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Noise‑assisted variational quantum 
thermalization
Jonathan Foldager 1*, Arthur Pesah2 & Lars Kai Hansen1

Preparing thermal states on a quantum computer can have a variety of applications, from simulating 
many‑body quantum systems to training machine learning models. Variational circuits have been 
proposed for this task on near‑term quantum computers, but several challenges remain, such as 
finding a scalable cost‑function, avoiding the need of purification, and mitigating noise effects. 
We propose a new algorithm for thermal state preparation that tackles those three challenges 
by exploiting the noise of quantum circuits. We consider a variational architecture containing a 
depolarizing channel after each unitary layer, with the ability to directly control the level of noise. We 
derive a closed‑form approximation for the free‑energy of such circuit and use it as a cost function 
for our variational algorithm. By evaluating our method on a variety of Hamiltonians and system 
sizes, we find several systems for which the thermal state can be approximated with a high fidelity. 
However, we also show that the ability for our algorithm to learn the thermal state strongly depends 
on the temperature: while a high fidelity can be obtained for high and low temperatures, we identify 
a specific range for which the problem becomes more challenging. We hope that this first study on 
noise‑assisted thermal state preparation will inspire future research on exploiting noise in variational 
algorithms.

Noise is often considered to be one of the strongest adversaries of practical quantum computation. Decoherence 
effects due to a noisy environment can create errors in the final output of a circuit, destroying the advantage of 
many quantum algorithms. In contrast, noise is also what underlies stochastic processes, and is therefore a crucial 
element in classical computing, solving tasks such as sampling and optimization. In quantum systems, noise has 
also been shown to be a useful resource in several applications: carefully engineered dissipative processes can lead 
to universal quantum  computation1, shot-noise in the measurement process can drive variational algorithms out 
of local  minima2,3, and amplitude-damping channels can significantly improve quantum autoencoders for mixed 
 states4. We investigate in the present paper a novel way to exploit noise in near-term quantum devices, with the 
objective of studying a central task in quantum computing: thermal state preparation.

Placing a quantum system driven by a Hamiltonian H and weakly-coupled to a reservoir with an effective 
temperature T = 1

β
 , the system will asymptotically reach a thermal equilibrium state, given by the quantum 

Gibbs distribution

where Z = Tr[e−βH ] is the partition  function5. Efficiently preparing a thermal state on a quantum computer is a 
problem of broad practical importance, with applications ranging from quantum chemistry and many-body phys-
ics simulations in an open  environment6–8 to semi-definite  programming9,10 and quantum machine  learning11,12. 
However, sampling from a general Gibbs distribution is a computationally hard task for classical computers, due 
to the complexity of calculating the partition  function13. Most techniques rely on Monte-Carlo Markov Chain 
(MCMC) algorithms, which are often provably efficient only above a certain threshold  temperature14.

Many algorithms have been proposed to prepare the thermal state on a quantum computer. A growing body 
of work has suggested using variational algorithms to solve the task of thermal state preparation on Noisy Inter-
mediate Scale Quantum (NISQ) devices. Since a unitary circuit acting on the zero-state cannot directly output 
a mixed state, most variational thermalization methods consist either in preparing a purification of the thermal 
state and tracing out the ancillary qubits at the end of the  circuit15–18, or in choosing an appropriate mixed state 
as  input19–21.

(1)ρβ =
1

Z
e−βH
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One of the main challenges associated to those methods is to design an appropriate cost function to be 
minimized during the variational training loop. While the ground-state of a Hamiltonian can be prepared by 
minimizing the average energy of the state, the thermal state can be prepared by minimizing the free energy 
F = H − TS of the state, where S = −Tr[ρ log(ρ)] is its Von Neumann entropy. However, the Von Neumann 
entropy is not an observable and can often only be computed  approximately18,22. A second problem is the need 
for additional qubits, which can be costly in near-term devices. Finally, none of those methods take into account 
the noise of the circuit, which can change the spectrum of the final state and affect the performance of the 
preparation  algorithm23.

In this paper, we propose a new method that we call Noise-Assisted Variational Quantum Thermalizer 
(NAVQT). Our algorithm assumes the ability to control the noise in the system down to some minimal noise level 
determined by the hardware. This type of control has been demonstrated in the context of error mitigation, where 
noise is increased in order to perform zero-noise  extrapolation24,25. More precisely, we construct a variational 
circuit with a parametrized depolarizing channel after each layer of unitary gates, as illustrated in Fig. 1(a). To 
simplify the optimization process, we have only considered the case where all the depolarizing parameters take 
the same value. By varying both gate and noise parameters, we seek to minimize the free energy of the final state.

In order to compute the free energy (and its gradient), we derive an analytical expression for the entropy of a 
slightly different circuit: one where all the depolarizing gates have been displaced at the beginning of the circuit, 
as shown in Fig. 1(b). Using this approximation, we can compute the gradient of the free energy with respect 
to both the noise and the unitary parameters. While this might be a rough estimate of the actual gradient, we 
show that this approximate optimization problem exhibits similar performance as when minimizing the true 
free energy.

We then empirically investigate our algorithm on three different types of Hamiltonians: the Ising chain, with 
and without a transverse field, and the Heisenberg model. For each model, we consider both uniform coefficients 
and coefficients drawn from a standard normal distribution, and train our variational algorithm for several 
choices of hyperparameters (number of layers, learning rates, initialization, etc.). To study the performance of 
our approach, we extract the fidelity of the prepared state compared to the actual thermal state for a range of 
different temperatures.

Our results reveal different patterns. On the one hand, fidelities above 0.9 are reached for uniform Ising chains, 
with and without a transverse field, for all temperatures and system sizes up to 7 qubits. On the other hand, the 
performance tend to decrease with the system size and for specific ranges of temperatures, with fidelities that 
can get below 0.7 for some of the most complex systems tested in this work.

Our paper is organized as follows. We start by reviewing previous work on variational thermalization in 
“Related work” section. We then introduce NAVQT in “Noise-assisted variational quantum thermalization” 
section. We follow this up by a description of our experiments in “Methods” section, and present our results 
in “Results” section. Finally, we discuss our work and provide ideas for future studies in “Discussion” section.

Related work
Variational circuits have recently been proposed for thermal state preparation, due to the existence of a natural 
cost function for this task: the free energy. Using variational circuits to prepare a thermal state presents two 
challenges specific to this task: (1) finding an ansatz that can prepare mixed states, (2) finding a scalable opti-
mization strategy.

Choice of the ansatz. A common approach to VQT consists in preparing a purification of the thermal 
state using a variational circuit that acts on 2N qubits—N system qubits and N ancilla/environment qubits—, 
and tracing the ancilla qubits out at the end of the  circuit15–18. An example of purification often considered in 
the literature is the thermofield double (TFD)  state15,16. For a Hamiltonian H and an inverse temperature β , it is 
given by

Figure 1.  Illustration of circuit components used in NAVQT. (a) General NAVQT ansatz: a sequence of unitary 
layers U(θi) followed by depolarizing gates D(�) on each qubit. (b) Approximation used in the free-energy 
calculations.
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where the {En, |n�}n are pairs of eigenvalue/eigenvector of H, and subscript S and E refers to the system and envi-
ronment, respectively. For instance, Refs.15,16 use a Quantum Approximate Optimization Ansatz (QAOA) ansatz 
acting on 2N qubits to prepare the TFD state of the transverse-field Ising model, the XY chain, and free fermions. 
One advantage of this approach is the ability to simulate the TFD, which can be interesting in in its own right, 
for instance for studying black  holes26. The obvious disadvantage is that it requires twice as many qubits that the 
thermal state we want to simulate. A converse approach consists in starting with a mixed state ρ0 and applying 
a unitary circuit ansatz on the N qubits of the system. The initial ρ0 can either be  fixed19 or modified during the 
optimization  process20,21. In Ref.19, ρ0 is the fixed thermal state of HI =

∑N
i=1 Zi , where Zi is the Pauli Z operator 

applied to qubit i of the system. It can easily be prepared using the purification

However, since the spectrum does not change when we apply the unitary ansatz, having a static ρ0 freezes the 
spectrum of the final state. Therefore, if the spectrum of the thermal state we want to approximate is far from 
the spectrum of ρ0 , this approach will fail. In Ref.20, they use the thermal state ρ0(ε) of H =

∑n
i=1 εiPi , where 

Pi = 1−Zi
2  as an initial state and ε = {ε1, . . . , εn} are parameters optimized during the training process. Finally, 

Ref.21 proposes to use a unitary with stochastic parameters to prepare ρ0 . More precisely,

where V(x) is a unitary ansatz and Xθ ∼ pθ is a random vector with parametrized density pθ . The density pθ can 
be given by a classical model, such as an energy-based model (e.g. restricted Boltzmann machine) or a normal-
izing flow, which will be trained to get a ρ0 with a spectrum close to the thermal state of interest.

Optimization strategies. Once the ansatz has been fixed, the parameters within needs to be optimized. 
Two main approaches have been proposed in the literature: (1) explicitly minimizing the free energy, (2) using 
imaginary-time evolution. In the following, we describe both these methods.

Free energy methods. The thermal state is the density matrix that minimizes the free energy. Therefore, in the 
same way as VQE uses the energy as a cost function, any thermal state preparation method can use the free 
energy as its cost  function15,16,19,21. However, one main difference with VQE is that the free energy cannot be 
easily estimated. Indeed, the Von Neumann entropy term, as a non-linear function of ρ , cannot be turned into 
an observable, and doing a full quantum state tomography would be very costly. Several methods have been 
proposed to solve this challenge:

• Computing several Renyi entropies Sα = 1
1−α

Tr[ρα] (using multiple copies of ρ ) and approximating the Von 
Neumann entropy with  them15,27.

• Computing the Von Neumann entropies locally on a small  subsystem15

• Approximate the Von Neumann entropy by truncating its  Taylor18 or  Fourier22 decomposition.

In our work, the entropy term does not come from a purification procedure, but from the presence of depolar-
izing gates in the circuits. This led us to propose a different type of approximation that we will study in “Noise-
assisted variational quantum thermalization”.

Imaginary-time evolution. Thermal state preparation can be seen as the application of imaginary-time evolu-
tion during a time �t = iβ/2 on the maximally-mixed state ρm = 1

d I , using the decomposition

This imaginary-time evolution can be simulated using a variational circuit and a specific update  rule28,29. In Ref.17, 
the authors use a variational circuit U(θ) on 2N qubits, initialized such that

where �+ is a maximally-entangled state. An imaginary-time update rule with a small learning rate τ will lead 
to a unitary U(θ0) such that:

Repeating it during k = β
2 steps will give the state

(2)|TFD� =
1

√
Z

∑

n

e−βEn/2|n�S ⊗ |n�E

(3)
⊗

j

√
2 cosh(β)

∑

b∈{0,1}N
e(−1)1+bβ/2|b�S|b�E .

(4)ρ0(θ) = V(Xθ )|0��0|V(Xθ )
†

ρβ =
(
1

C
e−βH/2

)(
1

d
I

)(
1

C
e−βH/2

)

U(θ0)|0�⊗2N ≈ |�+�

U(θ1)|0�⊗2N ≈
1

C
e−τH |�+�

U(θk)|0�⊗2N ≈
1

C
e−βH/2|�+�
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which will be the thermal state after tracing out the environment. In Ref.30, the authors also use imaginary-time 
evolution to prepare the thermal state, but manage to reduce the number of qubits to N when the Hamiltonian 
is diagonal in the Z-basis. Finally, an ansatz-independent imaginary-time evolution method has been proposed 
for thermal state  preparation31,32.

In this work, we optimize the ansatz parameters using the free energy approach. Adapting imaginary-time 
evolution to a noisy ansatz could however be an interesting alternative, that we let for future work.

Noise‑assisted variational quantum thermalization
We introduce here the Noise-Assisted Variational Quantum Thermalizer (NAVQT), a variational algorithm where 
depolarizing noise is used as the source of entropy for preparing the thermal state. We consider a noise model 
where each layer of unitary gates is followed by a one-qubit depolarizing channel

where I is the identity matrix. The channel is represented in Fig. 1. For the purpose of this work, we consider that 
we have the same noise value � ∈ [�min, 1] everywhere in the circuit, where �min is the minimum noise reachable 
by the hardware. We note ρθ ,� the output of the noisy circuit with unitary parameters θ and noise parameter � , 
and want to find the optimal parameters {θ∗, �∗} such that ρθ∗ ,�∗ ≈ ρβ where the latter is given by Eq. (1).

The thermal state ρβ can be approximated by minimizing the free energy of the system, given by:

where

is the energy and

is the Von Neumann entropy of the state.
The energy term and its gradient are easy to evaluate: we can use the parameter shift-rule33 to compute 

∇θE(θ , �) , and the finite-difference method to calculate ∂�E(θ , �) . The entropy term is much harder to evaluate 
as it is a non-linear function of the state. To approximate it, we consider the circuit where all the noise has been 
put at the beginning, as shown in Fig. 1(b). While the resulting free energy will not be equal to the free energy 
of our original circuit in general, they tend to follow similar trajectories when varying the noise level (see Sup-
plementary Fig. S1). The new entropy does not depend on θ and can be calculated analytically as if there were 
no unitary gates. For a circuit with N qubits and m layers, this approximate entropy S̃(�) is given by

where d = 2N . The full derivation is given in the Supplementary material. Using this approximation, we get the 
following gradient-based update rule at each optimization step:

where ηθ and η� are the learning rates for θ and � , respectively.

Methods
In this section, we will briefly describe the basis of conducted experiments. All quantum circuit simulations are 
done in  Cirq34 and TensorFlow-Quantum35.

Ansatz. For the unitary layers of our circuit, we chose an ansatz inspired by the Quantum Approximate 
Optimization Ansatz (QAOA) applied to the Ising chain  Hamiltonian36. More precisely, if we define a problem 
Hamiltonian

and a mixing Hamiltonian

(5)D(�)(ρ) = (1− �)ρ + �
I

2
,

(6)F(θ , �) = E(θ , �)−
1

β
S(θ , �)

(7)E(θ , �) = Tr[Hρθ ,�]

(8)S(θ , �) = −Tr[ρθ ,� log(ρθ ,�)]

(9)

S̃(�) = −N

(
(1− �)m +

(1− (1− �)m)

d

)
·

ln

(
(1− �)m +

(1− (1− �)m)

d

)

+
(d − 1)(1− (1− �)m)

d
ln

(
(1− (1− �)m)

d

)

(10)θ (n+1) = θ (n) − ηθ∇θE(θ , �)

(11)�
(n+1) = �

(n) − η�

(
∇�E(θ , �)−

1

β
∇�S̃(�)

)

(12)HP = −
∑

i

ZiZi+1 −
∑

i

Zi
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the QAOA ansatz with p layers is given by

This ansatz, whose explicit construction is represented in Fig. 2, has been well-studied in the context of ground-
state  preparation37 and has been shown to be  universal38 in the limit p → ∞ . We test two different versions of 
this ansatz. In the first one, denoted restricted QAOA, gates of the same type from a given layer share the same 
parameters βi and γi . In the second version, which we call flexible QAOA, every gate has its own parameter.

We ran some preliminary tests to verify that this unitary ansatz is at least able to express the ground-state of 
all the systems tested in our work, and found it to be the case when the number of layers is fixed at ⌈N2 ⌉ . Hence 
the noisy ansatz should in principle be able to represent the correct thermal state for large β , by setting � = 0 
and fitting the unitary parameters corresponding to the ground-state. Moreover, NAVQT is also able to represent 
the maximally-mixed state, corresponding to a low β , by setting � = 1 . In Supplementary Figure S3, we provide 
some results for a varying number of layers L ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} at β = 1 for the three-qubit Heisenberg 
Hamiltonian with random coefficients, showing that the fidelity does not improve significantly compared to our 
heuristic number of layers. Hence we find evidence to rule out the number of ansatz layers as a limiting factor 
to achieve better performance. The ability of the ansatz to learn intermediate temperatures is an open question, 
that we tackle in our numerical analysis.

Hyperparameters. Since the choice of hyperparameters can have a substantial impact on the performance 
of variational  circuits37, we perform a grid-search to reduce the potential negative effects resulting from a single 
design choice. Hence we try all combinations in the search space defined by

• Restricted QAOA and flexible QAOA
• Initial noise level: � = {10−8, 0.001, 0.1}
• Unitary learning rate: ηθ = {0.01, 0.4}
• Noise learning rate: η� = {0.0001, 0.1}
• Seeds for unitary parameters: [0; 4].

We run our algorithm for N ∈ [3; 7] qubits and for maximum 1000 iterations. To test the per-
formance across temperatures, we take 10 different betas in the interval β ∈ [10−3; 102] , namely 
{0.001, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0, 10.0, 100.0} . We initialize the unitary parameters by sampling from a uni-
form distribution in the interval [0.0001, 0.05] as done  in37. Finally, we extract the solution that gives the lowest 
(approximated) free energy among all the tested hyperparameters and initializations. We also include the same 
grid-search using finite-difference on the true free-energy in Supplementary Fig. S2.

Noisy circuit simulation. To simulate the noise in our circuit, we use the fact that depolarizing gates can 
also be written  as39

which can be interpreted as applying a random Pauli error with probability p = 3�
4  and nothing with probability 

p = 1− 3�
4  . We can therefore simulate depolarizing gates as stochastic mixtures over unitary circuits containing 

errors. More precisely, if we sample K unitaries U (k) , each being a combination of the unitary part of the ansatz 
and some random errors, we can extract the corresponding density matrix as:

(13)HM = −
∑

i

Xi ,

(14)U(γ ,β) = eiβpHM eiγpHP . . . eiβ1HM eiγ1HP

(15)D(�)(ρ) =
(
1−

3�

4

)
ρ +

�

4
(XρX + YρY + ZρZ)

Figure 2.  A layer of the unitary ansatz used in our experiments, inspired by QAOA for the 1D Ising model. RZ 
and RX are parametrized rotations around the corresponding axis, and RZZ = e−iθZiZj.
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We found that taking a sample size of K = 500N was sufficient to get stable gradients and reach the maximum 
entropy S ≤ log 2N . However, we also found that K could be smaller, especially when β was large and hence the 
target entropy was low.

Performance metric. For each experiment, we report the fidelity

between the thermal state and the output state of the trained circuit. Tracking the fidelity requires us to compute 
the true thermal state ρβ for each Hamiltonian H and temperature β . In practice, taking the exponential of a 
matrix containing potentially large numerical values (e.g. when β is large) can result in numerical issues. To 
alleviate those issues, we calculate the thermal state density matrix ρβ by taking the log on both sides of Eq. (1) 
and using the log-sum-exp  trick40:

 where c is the largest eigenvalue of H.

Models. We evaluated our algorithm on three different models: the Ising chain, with and without a transverse 
field, and the Heisenberg model. For each model, we considered two cases: when the coefficients Ji = hi = 1 for 
all i, denoted the uniform version, and when Ji , hi ∼ N (0, 1) for all i, denoted the random version. Between five 
seeds for the random version, we pick the Hamiltonian with the lowest spectral gap as this could be considered 
the hardest Hamiltonian. In the case for Hamiltonians with random coefficients, we normalized the set of all 
coefficients such that the vector containing all coefficients had unit length. See Supplementary Fig. S4 for a plot 
of the model energy scales.

Ising chain. The 1D Ising model, or Ising chain (IC), considers a set of spins on a chain such that all spins have 
exactly two coupled neighbors when considering N > 2 . The Hamiltonian associated with such system is given 
by

where Zi is the Pauli Z operator acting on qubit i.

Transverse field Ising chain. The transverse-field Ising chain (TFI) adds quantum effects to the previous model 
by including some non-diagonal terms in its Hamiltonian. It is defined as

where Xi is the Pauli X operator acting on qubit i.

Heisenberg model. Finally, we consider the 1D Heisenberg model, whose Hamiltonian is given by

The Heisenberg model is of fundamental importance in the study of quantum  materials41–44 and is therefore a 
standard benchmark for thermal state preparation  methods31,32,45.

Results
We first present the optimization curves for N = 4, at three different temperatures β ∈ {0.1, 0.5, 10} in Fig. 3. We 
report the fidelity between the learned state and the thermal state as a function of the inverse temperature β for 
all the different models in Fig. 4. Finally, we also report the final noise level � as a function of β for all models in 
Fig. 5. We can notice a few phenomena from those figures: 

(16)ρout ≈
1

K

K∑

k=1

U (k)ρin

(
U (k)

)†

(17)F(ρ1, ρ2) = Tr

[√√
ρ1ρ2

√
ρ1

]

(18)

log ρβ = log e−βH − log Tr[e−βH ]

= −βH − log
∑

i

e−β�i

= −βH −

(
−βc + log

∑

i

e−β(�i−c)

)

(19)HIC = −
∑

i

JiZiZi+1 −
∑

i

hiZi

(20)HTFI = −
∑

i
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∑

i

hZi Zi −
∑
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hXi Xi
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∑
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∑
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JXi XiXi+1

−
∑

i

JYi YiYi+1 −
∑

i
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1. The optimization curves presented in Fig. 3 show that the optimization procedure improves the solution 
compared to a random initialization, both when a very high fidelity is reached at the end and when the fidel-
ity is lower. It eliminates the possibility that random states being closed to the desired thermal states would 
explain our results. Moreover, the fidelity tends to increase with the number of iterations, showing that our 
approximate cost-function might be well-suited to our optimization goal.

2. Thermal states at low and high temperatures are easily approximated by our method, for all models and 
system sizes. Looking at the � curves, we see that the optimizer is indeed able to find � = 0 for very large β 
and � = 1 for very low β . Hence, when the thermal state gets close to a maximally-mixed state or to a pure 
state, the algorithm learns to respectively maximize or minimize the noise, independently of the initial noise 
level.

3. The performance tends to degrade at intermediate temperatures, reaching for instance a fidelity of 0.6 for 
the Heisenberg model with random coefficients. However, there are several temperatures for which a non-
trivial noise level is learned and the fidelity remains high, such as the same model at β = 10−1 , for which a 
fidelity above 96% is reached for all system sizes with a noise level between 0.5 and 0.8. Hence the algorithm 
can actually find the correct thermal state in non-trivial temperature regimes.

From those results, an important question to consider is whether the low fidelity obtained for some systems 
is due to a failure of the optimization procedure or to the potentially low expressibility of our noisy ansatz. To 
tackle this question, we tested different methods to optimize the parameters of the ansatz, including a grid-search 
in the parameter space for systems that are small enough to allow it to run in a reasonable time. We found no 
significant improvement in the fidelity compared to the original optimization method. We also tried to initialize 
the unitary ansatz to the ground-state solution before turning on the noise, but it did not result in a significant 
increase of fidelity neither. Finally, to evaluate the effect of our free energy approximation, we performed all the 
experiments previously mentioned using finite-difference on the true free energy. The corresponding results can 
be found in Supplementary Figure S2, where we observe very similar fidelities as with the approximate free energy 
method. It means that for the hardest systems tested in this work, the noisy ansatz was probably not expressible 
enough to output an accurate approximation of the thermal state, independently of the optimization algorithm. 

β = 0.1 β = 0.5

β = 10

Figure 3.  Optimization curves for the three models with uniform coefficients and N = 4 . We observe in all 
the cases a constant increase of the fidelity, showing that minimizing the approximate free energy cost function 
tends to result in a maximization of the fidelity. It also shows that the final result found by the algorithm is 
always significantly better than the random initialization.
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Changing the depolarizing gates to more general noise channels could help improve the expressibility of the 
ansatz and is let for future work.

Discussion
In this paper, we introduced a novel type of variational algorithms, in which the noise is parameterized and 
optimized together with the unitary gates. We used this architecture to prepare thermal states, overcoming some 
of the most common challenges for this task, such as the need of ancilla qubits and the adverse effect of noise. To 
optimize our ansatz, we used a closed-form approximation of the free-energy and performed gradient-descent 
with it. We investigated various Hamiltonians and deduced that the ability of our method to learn the correct 
thermal states strongly depends on the model, the temperature and the system size. While we systematically 

Figure 4.  Fidelities obtained using NAVQT as a function of the inverse temperature β , for various models 
and system sizes. For all the models, we observe that the algorithms reaches a high fidelity for low and high 
temperature, while it tends to decrease at intermediate temperatures. Overall, good performance is obtained 
at all temperatures for the two types of uniform Ising chains, while lower fidelities are reached with the other 
models.
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obtained fidelities above 0.9 for both the transverse-field and the classical Ising chain, we had fidelities below 
0.7 at some temperatures for the 1D Heisenberg model with random coefficients. We also identified a specific 
range of temperatures for each model, for which the task is harder for NAVQT to solve. Our experiments with 
different optimization algorithms reveal that the failure of the ansatz to learn the correct thermal state in those 
cases is probably an expressibility rather than an optimization issue.

This paper serves as a starting point in the study of noise-assisted thermalization, and many avenues are still 
open for future work. For instance, we only considered a single shared parameter � for all the depolarizing gates, 
as it allowed us to derive an approximation of the free energy, which simplified the optimization process. Vary-
ing the noise across each layer and each qubit independently could significantly increase the expressibility of 

Figure 5.  Final noise level � as a function of the inverse temperature β for various models and system sizes. 
We used a symlog scale for the y-axis, hence the scale becomes linear below 10−3 . We observe a clear decrease 
of the noise level with β , with � ≈ 1 for β = 10

−3 (corresponding to the maximally-mixed state) and � ≈ 0 for 
β ≈ 10

2 (corresponding to the ground-state). It shows that the general relationship between the noise and the 
temperature has overall been correctly learned by our model.
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the ansatz. More generally, replacing the depolarizing gates by channels that are more tailored for thermal state 
preparation would be an interesting avenue to improve our method. For instance, Davies maps are non-unital 
channels that can model the evolution of quantum systems weakly-coupled to a thermal reservoir, making them 
particularly adapted to thermal state  preparation46. Moreover, their unitary and dissipative parts commute, mak-
ing the calculation of the entropy potentially easier than for our ansatz.

A second important aspect for future work would be to better understand the theory behind noise-assisted 
variational circuits. For instance, what are the conditions on the Hamiltonian and the temperature under which 
NAVQT can approximate the thermal state with an arbitrary high fidelity? How does our method scale with the 
system size? What type of noise is necessary to approximate a given thermal state?

Finally, it could be interesting to study the optimization landscape of NAVQT and potentially come up with 
optimization algorithms that are more tailored to this problem. For instance, it has been shown that a barren pla-
teau phenomenon occurs in noisy circuits that are similar to our  ansatz47. It can potentially hinder the scalability 
of our method, as it relies explicitly on increasing the noise. Finding the relationship between the temperature 
β , the system size N and the magnitude of the gradient could be an interesting direction for future research.

Data availability
All code is available at https:// github. com/ jfold/ navqt.
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