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Abstract: Metal-organic frameworks (MOFs), which have become popular in recent years as excellent
carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic
bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical
methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many
problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the
simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with
efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe)
was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+

for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared
spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag.
The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern.
Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe)
was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize
an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial
mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity,
so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated
structurally engineered nanocomposite with broad-spectrum bactericidal activity.

Keywords: metal-organic framework; Ag nanoparticles; hybrid nanoagents; antibacterial activity

1. Introduction

Pathogenic bacterial infections have become one of the most serious problems threat-
ening public health. Many diseases caused by pathogens, such as intestinal infections
and lung inflammation, affect the lives and health of people worldwide. Since the end of
2019, the outbreak of COVID-19 has posed a great risk to human health and economies
worldwide, with co-infections of viruses and bacteria occurring in several countries against
the backdrop of continuous viral mutations [1–4]. Recent studies have shown that infec-
tions caused by Escherichia coli and Staphylococcus aureus are important factors in human
pathogenesis [5,6]. E. coli is a Gram-negative bacterium with a short bacillus with blunt
rounded ends. It is a conditional pathogen, and under certain conditions, E. coli infections
can occur in the gastrointestinal tract, urinary tract, and other local tissues and organs [7].
S. aureus belongs to the genus Staphylococcus, and it is a Gram-positive bacterium. S. aureus
pneumonia is serious, and it is one of the main causes of purulent lung infections [8]. In the
last few decades, various antibiotics have been developed to prevent and fight infections.
There are various types of anti-infective drugs, including β-lactam antibiotics, aminogly-
coside antibiotics, macrolide antibiotics and quinolones, and antifungal drugs such as
clotrimazole and ketoconazole [4,5]. However, these anti-infective drugs have drawbacks,
and they can cause are many adverse reactions, including drug fever, rashes, intestinal
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reactions, anaphylaxis, contact dermatitis, photosensitive reactions, secondary infections,
and angioneurotic edema. Moreover, the treatment of pathogenic bacterial infections with
antibiotics has become very difficult due to the chronic misuse of antibiotics, which has
increased bacterial resistance and is now a clinical problem. Therefore, it is important to
develop innovative antimicrobial systems to treat bacterial infections [6–8].

In recent years, instead of antibiotics, new materials such as inorganic nanocomposites
and antibacterial peptides have gradually begun to be reported as antibacterial materials
in the biological field. However, these materials have their own drawbacks. For example,
their single antibacterial mechanism can only maintain a limited bactericidal rate, and they
also have a certain toxicity. Therefore, it is urgent to design a dual-mechanism antibacte-
rial material to fight pathogenic bacteria. Metal–organic frameworks (MOFs) are formed
by chemically aligning organic ligands to central metal ions to construct porous three-
dimensional framework structures [9–18]. In current research, MOF materials are mainly
used in energy-storage, gas adsorption and separation, catalysis, sensing, magnetism, and
fluorescence applications. Carrillo-Carrión [19] reported that MOFs have emerged as one
of the most fascinating libraries of porous materials with a large potential in very diverse
application areas. Huang et al. [20] synthesized bimetallic Ce–Ni MOFs (Ce–Ni-MOFs) via
hydrothermal reactions using 1,3,5-benzenetricarboxylic acid as a ligand. Yi et al. discov-
ered that MIL-53(Fe) MOFs can significantly enhance the chemiluminescence of luminol
in the presence of H2O2 in alkaline media. This finding led to a new chemiluminescence
method for the biosensing of glucose when combined with glucose oxidase, confirming the
existing application of MOF materials [21].

With the increasing research on nanotechnology, nanomaterials are considered to be the
most promising antimicrobial agents. They not only play an important role in photothermal
and antimicrobial therapies but also show good biosafety properties. Gold, silver, zinc, and their
compounds are common antimicrobial agents. Among these elements, Gold gold and nanosilver
are the most common antimicrobial agents, and they are more widely used due to their long-
lasting bactericidal effects [14,15]. Silver nitrate was used as an antibacterial material for the
treatment of venereal diseases and other disorders in the 18th century. The silver ions contained
in silver nitrate are an excellent antimicrobial agent, but the use of silver nitrate is limited due to
its inherent toxicity. With increasing use in various fields such as clinical nanotechnology and
medicine, Sobhan Mortazavi-Derazkola et al. synthesized CME@Ag-NPs in a green way from a
leaflet fruit extract, and they biosynthesized CME@Ag-NPs against multidrug-resistant human
pathogens [16]. The bacteria exhibited excellent antibacterial efficiency and showed significant
anticancer activity in AGS and MCF-7 cell lines. Hakimeh Teymourinia et al. used cotton–
silver–graphene quantum dots (cotton/Ag/GQDs) nanocomposites as novel antibacterial
nanomats [17]. Razieh Razavi et al. utilized the bio-oil-in-water nanoemulsion technique to
freely synthesize silver nanoparticles (AgNPs), which are simple, green, economical, and have
low toxicity to cells [18]. A low cytotoxicity or non-toxic antimicrobial material needs to be
established and then be developed to improve its take advantage of and transformed into a
prevention and control product.

MOFs have high porosity and large specific surface area, and the open metal sites have
certain antibacterial capabilities [21–24]. In addition, due to their good biocompatibility,
MOFs are candidates for loading drugs and metal particles [25–27]. Combining MOF
materials with other organic and inorganic materials has become a current research trend.
Hu et al. reported on an organic framework containing silver metal that showed excellent
antibacterial activity [28]. Huang et al. successfully loaded Ag ions as a typical antibac-
terial agent into MIL-53(Fe) through simple impregnation, forming MIL-53(Fe)@Ag with
antibacterial activity and low cytotoxicity [29]. The free silver ions in MIL-53(Fe)@Ag can
directly inactivate the basic proteins in the bacterial cell and then kill bacteria. Therefore,
MOFs are suitable for producing antibacterial nanosystems. Although adding metal ions
can enhance the sterilization ability of MOFs, this process also has some shortcomings,
such as the cytotoxicity caused by high doses of metal ions, slow sterilization speed, and
an unsatisfactory sterilization effect [30–36].
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In this study, we designed a derivative of the structurally engineered Ag+-doped MOF
MIL-101(Fe)@Ag that has a high-efficiency ion-release capacity, antibacterial properties,
reliable biosafety, and can be used for broad-spectrum bacterial sterilization. We prepared
a novel type of functionalized MIL-101(Fe)@Ag nanocomposite; characterized the structure
of the material with powder X-ray diffraction (XRD), scanning electron microscopy (SEM),
and Fourier transform infrared (FTIR) spectroscopy; and investigated the mechanism of
MIL-101(Fe)@Ag synthesis from the characterization results. The antibacterial properties
of MIL-101(Fe)@Ag against E. coli and S. aureus were investigated with bacterial growth
curves and plate-coating experiments. The reactive oxygen species (ROS) assay was used to
explore the antibacterial mechanism, analyze the mechanism of action of the nanomaterials
against bacteria, and explore the biosafety of the nanomaterials at the cellular level to lay
the foundation for the development of new, safe, and effective antibacterial agents [37–39].

2. Results and Discussion
2.1. Synthesis and Characterization of MIL-101(Fe) and MIL-101(Fe)@Ag

MIL-101(Fe)@Ag was synthesized with the solvothermal synthesis method. First, H2BDC
and FeCl3·6H2O were reacted in DMF, and then silver nitrate was added. The nanocomposites
were obtained under high-temperature and high-pressure conditions in the reactor. A schematic
diagram of the whole reaction process is shown in Figure 1. The laboratory-synthesized MIL-
101(Fe)@Ag nanoparticles were investigated with powder XRD (PXRD), FTIR spectroscopy, ICP
mass spectrometry, TG analysis, XPS, and the BET method [40].
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Figure 1. Experimental flow chart for synthesis of MIL-101(Fe)@Ag.

2.1.1. PXRD

PXRD can be used to accurately and efficiently detect the crystallinity of samples, and
the structural characteristics of the samples can be determined by comparing the PXRD
patterns of products (Figure 2) [41–43]. Here, the synthesized products were investigated
with PXRD by varying the addition ratio of FeCl3·6H2O and silver nitrate. The diffraction
peaks (2θ) at 8.6◦, 8.9◦, 10.2◦, 10.6◦, 16.4◦, 19.5◦, and 21.5◦ in the PXRD pattern are the
characteristic peaks of MIL-101(Fe) [44]. Comparing the diffraction peaks of the simulated
PXRD patterns (Figure 2a) clear showed that MIL-101(Fe) was successfully constructed and
silver ions were successfully loaded in MIL-101(Fe) to synthesize an MOF with a bimetallic
structure, that is, the target product MIL-101(Fe)@Ag.
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MIL-101(Fe)@Ag (Ag 0.0101 wt%), and MIL-101(Fe)@Ag (Ag 0.0127 wt%). (b) PXRD spectrum of
MIL-101(Fe)@Ag (Ag 0.0127 wt%).

2.1.2. FTIR Spectroscopy

FTIR spectroscopy can be used to identify the functional groups of a sample by the
positions of the functional-group types, and comparisons with MIL-101(Fe) could show whether
the synthesized product was the desired product [45]. Here, the intensities of the peaks
gradually decreased with increasing amount of AgNO3 (Figure 3b). This may have been
because of the addition of AgNO3 during the synthesis of MIL-101(Fe)@Ag, which affected
the synthesis of the product. Owing to the interaction force between Fe3+ and Ag+, together
with the aggregation of Ag+, after the addition of more than 0.0127 wt% silver nitrate, a large
number of silver ions aggregated and subsequently comprised the structure of the synthesized
MOF collapse, and the characteristic peaks of the PXRD structure shifted. In the FTIR spectra
of MIL-101(Fe)@Ag (Figure 3), the C–H bond of the benzene ring remained at 751 cm−1. The
characteristic peaks at 1396 and 1583 cm−1 are the symmetric and asymmetric vibrations of
the carboxyl group (–COO–), while the characteristic peak at 1680 cm−1 is associated with the
presence of a C=O bond in the free carboxyl group, indicating the presence of a continuous
dicarboxyl linkage [41–44]. This showed that the peaks of MIL-101(Fe) were still present in the
FTIR spectrum of MIL-101(Fe) loaded with silver ions.
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2.1.3. ICP Analysis

The loading capacity was then investigated with ICP mass spectrometry [46,47]. Prod-
ucts were synthesized with the addition of silver nitrate to MIL-101(Fe)@Ag of 0.0039 wt%
(MIL-101(Fe)@Ag (Ag 0.0039 wt%)), 0.0101 wt% (MIL-101(Fe)@Ag (Ag 0.0101 wt%)), and
0.0127 wt% (MIL-101(Fe)@Ag (Ag 0.0127 wt%)). The maximum Ag-ion loading content of
MIL-101(Fe)@Ag was 0.0127 wt% when the mass ratio was 0.2:1 (Figure 4). Therefore, we
selected MIL-101(Fe)@Ag (Ag 0.0127 wt%) for further investigation.
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2.1.4. UV–vis Spectroscopy

A Hitachi U-3010 UV–vis diffuse reflectance spectrophotometer was used to measure
the UV–vis absorption spectra using DMSO as a reference [45]. We compared the UV–vis
absorption spectra of MIL-101(Fe), MIL-101(Fe)@Ag, and silver nitrate, and we analyzed
the preparation of MIL-101(Fe)@Ag with different silver nitrate contents using DMSO as a
reference material. The UV–vis absorption spectra of MIL-101(Fe)@Ag, MIL-101(Fe), and
silver nitrate are shown in Figure 5. The absorption peaks of MIL-101(Fe)@Ag were in the
range of 260–290 nm, which was consistent with MIL-101(Fe). The absorption peak became
higher and broader with the addition of Ag to MIL-101(Fe), covering the silver nitrate peak.
MIL-101(Fe)@Ag showed significant absorption in the UV region (200–350 nm). In this
experiment, the total amount of H2BDC and FeCl3·6H2O—the substrates used for synthesis
of MIL-101(Fe)—was used as the standard, and the corresponding amount of silver nitrate
was added to this total amount. The synthesized materials are called MIL-101(Fe)@Ag (Ag
0.0039 wt%), MIL-101(Fe)@Ag (Ag 0.0101 wt%), and MIL-101(Fe)@Ag (Ag 0.0127 wt%).

2.1.5. ζ-Potential, Nanoparticle Size, and TG analysis of MIL-101(Fe)@Ag (Ag 0.0127 wt%)

MIL-101(Fe)@Ag (Ag 0.0127 wt%) was further investigated. The ζ-potential of
MIL-101(Fe)@Ag (Ag 0.0127 wt%) was 34.4 mV (Figure 6). The distribution of particles
is more stable for a more stable dispersion system of particles according to ζ-potential
and nanoparticle-size tests. It is generally considered that the cut-off line of the particle-
dispersion stability in the aqueous phase is ±30 mV. If all of the particles have a zeta
potential higher than +30 mV or lower than −30 mV, the dispersion system should be
relatively stable. TG analysis can be used to determine the thermal stability of a substance
by measuring the mass of the sample in the heated state as a function of temperature [42,48].
Here, the TG curve of the sample can be roughly divided into three phases (Figure 7). The
first stage occurred from 30 to 250 ◦C, where the sample lost from approximately 1% to
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10% of its weight due to the removal of the residual guest molecules from the crystal
structure. The second stage was from 250 to 550 ◦C, where the sample lost the most weight
(approximately 40% of its weight), indicating the collapse of the crystal structure. The
highest heat-resistance temperature of MIL-101(Fe)@Ag (Ag 0.0127 wt%) was 350 ◦C. The
third stage was from 550 to 650 ◦C, where the sample lost little weight and the curve was
flat. In TG analysis, the synthesized material showed excellent stability, so it is suitable for
application at high temperatures.
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2.1.6. XPS Analysis

To further investigate the surface chemical composition and chemical valence of the
complexes, the elements contained in the MIL-101(Fe)@Ag (Ag 0.0127 wt%) composite and
the chemical composition were analyzed with XPS. XPS measurements provide information
about elemental composition and chemical form, which can be obtained from the sample
surface elemental content or concentration [43]. The results of XPS semi-quantitative
analysis of MIL-101(Fe)@Ag (Ag 0.0127 wt%) are shown in Figure 8. The full spectrum of
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MIL-101(Fe)@Ag (Ag 0.0127 wt%) is shown in Figure 8a, indicating that MIL-101(Fe)@Ag
(Ag 0.0127 wt%) was mainly composed of C, O, Fe, Cl, and Ag. The Fe 2p, C 1s, Ag 3d,
and O 1s XPS spectra are shown in Figure 8b–f. The bond energies of Fe 2p were located
at 710.36 and 726.13 eV (Figure 8b), which can be attributed to Fe 2p3/2 and Fe 2p1/2,
respectively. Satellite peaks appeared at 713.11 and 717.33 eV, which are consistent with
the trivalent Fe-binding form and indicate the successful construction of a bimetallic MOF
structure containing +3 valent iron ions, which is consistent with previous results [44]. The
high resolution C 1s spectrum was divided into three peaks (Figure 8c). The characteristic
peaks at 284.088 and 289.13 eV can be attributed to the benzene ring and carboxylic acid
groups on the organic ligand H2BDC in MIL-101(Fe), respectively [49].
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2.1.7. BET Analysis

The BET surface area and pore structure were evaluated by performing N2 adsorption–
desorption experiments. MIL-101(Fe) exhibited a typical type IV N2 adsorption–desorption
curve (Figure 9), indicating that MIL-101(Fe) had a porous structure. The curve of
MIL-101(Fe)@Ag (Ag 0.0127 wt%) was almost the same as that of MIL-101(Fe). The specific
surface area and pore size analysis showed that the specific surface area of MIL-101(Fe)
was 200 m2/g, the average pore diameter was 2.2 nm, and the pore volume was 0.1 cm3/g.
After adding Ag+, the specific surface area of MIL-101(Fe)@Ag (Ag 0.0127 wt%) was 6 m2/g,
the average pore diameter was 26 nm, and the pore volume was 0.04 cm3/g. The smaller
specific surface area, smaller pore volume, and larger pore size of MIL-101(Fe)@Ag (Ag
0.0127 wt%) are believed to be due to the fact that even though the pore size in the synthe-
sized material did not change, the pore size was blocked due to the addition of silver ions,
which were embedded in the structure [50].
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Figure 8. Elemental XPS spectra of MIL-101(Fe)@Ag (Ag 0.0127 wt%). (a) Full XPS spectrum of
MIL-101(Fe)@Ag (Ag 0.0127 wt%). (b) XPS spectrum of Fe. (c) XPS spectrum of Ag. (d) XPS spectrum
of O. (e) XPS spectrum of C. (f) XPS spectrum of Cl. (g) XPS spectrum of F. (h) XPS spectrum of N.
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2.1.8. SEM and EDS Analysis

The morphology, shape, and size of the MIL-101(Fe) and MIL-101(Fe)@Ag samples
were observed with SEM at an accelerating voltage of 200 eV to 30 keV (Figure 10). SEM
has high resolution, and the depth of field is much greater than that of optical microscopy
at the same magnification, thus enabling the observation of the three-dimensional structure.
MIL-101(Fe) showed a six-hole stereoscopic structure with a uniform dispersion (Figure 10a,b).
Combined with the abovementioned PXRD results, these results demonstrate that MIL-
101(Fe) was successfully synthesized. An in-depth study was performed with EDS and
elemental mapping (Figure 11). The elements C, O, F, Cl, and Fe were present in MIL-
101(Fe)@Ag. The distributions of the elements C, O, and Fe showed the MIL-101(Fe)
skeleton centered on trivalent iron, while the distributions of the elements F and Cl indicated
that silver ions were embedded in the skeleton in the form of spheres. These results are
consistent with the abovementioned XRD results and further confirm the synthesis of
MIL-101(Fe)@Ag.
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Figure 11. SEM images and EDS spectral analysis of MIL-101(Fe)@Ag (Ag 0.0127 wt%). Electron
microscope images of MIL-101(Fe)@Ag (a–f) are energy dispersive X-ray spectroscopy (EDS) for
elemental color mapping (Fe, C, O, Cl) spectrum; (g) is the energy absorption ratio of each element.

A component known to play an antibacterial role in similar structures is that of
silver ions or nanosilver. Thus, in this study, the structure with the highest silver con-
tent, MIL-101(Fe)@Ag (Ag 0.0127 wt%), was used, and the results of experiments using
MIL-101(Fe)@Ag (Ag 0.0127 wt%) and MIL-101(Fe) were compared.

2.2. Effect of MIL-101(Fe)@Ag (Ag 0.0127 wt%) on Bacterial Growth
2.2.1. Inhibition-Zone Experiment

The concentration strongly affects the properties of nanomaterials. Thus, we analyzed
the effect of different concentrations of MIL-101(Fe)@Ag (Ag 0.0127 wt%) on bacterial
growth. We investigated the effect of MIL-101(Fe)@Ag (Ag 0.0127 wt%) particles on
bacterial growth under normal conditions and with weak magnetic properties. According
to inhibition-zone experiments of five different types of bacteria, MIL-101(Fe)@Ag (Ag
0.0127 wt%) had an inhibitory effect on all five bacteria and the presence of the inhibition
zone clearly explained the inhibitory effect of MIL-101(Fe)@Ag (Ag 0.0127 wt%) on bacteria
(Table 1).
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Table 1. Inhibition-zone diameters of MIL-101(Fe) and MIL-101(Fe)@Ag (Ag 0.0127 wt%) (mm).

Types of Bacteria MIL-101(Fe)@Ag
(Ag 0.0127 wt%) MIL-101(Fe)

Escherichia coli 12 9
Staphylococcus aureus 12.3 9

Staphylococcus epidermidis 10 9
Acinetobacter cereus 11 9
Acinetobacter jungii 11 9

Pseudomonas aeruginosa 11 9

2.2.2. Determination of the Bacterial Growth Curves

The analysis of inhibition of bacterial growth by MIL-101(Fe)@Ag (Ag 0.0127 wt%)
showed that bacterial inhibition became more pronounced as the silver content increased
(Figure 12). E. coli and S. aureus are the two main bacteria commonly found in our lives, and
they are Gram-negative and Gram-positive bacteria, respectively. E. coli is a normal host
bacterium in the intestinal tract of animals, and a small percentage of E. coli causes diseases
under certain conditions. Some serotypes of E. coli can cause human or animal gastrointesti-
nal tract infections, which are mainly caused by specific bacterial hair antigens, pathogenic
toxins, and other infections, as well as urinary tract infections, arthritis, meningitis and
septicemia-type infections. S. aureus belongs to the genus Staphylococcus, and it is a com-
mon foodborne pathogenic microorganism. S. aureus is often parasitic in human and animal
skin, the nasal cavity, the throat, and the gastrointestinal tract, and it is also ubiquitous in
carbuncles, septic sores in the mouth, the air, sewage and other environments. Therefore, it
is meaningful to use synthetic bimetallic MOF materials to inhibit bacterial growth. The
growth curves of E. coli and S. aureus under normal conditions clearly show four periods
of bacterial growth: delayed, logarithmic, stable, and decaying periods [51–55]. The pro-
gressive decrease in the logarithmic phase for different concentrations of MIL-101(Fe)@Ag
(Ag 0.0127 wt%) (60, 80, 100 and 120 µg/mL), along with the decrease in the time for the
bacteria to reach the plateau phase (Figure 12a,b), indicated that the inhibition of E. coli
and S. aureus by MIL-101(Fe)@Ag (Ag 0.0127 wt%) was concentration-dependent. The
OD600 values of untreated E. coli and S. aureus reached the logarithmic phase after 6 h.
The OD600 value of the latter was found to be lower than that of the former for bacteria
treated with MIL-101(Fe)@Ag (Ag 0.0127 wt%). The inhibition of bacteria became more
pronounced as the concentration of MIL-101(Fe)@Ag (Ag 0.0127 wt%) increased [56–58].
This indicates that as the concentration of MIL-101(Fe)@Ag (Ag 0.0127 wt%) increased, the
bacteria became less viable and the antibacterial effect of the material became stronger. The
bacterial growth curves of MIL-101(Fe) showed that MIL-101(Fe) did not inhibit bacterial
growth at concentrations of 0, 20, 40, 60, 80, 100 and 120 µg/mL (Figure 12c,d).

2.2.3. Determination of the Bacterial Survival Rate

The antibacterial performance of the synthesized products was tested with the plate-
coating method (Figure 13a,b). The inhibition effect became more obvious with increasing
concentrations of MIL-101(Fe)@Ag (Ag 0.0127 wt%), and the inhibition effect was propor-
tional to the concentration of MIL-101(Fe)@Ag (Ag 0.0127 wt%). At a concentration of
100 µg/mL, MIL-101(Fe)@Ag demonstrated the significant inhibition of E. coli, and the
survival rate of S. aureus was also lower than 10%. The experimental results showed that
MIL-101(Fe)@Ag (Ag 0.0127 wt%) had an antibacterial effect on E. coli and S. aureus.
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Figure 12. Bacterial growth curves of MIL-101(Fe) and MIL-101(Fe)@Ag (Ag 0.0127 wt%) for in-
hibition of E. coli and S. aureus growth. (a) Bacterial growth curve of inhibition of E. coli growth
by MIL-101(Fe)@Ag (Ag 0.0127 wt%). (b) Bacterial growth curve of inhibition of S. aureus growth
by MIL-101(Fe)@Ag (Ag 0.0127 wt%). (c) Bacterial growth curve of inhibition of E. coli growth by
MIL-101(Fe). (d) Bacterial growth curve of inhibition of S. aureus growth by MIL-101(Fe).
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and MIL-101(Fe) for inhibition of (a) E. coli. and (b) S. aureus.

From the bacterial growth curves and plate-coating tests, we found differences in
the antibacterial efficacy of MIL-101(Fe)@Ag (Ag 0.0127 wt%) against S. aureus and E. coli,
namely, it was more effective for S. aureus than for E. coli. We speculate that this may have
been because of the presence of pods in E. coli, which slowed the entry of MIL-101(Fe)@Ag
(Ag 0.0127 wt%) into the bacteria and did not disrupt the cell membrane inside the bacteria,
so the inhibitory effect was lower than that of S. aureus.

2.3. Antibacterial Mechanism of MIL-101(Fe)@Ag (Ag 0.0127 wt% Ag)

To investigate how MIL-101(Fe)@Ag (Ag 0.0127 wt%) inhibits bacterial growth, the
mechanism of inhibition was investigated. It is generally believed that bacterial growth is
inhibited and bacteria are killed due to rupture of the bacterial cell membranes, thus leading
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to endoleaks, which results in the production of ROS and various free radicals [21,46]. ROS
production has been found for various metal compounds, and these nanoparticles can lead
to oxidative stress, inflammation, and consequent damage to proteins, cell membranes,
and DNA, which is one of the main mechanisms of nanotoxicity [47]. The results of plate-
coating experiments (Figure 14) revealed that bacteria treated with MIL-101(Fe)@Ag (Ag
0.0127 wt%) produced more ROS than those treated with MIL-101(Fe), and few ROS were
produced by bacteria not treated with MIL-101(Fe)@Ag (Ag 0.0127 wt%), indicating that
the bacterial cell membranes treated with MIL-101(Fe)@Ag were disrupted and produced
more ROS [32,59,60].
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Figure 14. Intracellular ROS production by E. coli (a) and S. aureus (b) induced by treatment with
MIL-101(Fe) and MIL-101(Fe)@Ag (Ag 0.0127 wt%). The content of ROS in all of the treatment groups
was normalized to 1 with the control group.

2.4. Cytotoxicity Test

To provide the corresponding theoretical support for the further development and
application of MIL-101(Fe)@Ag (Ag 0.0127 wt%), we investigated the biosafety of MIL-
101(Fe) and MIL-101(Fe)@Ag (Ag 0.0127 wt%) with cytotoxicity and hemolysis experiments,
which are described in Sections 3.6 and 3.7, respectively [61–64].

Nanosilver has a damaging effect on cells above a certain concentration, and it affects
the cell morphology and cell activity of erythrocytes. The addition of a small amount
of silver ions to cells (200 µg/mL, higher than the minimum concentration for bacterial
inhibition) resulted in an excellent antimicrobial effect. In addition, the cells treated with
MIL-101(Fe)@Ag (Ag 0.0127 wt%) in this concentration range still had higher than 70%
cell viability after 24 h, and the cell viabilities at 50 and 100 µg/mL were higher than
those for MIL-101(Fe) without the addition of silver ions. In experiments with chicken
erythrocytes, MIL-101(Fe)@Ag (Ag 0.0127 wt%) did not cause serious hemolytic effects,
indicating that MIL-101(Fe)@Ag (Ag 0.0127 wt%) is non-toxic or hypotoxic to cells at less
than 200 µg/mL [65,66].

Cellular compatibility is a crucial issue for Ag-containing materials [67]. When AD293
cells were treated with different concentrations of MIL-101(Fe)@Ag (Ag 0.0127 wt%) pellets,
the results of MTT experiments showed no significant differences in cell survival, and
cell survival was maintained at more than 90% (Figure 15). Thus, the AD293 cell-viability
experiments under the influence of MIL-101(Fe)@Ag (Ag 0.0127 wt%) revealed the non-toxic
nature of MIL-101(Fe)@Ag (Ag 0.0127 wt%). Because MIL-101(Fe)@Ag (Ag 0.0127 wt%) is
non-toxic or hypotoxic to cells, it can be used in biological applications and will further
extend the use of synthetic bimetallic MOFs [68].
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Figure 15. Survival rate of MIL-101(Fe)@Ag -treated AD293 cells after 12 h (a), 24 h (b), 48 h (c), and 72 h (d).

The hemolytic behavior of MIL-101(Fe)@Ag (Ag 0.0127 wt%) was also investigated
to assess its biocompatibility. In general, hemoglobin is released via the disruption of
the red-blood-cell membrane, thus allowing hemolysis to occur. MIL-101(Fe)@Ag (Ag
0.0127 wt%) did not produce severe hemolytic effects on chicken erythrocytes, even as the
concentration of MIL-101(Fe)@Ag (Ag 0.0127 wt%) increased (Figure 16). Similar to the
results of the cytotoxicity assay, the results of hemolysis analysis showed that high doses of
MIL-101(Fe)@Ag (Ag 0.0127 wt%) did not cause severe hemolytic effects [61,62].
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3. Experimental
3.1. Materials

Dulbecco’s modified Eagle medium, phosphate-buffered pH 7.4 (1×) 0.25% trypsin-
EDTA (1×), and penicillin–streptomycin (100,000 U/mL) were purchased from Gibco (Carls-
bad, CA, USA). Fetal bovine serum was obtained from Shanghai Exel Biologicals (Shang-
hai, China). Silver nitrate (AgNO3, 98%) was obtained from Shanghai Malin Biologicals
(Shanghai, China). Terephthalic acid (H2BDC), ferric chloride hexahydrate (FeCl3·6H2O),
N,N-dimethylformamide (DMF), and chicken erythrocytes were purchased from GBCBIO
Technologies (Guangzhou, China). The culture flasks were obtained from Corning Life
Sciences Ltd. (New York, NY, USA). The 96-well plates were purchased from Guangzhou
JITE Biofiltration Co. (Guangzhou, China). Glycerol (99%) was purchased from Aladdin
Reagents Ltd. (Shanghai, China). Luria–Bertani (LB) broth and nutritional agar medium
were purchased from Guangdong Huan Kai Microbial Technology Co. (Guangzhou, China).
The hydrothermal synthesis reactor was purchased from Zhengzhou Boke Instrument &
Equipment Co. (Zhengzhou, China). The electrothermal blast thermostat oven (101-0B)
was purchased from Shaoxing Licheng Instrument Technology Co. (Shaoxing, China). The
Thermo-SorvallST16R frozen centrifuge and ABI7500 real-time quantitative PCR instrument
were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

3.2. Preparation of MIL-101(Fe) and MIL-101(Fe)@Ag

Based on the synthesis method of MIL-101(Fe) reported in the literature [31], the
synthesis of MIL-101(Fe) and MIL-101(Fe)@Ag was further optimized using the following
method: 1.351 g of FeCl3·6H2O (5 mmol) and 0.415 g (2.5 mmol) of H2BDC were added to
30 mL of DMF. The solution was then sonicated for 15 min to make it cloudy, followed by the
addition of a certain mass of silver nitrate (H2BDC + FeCl3·6H2O mass percentages of 0%,
5%, 10%, and 20%) as anhydrous ethanol containing silver nitrate to 6 mL of the suspension.
The suspension was sealed in a stainless-steel reactor lined with polytetrafluoroethylene
and heated at 120 ◦C for 24 h to obtain an orange slurry. The orange slurry was centrifugally
separated (4000 rpm for 10 min), washed once with DMF and twice with hot ethanol at
60 ◦C, and centrifuged (4000 rpm for 15 min) to remove unreacted raw materials. The
washed orange slurry was kept at 150 ◦C for 12 h to activate the slurry. The finally obtained
MIL-101(Fe)@Ag was an orange powder.

3.3. Nanomaterial Characterization

Powder XRD (Rigaku Ultima IV, Kyoto, Japan) was performed using Cu-Kα radiation
in the 2θ range from 5◦ to 80◦. For FTIR spectroscopy (Bruker ALPHA II, Karlsruhe, Ger-
many), the spectra of MIL-101(Fe) and MIL-101(Fe)@Ag were recorded in the wavelength
range of 500–4000 cm−1. An inductively coupled plasma (ICP) spectrometry generator was
used to determine the Ag content in MIL-101(Fe)@Ag. The ultraviolet–visible (UV–vis)
absorption spectra were measured with a HITACHI U-3010 UV–vis diffuse reflectance
spectrophotometer (Hitachi Limited, Kyoto, Japan) using dimethyl sulfoxide (DMSO) as a
reference. The thermogravimetric (TG) analysis of MIL-101(Fe)@Ag (NETZSCH STA 2500,
Germany) was performed at a target temperature 800 ◦C with a heating rate of 10 ◦C min−1

and an airflow rate of 100 mL min−1 in an air atmosphere. The zeta potential and particle-
size distribution were measured with a Malvern Zetasizer Nano ZS90 instrument (Malvern,
UK). X-ray photoelectron spectroscopy (XPS, K-Alpha+, Thermo Fisher Scientific) was
performed to study the chemical composition, chemical states, and valence band of MIL-
101(Fe)@Ag using Al Kα radiation. The morphology, shape, and size of MIL-101(Fe) and
MIL-101(Fe)@Ag were investigated with scanning electron microscopy (SEM, TESCAN
Mira4, Czech Republic) at an accelerating voltage of 200 eV to 30 keV. The chemical compo-
sition of MIL-101(Fe)@Ag was further analyzed with energy dispersive X-ray spectrometry
(EDS, Zeiss EVO, Oberkochen, Germany). The Brunauer–Emmett–Teller (BET) surface area
and porous structure were evaluated with N2 (77.4 K) adsorption–desorption experiments
(Micromeritics ASAP 2020 v4.03, Norcross, GA, USA).
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3.4. Antimicrobial Activity
3.4.1. Inhibition-Zone Experiment

A circular piece of paper with a diameter of 9 mm was dried by heating in a autoclave
and set aside. The prepared MIL-101(Fe)@Ag was dispersed in ultrapure water, soaked for 1 h,
removed, and dried. The bacterial solution (5× 107–8 CFU/mL, 100 µL) was spread evenly on
the plate. The dried drug-sensitive paper was spread on the plate, and the antimicrobial ring
formed was observed after incubation in a 37 ◦C light incubator for 24 h [32].

3.4.2. Determination of the Bacterial Growth Curve

An E. coli and S. aureus stock solution (10 µL) was dispersed in 10 mL of LB broth,
observed, and then incubated for 12 h in a thermostatic shaker at 37 ◦C. The bacteria were
then diluted to 1 × 106 CFU/mL with LB broth.

Different concentrations of MIL-101(Fe)@Ag (0, 20, 40, 60, 80, 100, and 120 µg/mL)
were added to 100 µL of the diluted bacteria and cultured at 37 ◦C. Samples were taken at
different times (1–12 h), and the optical density at 600 nm (OD600) value of the bacteria was
calculated with a microplate reader [33,55].

3.4.3. Determination of the Bacterial Survival Rate

Bacteria (100 µL, 1 × 106 CFU/mL) with different concentrations of MIL-101(Fe)@Ag
were incubated at 37 ◦C for 3 h. Next, 10 µL of the diluted bacterial solution was applied to
an agar plate. The agar plate was then incubated overnight in a constant temperature incu-
bator. Finally, the number of colonies on the agar plate was counted, and the antibacterial
effect of MIL-101(Fe)@Ag was evaluated with the following equations:

Survival rate (%) = CFU (experimental group)/CFU (control group) × 100% (1)

Mortality rate (%) = 1 − survival rate (%) (2)

where CFU (experimental group) is the number of colonies in the material treatment group
and CFU (control group) is the number of colonies in the control group [34,35].

3.5. Investigation of the Antibacterial Mechanism

The determination of the ROS in the bacterial cells was performed with an ROS kit from
the Nanjing Jiancheng Institute of Biological Engineering [32]. First, a certain concentration
of bacteria (1.0 × 106 CFU/mL) was mixed with 20% MIL-101(Fe)@Ag/MIL-101(Fe) and
incubated at 37 ◦C for 2 h. The bacteria were collected via centrifugation, washed three
times with phosphate-buffered saline, treated with 2′,7′-dichlorofluorescein diacetate, and
incubated for 1 h at room temperature protected from light. After incubation, the bacteria
were centrifuged at 3000 rpm for 5 min, phosphate-buffered saline was added to dilute the
bacteria to the initial volume, and the bacterial solution was resuspended. A Shimadzu
RF-5301 PC fluorescence spectrophotometer was then used to measure the fluorescence
intensity of the bacterial suspension. The excitation and emission wavelengths were 488
and 525 nm, respectively [36,37].

3.6. Cytotoxicity Test

The cytotoxicity of MIL-101(Fe)@Ag was determined with an MTT assay [33]. AD293 cells
were digested by trypsin and inoculated in 96-well cell culture plates at a density of 1× 105/well,
and then the well plates were incubated in a cell-culture incubator (37 ◦C and 5% CO2) for
culturing. After the cells at the bottom of the well plate grew all over the bottom of the culture
flask, the culture medium in the wells was removed and 100 µL of different concentrations
of MIL-101(Fe)@Ag was added to each well. Four replicate wells for each MIL-101(Fe)@Ag
concentration, as well as a blank control group, were set up, and then culturing was continued
in the incubator for 24 h to observe the cytopathological changes.

After 24 h of incubation, 20 µL of MTT solution (5 mg/mL) was added to the wells and
incubation was continued for 4 h. After incubation, the supernatant was carefully removed
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and 150 µL of DMSO was added to each well to dissolve the bottom methanogens. The
well plate was then placed on a shaker to shake the well solution, and the absorbance at
492 nm was finally measured by an enzyme marker. The cell-survival rate was calculated
with the following equation:

Cell viability (%) = OD492 of the sample wells/OD492 of the blank wells × 100% (3)

3.7. Hemolytic Assay

To further evaluate the biocompatibility of MIL-101(Fe)@Ag, we determined its hemol-
ysis rate. Chicken erythrocytes were collected via centrifugation at 2000 rpm, washed three
times with saline (0.9% NaCl), and resuspended in saline to make a 2% suspension of
chicken erythrocytes. Different concentrations of MIL-101(Fe)@Ag were mixed with equal
volume of the erythrocyte suspension so that the final concentrations of MIL-101(Fe)@Ag
were 0, 3.125, 6.25, 12.5, 25, 50, 100, and 200 µg/mL, followed by incubation at 37 ◦C
for 2 h. Physiological saline and 1% tretinoin X-100 were used as negative and positive
controls, respectively, in simultaneous experiments. After incubation, the supernatant was
centrifuged at 3000 rpm for 5 min. The supernatant was then transferred to a clean 96-well
plate with four replicate wells for each sample, and the UV absorbance intensity at 450 nm
was measured with an enzyme marker [38,39]. The hemolysis rate was calculated as:

Hemolysis rate (%) = (absorbance of the experimental group − absorbance of the negative control group)/
(absorbance of the positive control group − absorbance of the negative control group) × 100%.

3.8. Statistical Analysis

All of the experiments were performed in triplicate. The data are expressed as the
mean ± standard deviation. Statistical significance was assessed using the Student’s t-test,
and the values were considered to be significant at p < 0.05.

4. Conclusions

In this study, we synthesized the target product MIL-101(Fe)@Ag with solvothermal syn-
thesis. We evaluated the antibacterial activity and biosafety of MIL-101(Fe)@Ag (Ag 0.0127 wt%).
Characterization by FTIR spectroscopy, SEM, particle-size and zeta-potential analysis, PXRD,
and TG analysis revealed that MIL-101(Fe) was successfully loaded with Ag+ and that 0.0127
wt% silver nitrate was the highest amount that could be loaded in MIL-101(Fe)@Ag without
silver-ion aggregation and structure collapse [34,35,37,38,40]. Because the antibacterial effect of
MIL-101(Fe)@Ag (Ag 0.0127 wt%) and its mechanism occur through the interaction of the silver
ions in MIL-101(Fe)@Ag (Ag 0.0127 wt%) with oxygen in water or air under light conditions,
the ROS O2− and HO· are produced. These ions have an extremely high redox effect and
can destroy the cell membrane of bacteria in a short period of time, rendering the bacteria
inactive. Accordingly, the aim of inhibiting bacterial growth was achieved. The silver ions in
MIL-101(Fe)@Ag (Ag 0.0127 wt%) act as a catalyst and are not consumed, so MIL-101(Fe)@Ag
(Ag 0.0127 wt%) has a long-lasting antibacterial effect. In cytotoxicity tests, as the concen-
tration of MIL-101(Fe)@Ag (Ag 0.0127 wt%) gradually increased, the survival rate of AD293
cells also gradually decreased but the cell viability remained high. The cell-survival rate re-
mained above 75%, indicating that MIL-101(Fe)@Ag (Ag 0.0127 wt%) is non-toxic to AD293 cells.
These phenomena also indicate that MIL-101(Fe) and MIL-101(Fe)@Ag (Ag 0.0127 wt%) have
good biocompatibility [48–51,61,62,68]. However, the bound MIL-101(Fe)@Ag is still limited
in concentration due to the inherent toxicity of silver ions [18]. As a common biomolecular
nanosystem, such as antimicrobial peptides, its biosafety is better than MIL-101(Fe)@Ag [26,27].
However, the antibacterial effect of nanomolecular systems composed of chemical materials is
better than that of common biological nanosystems, and its structure is extremely stable, which
is conducive to efficient antibacterial [52,61]. Other drug-loaded bio-nano-molecular systems
have high safety for organisms, but their main antibacterial effects are slightly worse than our
synthesized MIL-101(Fe)@Ag. For example, the MIL-101(Fe)-T705 synthesized on the basis of
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MIL-101(Fe) has a higher bacteriostatic MIC value (3.2 mg/mL) against Staphylococcus aureus
than MIL-101(Fe)@Ag (100 µg/µL) [68].

MIL-101(Fe)@Ag (Ag 0.0127 wt%) showed excellent antimicrobial properties against
both S. aureus and E. coli. In terms of the antibacterial mechanism, the presence of
Ag+ disrupts the bacterial cell membrane, resulting in the bacterial DNA being unable
to replicate and making bacterial proliferation impossible. The results indicated that
MIL-101(Fe)@Ag (Ag 0.0127 wt%) is a promising antimicrobial material for biomedical
use, and coupled with its inherent nontoxicity, it is expected to be further applied in
tissue-engineering materials, drug carriers, antimicrobial products, and other similar fields.
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Antifungal, and Cytotoxic Silver(I) BioMOF Assembled from 1,3,5-Triaza-7-Phoshaadamantane and Pyromellitic Acid. Molecules
2020, 25, 2119. [CrossRef]

31. Tang, J.; Wang, J. Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation
of methyl orange. RSC Adv. 2017, 7, 50829–50837. [CrossRef]

32. Wan, X.; Zhuang, L.; She, B.; Deng, Y.; Chen, D.; Tang, J. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled
mesoporous silica with radial pore channels and its antibacterial performance. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 65,
323–330. [CrossRef]

33. Alzamely, K.O.; Hajizadeh, F.; Heydari, M.; Ghaderi Sede, M.J.; Asl, S.H.; Peydaveisi, M.; Masjedi, A.; Izadi, S.; Nikkhoo, A.;
Atyabi, F.; et al. Combined inhibition of CD73 and ZEB1 by Arg-Gly-Asp (RGD)-targeted nanoparticles inhibits tumor growth.
Colloids Surf. B Biointerfaces 2021, 197, 111421. [CrossRef]

34. Jacobson, L. Listeriosis. Pediatr. Rev. 2008, 29, 410–411. [CrossRef] [PubMed]
35. Sousa Silveira, Z.; Macêdo, N.S.; Sampaio Dos Santos, J.F.; Sampaio de Freitas, T.; Rodrigues Dos Santos Barbosa, C.; Júnior, D.L.S.;

Muniz, D.F.; Castro de Oliveira, L.C.; Júnior, J.P.S.; Cunha, F.A.B.D.; et al. Evaluation of the Antibacterial Activity and Efflux
Pump Reversal of Thymol and Carvacrol against Staphylococcus aureus and Their Toxicity in Drosophila melanogaster. Molecules
2020, 25, 2103. [CrossRef] [PubMed]
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