotein
Model 1 10.28 3.36–31.44 4.40E-05 0.649
Model 2 16.63 4.56–60.75 2.10E-05 0.798
Model 3 21.70 4.87–96.79 5.48E-05 0.849

Glutamine
Model 1 6.77E-03 4.28E-04-1.07E-01 3.91E-04 0.675
Model 2 2.65E-03 1.05E-04-6.68E-02 3.13E-04 0.770
Model 3 1.38E-02 4.52E-04-4.21E-01 1.40E-02 0.823

Methanol
Model 1 3.30 1.35–8.11 9.12E-03 0.577
Model 2 5.17 1.74–15.33 3.05E-03 0.782
Model 3 4.14 1.27–13.56 1.87E-02 0.834

α- glucose
Model 1 3.19E-04 7.56E-06-1.34E-02 2.47E-05 0.737
Model 2 3.74E-04 5.61E-06-2.50E-02 2.31E-04 0.806
Model 3 4.23E-04 5.52E-06-3.25E-02 4.53E-04 0.849

Model 1 was unadjusted for any covariate; model 2 was adjusted for age and years of
professional training; model 3 was adjusted for age, years of professional training,
abdominal curl and sit-and-reach. p < 0.05 marked in bold.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8588697

Cai et al. Blood Metabolomics Identify Elite Swimmers

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


training programs (Pla et al., 2021), others have studied the effects
of supplementing different fresh fruit juices on chronic resting
and postexercise inflammation, oxidative stress, immune
function, and metabolic characteristics (Knab et al., 2013).
These various studies show that it is very extensive to use
metabolomics techniques and methods to study the
application scenarios of swimmers. In this study, we found
different levels of metabolites between swimmers of different
athletic statuses, which illustrated that there were differences in
the characteristics of blood metabolomics between different
athletic statuses. Three out of the six metabolites lower in the
elite swimmers were amino acids, including isoleucine,
glutamine, and glycine. It has been previously reported that
there were contrasting plasma-free amino acid patterns in elite
athletes, depending on the training and fatigue status (Kingsbury
et al., 1998). The higher levels of HDL and unsaturated fatty acids
but lower levels of α-glucose suggested that elite swimmers
probably had different substrate utilization when compared
with sub-elite swimmers. An early study has reported an
increase in lipid utilization in elite swimmers during a training
session (Lavoie et al., 1983). Notably, both HDL and unsaturated
fatty acids have been implicated with antioxidative effects
(Richard et al., 2008; Brites et al., 2017).

It has been previously reported that HDL was associated with
physical activity and athletic sports (Kraus et al., 2002; Valimaki

et al., 2016; Fikenzer et al., 2018). It is generally believed that theHDL
concentration of athletes with a certain training level is significantly
higher than that of the general population. For instance, Lee H et al.
(2009) found that the concentration of blood HDL of athletes with a
certain training level was higher than that of the general population
independent of the type of sports they were engaged in. Other
researchers reported that athletes engaged in different sport
disciplines showed differences in blood HDL concentration,
possibly due to the different metabolic characteristics associated
with aerobic and anaerobic exercise (Chou et al., 2005; Lee et al.,
2009). The above reports indicated that the concentration of HDL
might be related to whether or not exercise was performed, exercise
style, duration, and intensity. The HDL result of our study is
consistent with previous research results.

Glutamine makes up a large number of free amino acids in
muscle, accounting for about 60% of the total free amino acids in
the human body. Glutamine can be synthesized by glutamic acid,
valine, and isoleucine. Sports practice suggested that the level of
glutamine in the body could drop sharply after high-intensity
strength training. If glutamine did not restore from the diet, the
body will decompose muscle protein to meet its demand for
glutamine. This phenomenon will not only affect the muscle
volume, but also lead to the reduction of the body’s immunity
(Armstrong et al., 2014). The difference in blood glutamine levels
between the two athletic statuses may be related to the long-term

FIGURE 3 | ROC analyses for identification or prediction of athletic status. The blue curve represents the ROC curve of with four metabolites of HDL, Gln, methanol
and α-Glc; the green curve represents the ROC curve including the four metabolites and covariates (age and years of professional training at baseline); the red curve
represents the ROC curve including the four metabolites, baseline covariates (age and years of professional training) and physical performance indicators (abdominal curl
and sit-and-reach); the purple curve represents the ROC curve only including baseline covariates (age and years of professional training) without metabolites; the
yellow curve represents the ROC curve only including baseline covariates (age and years of professional training) and physical performance indicators (abdominal curl
and sit-and-reach) without metabolites.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8588698

Cai et al. Blood Metabolomics Identify Elite Swimmers

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


training effects on isoleucine and valine, as we detected lower
levels of those in elite swimmers as well.

Additionally, an interesting but important finding was that
the level of blood methanol in elite swimmers was significantly
higher than that in sub-elite swimmers. Methanol is a
colorless, transparent, flammable, and volatile toxic
substance. Acute methanol intoxication can damage brain
function and optic nerve via inducing neuroinflammation
(Zakharov et al., 2017; Zakharov et al., 2018). Yet methanol
naturally exists in normal healthy individuals, which could be
from diets, such as alcoholic beverages, fruits and vegetables;
or from fermentation by gut bacteria and metabolic processes
of S-adenosyl methionine (Dorokhov et al., 2015). Since the
diet of the athletes has been standardized in the current study,
we speculate the differential level of methanol might be likely
due to the differences in metabolic methanol. However, there is
still no report about the effect of the physiological
concentration of methanol on sports ability. Some studies
have shown that the methanol extract obtained from some
special plants, such as the leaves of Eugenia species, shade
dried plants, and Syzygium calophyllifolium bark, has the roles
of anti-oxidant, anti-inflammatory, anti-hypertensive, anti-
lipidemic, reducing blood glucose levels (Chandran et al.,
2016; Aluko et al., 2019; Goldoni et al., 2019) and can even
boost androgen levels (Kamran et al., 2018). Based on the
aforementioned evidence, we speculate that the higher
concentration of blood methanol may help swimmers
improve their athletic performance. In the future, it would
be interesting to explore the mechanism of higher blood
content of methanol and its effects in sports capacity.

We also found the level of α-glucose was lower in elite
swimmers than that in sub-elite swimmers. The α-glucose is
an isomer of D-glucose, which acts as a diuretic, and detoxifier. It
is generally believed that the baseline blood glucose concentration
of professional athletes is lower than that of the general
population (Lippi et al., 2008), which could be due to long-
term high-level professional training.

In addition to the four serum metabolites finally included
in the model, some other metabolites are different between the
elite and the sub-elite level swimmers, such as isoleucine and
valine of BCAA (branched-chain amino acids), which is also
an interesting phenomenon. In our study, it was found that
the concentrations of isoleucine and valine (only in male
swimmers) were significantly lower in elite-level swimmers.
This result was similarly reported in a recent research on elite
cyclists. Cyclists with higher exercise ability were found that
after a graded exercise test to exhaustion, the concentration of
isoleucine in blood changed, which was significantly lower
than that of athletes with lower exercise ability, but there was
no significant difference in baseline test (San-Millán et al.,
2020). This result may be due to the accelerated
decomposition of branched-chain amino acids in blood
caused by acute exercise, which are converted into Acetyl-
CoA and enter the TCA cycle to participate in energy supply.
The difference in exercise ability also leads to the change of
metabolic profiles of branded-chain in amino acids. This was
different from the results of our study. The swimmers in our

study were in the basic state rather than the state after acute
exercise. The reason why the baseline of cyclists had not
changed may be that they were all high-level athletes, and
the differences of ability were not obvious. In our study, there
were still great differences in the sports ability and level
between elite and sub-elite swimmers. On the contrary, the
change in BCAA metabolic profiles can also cause the change
in exercise training adaptability, which has been verified in
animal experiments. Xu et al. (Xu et al., 2017) reported that
after knocking out the gene of the enzyme that inhibits the
decomposition of BCAA, mice showed higher adaptability to
endurance training, and the concentration after training was
also lower than that of normal mice, indicating that BCAA
participated in the adaptation of endurance training. Other
studies have also verified that BCAA supplementation can
improve the adaptability of endurance training and have
positive benefits for endurance training (Kim et al., 2013;
Gervasi et al., 2020).

Another interesting phenomenon in our study was that the
differences in sports level and serum metabolome also have
gender characteristics. In some studies on sports ability and
differential metabolites, the participants involved were
generally one gender (Kim et al., 2013; San-Millán et al.,
2020; Margolis et al., 2021) or a total of men and women
(Gervasi et al., 2020); however, few studies focused on gender
characteristics. There was a study on the changes in fat-free
mass and plasma amino acids of male and female recruits after
military training (Margolis et al., 2021). The study found that
BCAA increased in women but did not change in men. The
authors concluded that this result may be related to the
differences in dietary intake, fat-free mass ratio, and energy
balance between men and women. The background of this
study was still different from our work, and further research
can be carried out in the follow-up.

The underlying mechanisms for the different levels of
metabolites among athletes at different competition levels are
less known, we speculate that it could be due to differences in
genetics and training regime. It is well known that genetic
differences contribute to athletic capacity (Pitsiladis et al., 2016;
Voisin et al., 2016; Yang et al., 2017). Of the genetic variants,
ACTN3 R577X and ACE I/D are two well-studied polymorphisms
(Levinger et al., 2017; Yan et al., 2018). Notably, genetic variants
have been reported to influence metabolic traits of elite athletes
(Banting et al., 2015; Al-Khelaifi et al., 2019). More specifically, a
recent genome-wide association study (GWAS) with 490 elite
athletes, combined with high-resolution metabolomics profiling,
reported 145 significant single nucleotide polymorphism (SNP)-
metabolite associations (Al-Khelaifi et al., 2019). Moreover, four
significant associations between SNPs and metabolites, were only
identified in elite endurance athletes (Al-Khelaifi et al., 2019). On
the other hand, the training regime is known to be different
among athletes at different competition levels (Yan et al., 2016),
and has been shown to influence the levels of metabolites (Yan
et al., 2009).

Of note, the metabolomics results of this study were obtained
via the NMR method, which has a lower sensitivity compared to
the mass spectrometry method (Emwas et al., 2019). It would be
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beneficial to validate our results with the use of additional
methods, such as LC-MS and GC-MS.

With the development of high-throughput detection and bio-
omics technology, there are many efficient and accurate detection
methods for athletes’ physical function and sports state evaluation,
which enriches the original evaluation system (Gomes et al., 2020;
Nieman, 2021; Sellami et al., 2022), such as evaluation of physical
performancewith SNPs (Yang et al., 2021a).With the popularization
of detection instruments and the development of detection
technology, metabolomics has greatly reduced the cost and
improved accuracy. It can detect more trace metabolites and find
some significantly changed trace metabolites, which are difficult to
find changes by traditional methods (Heaney et al., 2019; Schranner
et al., 2020). In this study, the AUC value of the evaluation model
established by using the changes of trace metabolites of human
serum and athletes’ physical characteristics was greatly improved,
reaching more than 0.9, which has obvious advantages compared
with the 0.7 level of the evaluation model with other methods (Yang
et al., 2021a; 2021b). Besides, there are still some limitations in this
study. Due to the scarcity of elite athletes, the sample size is relatively
small, so men and women are not analyzed separately. On the
validation of the model, due to the sample size, only internal cross-
validation can be carried out, but not external data set validation,
which is a limitation of reliability and applicability. Later, we can try
to solve the problems by accumulating and sharing the samples of
elite swimmers. Another limitation to this study is a static time point.
In the future, it would be interesting to look at a before/after
swimming exercise, or a two-week training program. We may
conduct further research on the existing basis.

In conclusion, our study highlighted the potential of serum
metabolomics to discover metabolite biomarkers for the athletic
status of professional swimmers. Ten serum metabolites were
associated with athletic status in Chinese professional swimmers.
The different levels of metabolites among athletes at different
competition levels could be due to differences in genetics and
training regime. A four-metabolite model after being adjusted by
covariates, could identify or predict swimmers’ athletic status
reasonably well. Using this model with metabolite biomarkers,
coaches and researchers could evaluate the competitive level at
present and predict the potential of swimmers to develop to the
elite level.
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