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A B S T R A C T   

This research paper presents a high-fidelity, open-source digital-twin of the Pepper robot devel-
oped within the framework of the Robot Operating System 2 (ROS 2) for better simulation realism 
in complex tasks of machine learning. We developed a dedicated, custom ROS 2 package with 
modern simulation tools, such as Gazebo Sim, MoveIt 2, Rviz2, that brings complete, realistic 
environments in line with the exact behaviors and interactions of robots in reality. Better accu-
racy of the physical movement of Pepper robot’s simulation was shown on the digital twin, 
validated by the Choregraphe software and real robot performance, to be a strong platform of 
collaboration and further research by the community. This development greatly pushes the en-
velope of human-like humanoid robotics further by offering a scaled, flexible, and plausible 
training environment conducive to integrating complex algorithms of robot learning and inter-
action capabilities.   

1. Introduction 

In recent years, the use of smart robots operating in dynamic, complex, and unstructured situations has increased dramatically [1]. 
As a result, researchers have developed instructional robotics simulators that feature 3D models of real robots [2]. Additionally, 
significant research has been conducted on the use of randomized simulations to train robots, with many studies offering a thorough 
review of the sim-to-real strategy in robotics [3]. Humanoid robots like Pepper have the potential to transform the way we live, work, 
and interact with technology [4]. These robots are designed to replicate human form and movement, enabling them to navigate and 
operate in human environments. However, developing and integrating complex machine learning (ML) algorithms for these robots 
presents significant challenges, primarily due to the limitations of current simulation environments [5]. The evaluation of these in-
teractions in real-world scenarios is crucial, as seen in the deployment and assessment of the Pepper robot within the AMIRO social 
robotics framework [6]. 

Pepper has been used in various applications, such as customer service [7], healthcare [8], education [9], and entertainment [10]. 
Staying current with the latest developments in the field and incorporating advanced Artificial Intelligence (AI) techniques for training 
on the Pepper robot can be a significant contribution to robotics research, especially given that the Pepper robot has been used in a 
variety of research projects [11,12]. The cost of the physical Pepper robot is well known to be prohibitive [13], and even if it is 
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affordable, it is critical to test and validate the training’s safety and effectiveness before deploying it on the real robot. Therefore, 
testing new AI approaches on a simulated Pepper robot is recommended [14]. Nevertheless, current simulation platforms for the robot 
Pepper present significant gaps, including a lack of high fidelity, limited integration of complex ML frameworks, and insufficient 
open-source scalability, which hinder large-scale research and community involvement [14]. 

This paper addresses the critical gaps in existing simulation platforms by developing an open-source, high-fidelity simulation 
environment for the Pepper robot. Rather than describing and integrating particular ML techniques, the goal here is to build a solid 
digital twin of Pepper that is built with the characteristics and adaptability needed to facilitate the integration of complicated ML 
algorithms in the future. Humanoid robots such as Pepper are hard and expensive to build and test [13] but simulation environments 
are critical for testing fresh concepts and increasing robot performance in a safe and effective manner [3,15]. In addition to these 
simulation capabilities, implementing advanced navigation systems, such as those based on SLAM technology specifically developed 
for social robots like Pepper, is critical for realistic interactions within these environments [16]. Advances in computer hardware and 
graphics have substantially improved the realism and accuracy of these simulations [17], which are critical for training and evaluating 
advanced machine learning algorithms [18]. Such surroundings are especially important for Pepper, because its physical equivalent 
cannot withstand intense training sessions. The mentioned simulation environment [18], while not open source, allows for the 
effective transfer of ML procedures between the digital twin and the physical robot, increasing speed and minimizing the impact on the 
actual robot. 

In light of these improvements, this work addresses the task of creating a high-fidelity, open-source simulation environment for the 
Pepper robot based on the Robot Operating System 2 (ROS 2). This simulation platform is primarily intended to assist future inte-
gration of complex machine learning algorithms, rather than designing and integrating these algorithms within the scope of this 
research. The existing limits of simulations leveraging ROS 1 middleware [19,20] together with the growing demand for greater ML 
capabilities, drove the development of a ROS 2 package. This package, which combines Gazebo Sim,1,2 and MoveIt 2, intends to 
provide precise simulation and assist sophisticated ML training, bridging the gap between the constraints of current simulations using 
ROS 1 and the growing demand for ML capabilities in ROS 2. 

The main contribution of this work is the creation of an exclusive open-source ROS 2 module that considerably improves the re-
alism and usefulness of the simulation environment. This package makes use of cutting-edge technologies including ROS 2, MoveIt 2, 
and the integration of Gazebo Sim as a simulator with Rviz2 visualization capabilities, resulting in a highly precise representation of 
the robot’s behavior. By developing a powerful and adaptable digital twin of the Pepper robot, we aim to provide a foundational 
platform that can support advanced ML research and development. 

This study evaluates the accuracy of the digital robot twin generated in the simulated environment by comparing it with both the 
Choreograph environment and a real Pepper robot. This comparison is crucial for validating the precision and dependability of the 
simulation models, underscoring our simulation’s capability to closely mimic real-world dynamics and behaviors. The simulation 
environment’s purpose is to facilitate the implementation of advanced machine-learning algorithms for training and testing the robot. 
Although the ML algorithms are not the focus of this paper, the study explores the potential of simulation environments in improving 
humanoid robots. Specifically, it highlights the environment’s ability to accurately replicate the robot’s behavior in real-world sce-
narios and validate the precision and dependability of the simulation models. 

The rest of the paper is organized as follows: Section 2 delves into the Literature Review, providing insights into existing knowledge 
to establish a contextual backdrop. The focal point of the paper unfolds in Section 3, meticulously detailing the Technical Approach 
and Open-Source Implementation of the Pepper Robot Simulation leveraging ROS 2. Section 4 rigorously examines the simulation’s 
fidelity through meticulous validation processes. Finally, the paper concludes in Section 5, where key findings are summarized, im-
plications and limitations are discussed, and avenues for future exploration are presented. 

2. Literature review 

Social robots have gained widespread attention in recent years for their potential to provide engaging and entertaining experiences 
to the general public, as well as assist with healthcare and other tasks [21–23]. The MultiModal Mall Entertainment Robot (MM-MER) 
project, funded by the EU and led by Foster et al., aimed to create a humanoid robot that could interact naturally with people in a 
shopping mall using SoftBank Robotics’ Pepper robot as the primary platform [24]. Niemelä et al. evaluated the MM-MER project 
through an interview study with mall stakeholders and found that the robot was generally well-received [25]. Gardecki et al. high-
lighted the challenges of ensuring safe and effective interaction with people in a public space while operating Pepper [26]. By 
developing the simulation environment presented in this paper, it is possible to improve the capabilities of social robots like Pepper 
that possess humanoid features. 

Simulation environments have always been important for robotics research, allowing for the modeling and testing of concepts and 
algorithms [27]. Over the years, there has been a gradual improvement in the performance of robot perception, cognition, and 
decision-making algorithms, enabling robotic systems to understand and interact with their environments autonomously [17]. Modern 
simulation environments have evolved to meet the demand for simulating complex robotic systems and collecting diverse, large-scale, 
and realistic data for training and testing deep learning algorithms [28]. These environments aim to provide visually realistic and 
physically accurate simulations, simulating the complexity of the real world [29]. They also allow for the management of realistic 

1 https://community.gazebosim.org/t/a-new-era-for-gazebo/1356.  
2 https://www.blackcoffeerobotics.com/blog/migration-from-gazebo-classic-to-ignition-with-ros-2. 
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virtual environments where robotic simulations can be performed, without being biased by synthetic data [29]. The use of accurate 
simulations in robotics helps in the development, programming, testing, and validation of robotic projects, reducing development time 
and cost. 

While simulation environments provide a cost-effective and safe means to test and design robotic solutions, they also present 
significant challenges, particularly in accurately simulating the complex dynamics of real-world interactions [1]. This limitation 
underscores the ongoing need for advancements in simulation technologies that can bridge the gap between virtual testing and 
real-world applications. Recent comparative studies further highlight the evolution and differentiation among leading simulation 
platforms. Lenka Pitonakova et al. provided a feature and performance comparison of V-REP, Gazebo, and ARGoS, underscoring 
Gazebo’s superior performance in handling complex scenes crucial for simulating detailed and dynamic interactions in humanoid 
robotics [30]. Similarly, Angel Ayala et al. conducted a quantitative analysis comparing Gazebo with Webots and V-REP, noting that 
although Webots uses fewer resources, Gazebo provides better support for complex simulations, aligning with the needs for simulating 
advanced robotics systems like humanoid robots [31]. Moreover, Nathan P. Koenig and A. Howard discussed the design and usage 
paradigms for Gazebo, an open-source multi-robot simulator, emphasizing its ability to recreate complex worlds encountered by the 
next generation of mobile robots [32]. This capability uniquely positions Gazebo in offering high fidelity and fine-grained control over 
simulation parameters, distinguishing it from other simulators. Mirella Santos Pessoa de Melo et al. echo this idea, offering a 
comprehensive comparison of Gazebo with V-REP and Unity and highlighting Gazebo’s superior performance in complex simulation 
scenarios, particularly in its integration with the Robot Operating System (ROS), which is critical for developing sophisticated robotics 
applications [33]. 

Building upon the strengths highlighted in recent comparative studies, the integration with advanced frameworks has significantly 
enhanced the capabilities of simulation environments, particularly in fostering highly realistic and dynamic simulation settings 
essential for humanoid robotics research. Notably, the introduction of Gym-Ignition by Diego Ferigo et al. has leveraged Gazebo’s 
flexibility to craft reproducible robotic environments optimized for reinforcement learning, integrating over 100 modeling and 
simulation tools to boost the real-world applicability of simulations [34]. Further enhancing interoperability, Lange et al. have 
implemented the Functional Mock-up Interface (FMI), enriching the ROS and Gazebo community by bridging Gazebo with other 
modeling tools [35]. Additionally, the synergy between ROS and MoveIt within Gazebo, as discussed by M. Marian et al., has improved 
functionality in dynamic interaction and manipulation tasks, facilitating complex robotic behaviors necessary for different applica-
tions [36]. The integration efforts extend to the work of Christoffer Brohus Kristensen et al., who developed a Gazebo-based framework 
for robotic unscrewing tasks using reinforcement learning, thereby creating environments that accurately mimic real-world com-
plexities [37]. Finally, the introduction of PIC4rl-gym by Mauro Martini et al., utilizing ROS 2 and Gazebo, underscores the platform’s 
advanced integration with deep learning techniques to enhance autonomous navigation [38]. These developments collectively un-
derscore evolutions in robotics simulation, supporting cutting-edge demands in modern robotics research and advancing the capa-
bilities of simulated environments to mirror complex real-world applications. 

By using these simulation environments and tools, researchers can test their code, algorithms, and hardware designs more 
convenient and can verify their codes before launching them to the robot. One of the most prominent robot for simulation environment 
is the Robot Pepper designed by SoftBank Robotics [39,40]. Formed with multiple sensors, actuators, and communication capacities, 
the Robot Pepper is highly adaptable and can perform a variety of tasks. Its capacity can be increased using simulation environments 
and real-world problems. DTPAAL project harnessed VPepper, the virtual replica of the robot, for anomaly detection and remote 
support, linking real and virtual testing settings [18]. Lier et al. tackled the lack of experience in this area by developing a simulation 
environment for the robot pepper to test new algorithms [14]. Furthermore, researchers like Silva et al. developed an online navigation 
framework that will enable robots like Pepper to interact with people in crowded indoor spaces in a socially acceptable manner [41]. 
The PePUT toolkit, integrating Unity and Python, allows for enhanced control and adaptability in programming the Pepper robot, 
offering developers substantial flexibility in robot behavior modeling and functional regression testing [42]. Meanwhile, initiatives 
like the RoboCup competition challenged Pepper in real-world settings, enhancing its skills and interaction capabilities through the 
development of sophisticated software systems and components [43]. By integrating technologies like ROS and cloud services, Pep-
per’s autonomy, environmental awareness, and user interaction capabilities can be significantly improved [44]. Each of these projects 
and tools play a crucial role in both simulating and directly enhancing the functionalities of service robots like Pepper, providing 
valuable platforms for both development and practical application. 

Current simulation environments for the Robot Pepper, while useful, exhibit several limitations that extend beyond the integration 
of complex machine learning algorithms. They aren’t fully capable of faithfully simulating Pepper’s complex behaviors and in-
teractions, which is necessary to perform robot testing and development in a controlled manner. Furthermore, current platforms are 
closed-source, which means that their capabilities are limited and the robotics and scientific communities imply little input in their 
development [44]. Existing Pepper simulations that use ROS1 middleware lack both the fidelity and the modularity required for 
integrating and testing advanced machine learning algorithms [45]. Moreover, the machine learning tools available in ROS1 are suited 
only for simpler tasks, often requiring substantial custom modifications or the use of external frameworks like PyTorch or TensorFlow 
to handle more sophisticated algorithms [46]. These issues underscore critical gaps in performance, community support, and 
modularity within ROS1, which impede real-time execution and the seamless integration of complex models. The absence of ROS 2 
middleware in available Pepper simulations further highlights the need for updated solutions that can fully leverage advancements in 
machine learning and address the growing demand for the robot Pepper with advanced capabilities. Moreover, the evolving landscape 
of ROS distributions reinforces the transition to ROS 2, marked by major up-dates and enhancements since 2017. While the last ROS1 
distribution, Noetic, is officially supported until May 2025, the community is expected to shift to ROS 2 for its improved architecture, 
signaling a forward-looking choice for robotic applications [47]. For a detailed comparison of the specific limitations encountered in 
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these various environments, refer to Table 1. 
Our proposed solution to the identified challenges-limited integration of complex machine learning, inaccurate simulation of 

Pepper’s behaviors, closed-source nature, limitations of ROS 1 middleware, limited machine learning tools in ROS 1- is to develop a 
ROS 2 package for the Pepper robot. This package will integrate MoveIt 2 and Gazebo Sim, creating a high-fidelity simulation 
environment that most accurately reflects Pepper’s real-world behavior. As an alternative to ROS 1 constrained environments, ROS 2 
guarantees realistic training for the demanding machine learning application and platform robustness, as it offers flexibility and 
modularity. The integrated machine learning algorithms and frameworks can be used and extended through our system. So, in 
comparison to the state of the art at the moment, our approach offers several novel elements, as demonstrated by our thorough study in 
this section.  

• High-Fidelity Simulation: With Gazebo Sim and MoveIt 2, the simulation environment uses sophisticated physics engines and high- 
resolution 3D models to simulate Pepper’s behaviors with an unprecedented level of realism. This configuration surpasses the 
physical accuracy and complexity restrictions of earlier platforms, ensuring accurate physical interactions and sophisticated 
behavior modeling.  

• Integration with ROS 2: Unlike existing simulations that rely on the outdated ROS 1 middleware, this system leverages ROS 2, 
offering improved architecture, real-time performance, and enhanced modularity. This integration ensures robust and scalable 
simulation environments that can handle advanced robotic applications.  

• Open-Source Accessibility: In contrast to many other closed-source systems now in use, the platform is completely open-source. 
This transparency encourages community involvement and ongoing development, allowing academics and programmers to add 
to and enhance the simulation environment’s capabilities.  

• Future Integration Capability: While the current focus is on creating a high-fidelity digital twin, the simulation environment is 
designed with the modular architecture of ROS 2, allowing for the flexibility to support the future integration of complex machine 
learning algorithms. This design choice ensures that the platform remains relevant and adaptable to emerging research needs. 

It is important to note that, in this paper, we focus on the creation of the open-source digital twin of the Pepper robot, and we do not 
include specific ML algorithms. The intention is to present the identified gap and provide a foundation for future work, where the 
integration of ML algorithms into the developed platform is envisioned. This emphasis on future work is driven by our commitment to 
advancing research and fostering community collaboration. By making our digital twin accessible to the community, we aim to 
catalyze further research and development in the field of robot learning.  

3. Development of a High-Fidelity ROS 2 Simulation Environment for the Pepper Robot 

2.1. Choosing the ideal simulator: evaluating Gazebo Sim for enhanced robotics simulation 

Multiple studies have systematically compared simulation software for robotic arm manipulation using ROS 2, focusing on 
benchmarking under similar parameters, tasks, and scenarios [17,54]. Evaluation criteria include long-term operations, task 
completion success, repeatability, and resource usage. While no overall best software exists, Gazebo Sim and Webots consistently 
demonstrate higher stability. Regarding resource usage, PyBullet and CoppeliaSim outperform competitors in terms of efficiency. 

It’s important to highlight that Table 2 accompanies these findings of Audonnet et al. [54], presenting an overview of simulation 
software and their capabilities. This table serves as a comparative overview of simulation platforms based on the review made by 
Audonnet et al. [54] enhanced by other relevant sources.3 This table is set for some major simulation platforms: Gazebo Classic, 
Gazebo Sim, Webots, Isaac Sim, Unity, Pybullet, CoppeliaSim (Vrep), and Mujoco, comparing the features of the physics engine, 
headless support, open source, ROS 2 support, and machine learning support. It underlines the diversity of the Physics Engine, 
Headless level of support, Open-source availability, and ROS 2 compatibility from highlighting which robotic and machine learning 
applications it best suits. This comparison, therefore, does not only serve to help platform users in the application of specific technical 
needs and corresponding software compatibilities but also provide insight into the larger trend of a more open and versatile trend in 
development environments of simulation technology. That helped us determine which simulation software is best suited for the 
creation of the open-source digital twin of the robot Pepper with ROS 2. Based on the needs of our ROS 2 open-source package, on the 
comparison in Table 2 and on the results depicted by Audonnet et al. earlier in the paragraph [54], we narrowed our choice between 
Gazebo Sim and Webots since they demonstrate the higher stability. 

In pursuit of this goal, we compared Webots and Gazebo Sim in Table 3, both open-source simulation environments in order to 
provide insights into our decision-making process, explaining why Gazebo Sim was chosen over Webots for our particular use case 
based on the exhaustive comparison made by Audonnet et al. [54]. 

In our comparative analysis of robotic simulation platforms, we found that both Webots and Gazebo Sim offer robust features 
suitable for various educational and research applications. However, for our specific aim to produce an open-source ROS 2 digital twin 
of the Pepper robot, Gazebo Sim is the most appropriate choice. This decision was influenced by Gazebo Sim’s efficient resource usage 

3 https://gazebosim.org/api/gazebo/3.3/physics.html. 
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Table 1 
Comparison of pepper Robot simulation environments: Focus, software, and limitations.  

Paper Title Application Focus Simulation 
Software 

Limitations Supporting Evidence from 
Related Works 

DTPAAL: Digital 
Twinning Pepper 
and Ambient 
Assisted Living 
[18]. 

Anomalous 
Situation 
Detection and 
Remote Support. 

Development of VPepper, a 
virtual replica, for anomaly 
detection and remote 
support.  

- Unity 3D.  
- Physics 

simulation 
environment.  

- Limited Physical 
Accuracy.  

- High-Dimensionality 
Challenges.  

- Not open source. 

Unity requires more setup for 
robotics tasks due to its limited 
focus on the field [33]. 

Towards an Open 
Simulation 
Environment for 
the Pepper Robot 
[14]. 

Navigation in 
Simulated 
Apartment and 
People 
Detection. 

Addressing the need for a 
simulation environment for 
testing new algorithms.  

- Morse.  
- Blender.  
- ROS 1.  
- NAOqi.  

- ROS 1 Preference.  
- Interface 

compatibility issues 
with existing NAOqi 
systems.  

- Compatibility limitations of 
NAOqi [48].  

- MORSE based simulation 
focuses on human-robot in-
teractions and not on reliable 
physics [49]. 

Online Social Robot 
Navigation in 
Indoor, Large and 
Crowded 
Environments [41] 

Enhancing robot 
navigation in 
indoor social 
spaces. 

Developing an online 
navigation framework for 
robots like Pepper to 
behave socially 
appropriately in crowded 
indoor environments.  

- Gazebo.  
- PedsimROS.  

- PedsimROS is 
integrated with 
ROS1.  

- Teleoperating humanoid 
robots using ROS for complex 
tasks creates data gathering 
and control challenges, 
hindering data collection for 
robot learning [53].  

- PedsimROS is a simulator 
integrated on deprecated 
versions of ROS1 [50]. 

PePUT: A Unity Toolkit 
for the Social Robot 
Pepper [42]. 

Virtual Testbed 
for Social 
Interactions. 

Introducing PePUT, a 
toolkit for controlling 
Pepper through Unity and 
Python.  

- Unity UI.  
- Python.  
- NAOqi.  

- Rendering issues in 
Animation Editor 
when querying real 
robot pose.  

- Restricted to Unity 
environment, which 
is not open-source 

The software environment of 
NAOqi is not fit for advanced 
algorithms and the like. Instead, 
ROS is designed for these kinds 
of implementations and has 
many advantages [51]. 

Collision Avoidance for 
Indoor Service 
Robots Through 
Multimodal Deep 
Reinforcement 
Learning [52] 

Indoor Collision 
Avoidance. 

Implementing collision 
avoidance using Deep 
Reinforcement Learning.  

- Gazebo.  
- ROS 1.  

- ROS 1 Preference.  
- Reality Gap.  

- Traditional ROS-based DRL 
frameworks lack features for 
efficient training needed for 
advanced learning techniques 
[52].  

- Reliance on accurate sensory 
observations can be a 
limitation in dynamic 
environments [53].  

Table 2 
Overview of the simulation software and their capabilities.  

Name Physics Engine Headless Support Open Source Ros 2 Support ML support 

Gazebo Classic Bullet, DART, ODE, Simbody Full Yes Yes External 
Gazebo Sim DART Full Yes Yes External 
Webots ODE Partial Yes Yes External 
Isaac Sim PhysX Full No Yes Integrated 
Unity Havok, PhysX, RaiSim Full No No External 
Pybullet Bullet Full Yes No External 
CoppeliaSim (Vrep) Bullet, Newton, ODE, Vortex Dynamics Full No Yes External 
Mujoco Mujoco Full Yes No External  

Table 3 
Webots vs. Gazebo Sim: Choosing the Advanced Robotics Simulation Platform.  

Feature Webots Gazebo Sim 

Open Source Yes Yes 
GUI Comprehensive Less extensive 
Documentation Extensive Good 
Physics Engines ODE DART 
Headless Mode Supported Supported 
Hardware Load Acquisition Not ideal if execution time and resource usage are critical Efficient in resource usage, suitable for ML 
Accuracy & Stability performs well in long-term operations and task repeatability Well-suited for constant and slow-moving tasks  
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and its suitability for machine learning applications, as it performs well in tasks that require consistent and slow-moving dynamics. 
Furthermore, Gazebo Sim’s compatibility with ROS 2 and its ability to handle complex simulations with fewer computational resources 
align perfectly with the demands of developing a high-fidelity digital twin, ensuring that our project remains scalable and performant 
under varied simulation scenarios. Moreover, featured with Rviz2 through ROS 2, Gazebo Sim ensures that changes in Gazebo Sim are 
published to ROS 2 topics and then visualized in RViz2, allowing for coordinated updates rather than immediate reflections in 
visualization which contributes to a precise monitoring and debugging during development. 

2.2. Overview of ROS 2 simulation architecture for pepper Robot 

Building upon the challenges identified in the literature review section regarding Pepper’s limitations in manipulation within 
existing simulations, we introduce a carefully crafted ROS 2 package architecture that not only facilitates detailed modeling and testing 
of the robot behaviors in a robust 3D simulation environment but also supports iterative testing, development, and refinement of the 
robot functionalities, ensuring that it can perform its intended functions safely and effectively before any real-world deployment. 

In this architecture, ROS 2 middleware acts as the central node for communication and data flow coordination among all com-
ponents. The system starts with defining the robot’s structure using the Pepper_robot_description module, which contains all the URDF 
(Unified Robot Description Format) and SDF (Simulation Description Format) files necessary to describe the physical and visual 
properties of the Pepper robot. Once the robot’s structure is defined, several processes run in parallel. Gazebo Sim provides real-time 
physics-based simulation of the robot’s interaction with the environment, while RViz2 represents non-physical data, such as navi-
gation paths and robot states, for comprehensive debugging and development. ROS 2 enables communication between RViz 2 and 
Gazebo Sim, where Gazebo Sim sends highly detailed simulation data on many different ROS topics. In this case, RViz 2 subscribes to 
those topics, receiving visual information for visual simulation experience to be both in synchrony and to present a coherent simulation 
experience.4 

Fig. 1 summarizes the architecture of the Pepper robot simulation package. The central part is the Pepper_robot metapackage, 
where ROS 2 middleware coordinates communication and data flow among all system components. The system flow is as follows.  

1. The process begins with the Pepper_robot_description module, defining the robot’s physical and visual structure.  
2. The Pepper_robot_ign module configures Gazebo Sim for real-world physics and dynamics simulation.  
3. Simultaneously, the Pepper_robot_moveit_config component, integrated with MoveIt 2, handles higher-level motion planning.  
4. ROS 2 middleware processes simulation commands sent to the Pepper_robot_ign module to ensure the execution of actions in 

Gazebo Sim.  
5. Motion planning data from the Pepper_robot_moveit_config component is sent through the ROS 2 middleware to execute planned 

movements in Gazebo Sim.  
6. RViz2 provides real-time visual feedback by subscribing to simulation data from Gazebo Sim.  
7. The system iterates back to the ROS 2 middleware for synchronization and dynamic adjustments based on performance data, 

ensuring that the simulation remains accurate and responsive. 

In such a configuration, on the one hand, RViz2 represents real-time visual monitoring of what the robot is doing—movements and 
behaviors out of the simulation data. On the other hand, the Pepper_robot_ign module sets up Gazebo Sim for simulating the robot with 
accurate real-world physics and dynamics. Higher-level motion planning is under the responsibility of the Pepper_robot_moveit_config 
component, which, when tied with MoveIt 2, calculates and performs movements of the robot according to the current state and 
wanted tasks. The motion planning data and simulation commands are processed through ROS 2 middleware, ensuring execution in 
Gazebo Sim. Iterations with the ROS 2 middleware synchronize the system, providing dynamic adjustments to the robot’s motion 
planning in real-time based on performance data. This cohesive flow, illustrated in Fig. 1, outlines how different modules under the 
pepper_robot metapackage work to simulate, visualize, and control the Pepper robot, all within one ROS 2 environment. The source 
code for the entire ROS 2 package, including detailed implementations and configuration files, is available on our GitHub repository.5 

2.3. Comprehensive development of the ROS 2-based simulation system for pepper 

This section provides a comprehensive exploration of the ROS 2 package architecture, elucidating how each component contributes 
to simulating key aspects of Pepper’s manipulation in simulated environments. While Fig. 1 provided an overview of the system flow 
within the developed package and a brief description of the sub-packages, Fig. 2 provides finer-grain detail of each of the sub-packages 
of the pepper_robot metapackage: pepper_robot_description, pepper_robot_ign, pepper_robot_moveit_config. This is going to consider core 
functionalities of these components, without redundantly covering the system flow already illustrated in Fig. 1. This in-depth rep-
resentation lays the foundation for a closer examination of each core component. 

2.3.1. Detailed architecture analysis of ROS2-Based packages for Pepper robot Simulation 
Following the overview of the system flow, this section takes a closer look at the architecture and the most important packages in 

4 https://gazebosim.org/docs/fortress/ros2_interop.  
5 https://github.com/HibaSekkat/pepper_ign_moveit2.git. 
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the simulation framework. It explains how each of the elements will contribute to constituting a strong and at the same time flexible 
simulation environment suited for our cutting-edge robotics research.  

a. Pepper_robot Metapackage: Central Coordination of Robotic Descriptions 

This metapackage of the pepper robot is at the heart of our simulation architecture. This guarantees that robot sub-packages can be 
used seamlessly in all the simulation scenarios studied. This package is very important as it mechanizes the transformation and 
validation of robot descriptions throughout the build process, hence improving the level of efficiency in development and eliminating 
the chances of errors due to manual processes. This package enables the automatic transforms to ensure that robot descriptions always 
represent current specifications correctly without human intervention. 

The metapackage pepper_robot handles all dependencies of the respective package so that the code base stays clearly organized and 
clearly navigable. This very kind of centralized management approach, therefore, makes the maintenance and updating of the system 
pretty easy, since all the changes made across modules synchronize smoothly. It allows the development cycle to be shortened by one 
hand through automation and centralization and increases the overall reliability and maintainability of the complete simulation 
system. This is an indispensable feature of our high-level robotic simulation framework. 

b.Pepper_robot_description: Crafting a Digital Twin for Simulation 

Fig. 1. ROS2 system architecture for Pepper robot simulation.  

Fig. 2. Component-specific workflows within the Pepper robot simulation system.  
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The Pepper_robot_description package accurately and with a high level of detail describes the digital twin of the Pepper robot 
needed to perform the simulation work with accuracy and effectiveness. The package fully specifies the kinematic structure of the 
robot, including all links and joints, as well as its visual appearance based on meshes. These make the following definitions applicable 
to different simulation environments, even in human-like applications in research and development, through enabling their appli-
cation as in Fig. 3a,b. 

This package is very critical in starting simulations in Gazebo Sim. The package loads model data from URDF (Unified Robot 
Description Format) and SDF (Simulation Description Format) files, which specify the physical dimensions and properties of the 
Pepper robot. These joint positions’ initial conditions are of importance to the robot in the simulation, whereby it starts under 
consistent and controlled conditions. The Pepper_robot_description further allows the configuration of the visual parameters in RViz2 
using middleware ROS 2, thus providing real-time updating of the visualizations with data processed from Gazebo Sim. This dynamic 
updating is a feature critical to the real-time monitor of the robot’s state and robot’s movements during simulations, providing instant 
visual feedback, something that is absolutely vital during testing phases and iterative development. 

It doesn’t just describe the kinematic and aesthetic details but also brings in essential physical properties such as mass distribution, 

which will be required for calculation of inertia tensor, expressed as a 3x3 matrix =

⎛

⎝
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞

⎠ . This tensor has important roles 

in dynamic simulations. It is used by Gazebo Sim in simulating the robot response to applied forces and torques using Newton-Euler 
dynamics: 

F=ma + Iα, τ = Iα + ω × Iω [1] 

Where, F denotes force, τ signifies torque, m represents mass, a represents linear acceleration, ω denotes angular velocity, α denotes 
angular acceleration, I is the inertia tensor, and ω × Iω represents the cross product of angular velocity and the product of inertia tensor 
and angular velocity, describing the rotational effect influenced by mass distribution. The force equation describes how the force 
applied to an object results in its linear acceleration and accounts for rotational effects via the inertia tensor and angular acceleration. 
The torque equation explains how the torque applied to an object generates angular acceleration, factoring in the object’s resistance to 
change in rotation (inertia) and the rotational effects influenced by the distribution of mass (cross product term). The accurate rep-
resentation of these dynamics is key to the simulation of real-world physics interactions and will directly impact issues like momentum, 
stability, and impact dynamics. 

It is made easy for setting up and testing the simulation by including launching scripts in the package, which automatically vi-
sualizes in both RViz2 and Gazebo Sim, hence efficient and effective simulations. This capability of model representation through a 
dual-format model (URDF and SDF) promises compatibility among different simulation platforms and opens the way for integration 
with different tools and environments such as Gazebo and Fuel. Ultimately, it’s detailed and accurate model descriptions form the 
necessary element for simulating complex interactions, motion planning, and control strategies in a virtual setting, making it a 
cornerstone of our advanced robotics simulation framework. 

Fig. 3. From code to reality: Unveiling Pepper’s kinematics and joint limits.  
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c.Pepper_robot_ign: Facilitating Communication Between ROS 2 and Gazebo Sim 

The pepper_robot_ign package is an important interface in the ROS 2 framework, which serves as the bridge between Gazebo Sim 
and control algorithms within the ROS 2 environment. These ensure that there is no disruption in the seamless flow of data and 
commands between control systems and simulation modules. This improves the fidelity of the simulation with exact control and real- 
time feedback. This also provides a simulation that is able to be adapted or even customized to run through the provision of a con-
figurable bridge script as part of the simulation setup, allowing several scenarios and control strategies. It helps doing realistic sim-
ulations by bringing forth the powerful integration of ROS 2 and Gazebo Sim through Pepper_robot_ign. Such control algorithms within 
ROS 2 can directly manipulate the virtual environment in getting feedback, thereby making the simulations responsive and interactive. 

This integration supports the behavior simulation of the autonomous robots and their complex dynamics of interactions with the 
environment; it showcases capabilities of the advanced motion planning tools like MoveIt 2. Besides movement control and managing 
the interaction of the robot, Pepper_robot_ign also manages the flow of sensor data to support real-time control and sensing that gives the 
simulation its realistic impression, in addition to the Pepper robot personality. Such real-time capability is very much important for 
those systems whose applications require immediate feedback, as in the case of the adaptive control system and the interactive training 
environment. 

On the other hand, it enhanced the visualization capabilities in the simulation framework. It gives support to RViz2 visualization, 
providing insight into the robot’s actions and planning processes for use in debugging and control strategy refinement. It is important 
to be able to make sense of how the robot is interfacing with the environment and gain insights from the visual feedback on improved 
design and execution of the simulation. 

Overall, the package pepper_robot_ign acts as the communication backbone of the simulation architecture, correctly flowing both 
data and commands across the system. To maintain veracity and uniformity of behavior within the simulation, this coordination is 
required, enabling the robot to respond properly towards changing tasks of the simulation and control inputs. This is a very important 
package in the field of advanced research and development of robotics, which through its wide function, will raise the simulation 
environment to a new level. 

d.Pepper_robot_moveit_config: Orchestrating Advanced Motion Planning with MoveIt 2 

The Pepper_robot_moveit_config module is one of the key modules within the architecture of our simulation. It provides the Pepper 
robot with advanced motion planning capabilities using the MoveIt 2 framework. 

This module has been designed to configure and integrate a number of different MoveIt 2 components into the robot manipulators, 
enabling the creation and execution of elaborate, detailed, and accurate motion plans. More in this context, the current module tunes 
the motion planning algorithms and the set of parameters in relation to the capabilities of the Pepper robot and specific demands of the 
simulation. It therefore selects and parametrizes the MoveIt 2 planners for operation scenarios of the robot to be able to dynamically 
plan and simulate complex robot motion and interaction. This careful configuration makes it possible for motion plans to be feasible 
and collision free, hence allowing for complex dynamics of robot manipulation. 

The Pepper_robot_moveit_config increases its capabilities by allowing the handling of SRDF (Semantic Robot Description Format) in a 
flexible way, such that the simulation can adjust itself to different robot configurations and different situations that may occur. Such 
adaptation is necessary since many customizations and high precision are needed for such simulations. It also allows the high level of 
visualization and interaction within the simulated environment. It’s integrated with RViz2 and therefore helps to visualize the planned 
motions and the state of the robot. This visualization is powerful because it gives insight into the operational dynamics of the process of 
motion planning in a manner that assists in understanding and debugging. The visual feedback allows researchers and developers to 
iteratively adapt their strategies toward improved robot performance for the simulated tasks. 

In addition, the Pepper_robot_moveit_config allows the development of very complex behaviors for the robots, right from path 
planning, obstacle avoidance, to manipulation tasks. All these are highly enhanced with the development of a strong background on 
which these capabilities are built, hence robotic research can be easily carried out simulating high-level tasks with an ability to 
represent real-life implementations. In general, the module extends simulation capabilities of the advanced motion planning to make 
sure that these capabilities are well integrated within a broad simulation framework. The Pepper_robot_moveit_config allows precision 
and adaptability in the development and testing of advanced robotic applications within the ROS 2 environment. 

3. Validation and accuracy assessment of Pepper robot digital twin 

In recent years, the concept of digital twins has gained prominence for their role in analysis, prediction, and optimization [55,56]. 
This research takes a pivotal step in developing a precise digital twin for the Pepper robot, leveraging the robust capabilities of ROS 2, 
Rviz2, Gazebo Sim, and MoveIt 2. The cornerstone of our endeavor lies in a comprehensive demonstration and validation process, 
ensuring the accuracy and efficacy of our digital twin. This scrutiny is indispensable, providing the confidence needed to fully exploit 
its potential for tasks in robot learning and manipulation. 

3.1. Setup and environment 

The research leveraged a software stack of Rviz2, ROS 2 Galactic, Gazebo Sim (Fortress), Python 3.8.10, and Docker 20.10.21, 
executed on a Dell Precision-5820 workstation boasting an Intel Xeon w-2155 CPU (3.30 GHz) and 31 GB of memory. Ubuntu 20.04.4 
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LTS, a popular and reliable choice in robotics, served as the operating system, while Docker 20.10.21 ensured consistent and repro-
ducible software dependencies across different machines. This powerful hardware, with its high-performance CPU and ample memory, 
allowed for efficient execution of simulations, handling large datasets with ease. Ultimately, this carefully chosen configuration paved 
the way for replicable results and smooth experimentation. 

3.2. Gazebo Sim digital twin validation 

A crucial facet of Pepper’s movement capabilities centers on joint limits, defining its range of motion. Considering the feedback that 
both Gazebo Sim and Rviz2 rely on the same URDF/SDF model, a separate comparison with Rviz2 might be redundant. Therefore, we 
focused on directly comparing Choregraphe’s planning instructions with Gazebo Sim’s execution to pinpoint any inconsistencies 
within the planning stage itself. Our meticulous comparison focused exclusively on Choregraphe, acknowledged as the primary source 
of joint limit data for Pepper, providing a distinct benchmark for evaluating Gazebo Sim’s fidelity in accurately reflecting these limits. 
The findings, presented in Table 4, shed light on the intricate correspondence between our Gazebo Sim-based digital twin and the 
bench-marks set by Choregraphe. This analysis not only underscores the precision of our simulation but also establishes a robust 
foundation for an impactful demonstration and validation narrative, setting the stage for further exploration into the capabilities of our 
digital twin. 

We evaluate the average deviation of the simulated limits for each joint from predefined benchmarks using a Mean Absolute Error 
(MAE) technique. Specifically, we employ the MAE measure to provide an explicit interpretation of the findings and a straightforward 
representation of the error magnitudes. In order to provide a clear indicator of accuracy along each joint’s range of motion, it spe-
cifically computes the average absolute disparities between the benchmarks from Choregraphe and the outcomes from Gazebo Sim 
simulation for each joint limit—minimum and maximum. 

These mean absolute errors for each joint, resulting from the absolute value of the difference of the corresponding minimum and 
maximum joint limits between Choregraphe and Gazebo Sim, are indicative of how close the digital twin is. For instance, an error of 
0.01–0.02 radians indicate an average deviation of the Gazebo Sim simulation from experimental data by such a small amount. Such 
very low values of MAE give confidence in the very high fidelity and high reliability of the digital twin in reproducing real-world 
dynamics, which becomes key in high-precision tasks including interaction and complex manipulation within different. 

Furthermore, talking about how these MAE values might affect the robot’s operational needs and other aspects of its design 
strengthens our belief in the usefulness of our digital twin. Low MAE implies that the errors are very minimal, further confirming that it 
will not compromise the real performance of the robot in any case [57]. The robustness of the quantitative analysis, based on the MAE, 
underpins very robustly our validation metrics in respect of suitability in very advanced simulations and practical applications in 
robotics. 

3.3. Unveiling Movement Fidelity: from planning to reality 

In this paper, the precision of the Gazebo Sim model of Pepper was measured carefully with respect to real-world movements, as the 
movements were recorded through a high-definition video of the robot using high-definition camera at 1080p resolution and 60 fps. 
With this setup, the Pepper’s joint movements were recorded at particular time intervals (from T0 to T4). The high-definition video is a 
component of the system set up that was used to measure and compute the joint angles of Pepper in real-world scenarios as illustrated 
in Fig. 4. The system processed and computed the joint angles by using a set of specialized hardware and software components in 
conjunction with MPU6050 sensors that were placed on each joint of Pepper. The MPU6050 sensors, which are positioned thoughtfully 
on each joint of Pepper and are crucial to the capture of six-axis motion data (three axes of acceleration “Ax, Ay, and Az” and three axes 

Table 4 
Pepper Robot joint limit fidelity: Gazebo sim simulation compared to choregraphe Reference values.  

Joints Choregraphe Gazebo Sim MAE 

(in rad) min max min Max MAE_min MAE_max Average MAE 
Head Yaw − 2.07 2.07 − 2.09 2.09 0.02 0.02 0.020 
Head Pitch − 0.69 0.63 − 0.71 0.64 0.02 0.01 0.015 
Hip Roll − 0.50 0.50 − 0.51 0.51 0.01 0.01 0.010 
Hip Pitch − 1.02 1.02 − 1.04 1.04 0.02 0.02 0.020 
Knee Pitch − 0.50 0.50 − 0.51 0.51 0.01 0.01 0.010 
LShoulder Pitch − 2.07 2.07 − 2.09 2.09 0.02 0.02 0.020 
LShoulder Roll 0 1.55 0.01 1.56 0.01 0.01 0.010 
LElbow Yaw − 2.07 2.07 − 2.09 2.09 0.02 0.02 0.020 
LElbow Roll − 1.55 0 − 1.56 − 0.01 0.01 0.01 0.010 
LWrist Yaw − 1.81 1.81 − 1.82 1.82 0.01 0.01 0.010 
LHand 0.01 0.97 0.02 0.98 0.01 0.01 0.010 
RShoulder Pitch − 2.07 2.07 − 2.09 2.09 0.02 0.02 0.020 
RShoulder Roll − 1.55 0 − 1.56 − 0.01 0.01 0.01 0.010 
RElbow Yaw − 2.07 2.07 − 2.09 2.09 0.02 0.02 0.020 
RElbow Roll 0 1.55 0.01 1.56 0.01 0.01 0.010 
RWrist Yaw − 1.81 1.81 − 1.82 1.82 0.01 0.01 0.010 
RHand 0.01 0.97 0.02 0.98 0.01 0.01 0.010  
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of gyroscope data), form the basis of this measuring system. The data is crucial for figuring out each joint’s alignment and dynamics of 
motion. 

The output reading from the sensors was transferred to a NodeMCU 1.0 microcontroller, one of the central pieces of our hardware 
setup. The NodeMCU interfaced with the MPU6050 through the effective I2C communication protocol, which has good provisions for 
synchronizing data from multiple sensors. The NodeMCU received the raw sensor data and used developed algorithms to calculate the 
angles of each individual joint. The raw accelerometer and gyroscope inputs are converted into useful angular measurements by 
custom-built algorithms that compute the exact angles of each individual joint using the following mathematical equations in the 
mathematical models that account for both initial calibration and ongoing motion dynamics: 

Roll (ρ)= arctan

⎛

⎜
⎝

Ax
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⎞

⎟
⎠ [2]  

Pitch (Φ)= arctan
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Yaw (ψ)= arctan
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⎝
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⎟
⎠ [4]  

In order to bring the real-world measurements into mathematical equivalency with the simulated data, we used the rule of three. As a 
result, both data sets were standardized under equivalent time frames from T0 to T4, allowing a recorded frame from the real-world 
setup to be directly compared with its simulated counterpart. 

This rigorous comparison is further detailed in Fig. 5a, b, and 5c which showcase three distinct Pepper movements across four 
environments: Rviz2 (planning), Gazebo Sim (simulation), Choregraphe (control), and the real world. Each movement, captured across 
five key frames, reveals the nuanced differences between planned intent and actual execution. Subtle variations in posture, limb 
angles, and trajectory emerge as the robot transitions from the digital realm to reality. 

This visual analysis, complemented by Table 5’s joint angle values, offers valuable insights into our Gazebo Sim model’s accuracy. 
The table reveals close alignment between simulated and real-world data, with average discrepancies of only 0.01–0.02 radians for 
most movements. Even the head’s wider range of motion shows remarkable fidelity, with discrepancies largely within 0.01 radians. 

Delving deeper into the intricate dance of motion, Fig. 6a, b, and 6c meticulously dissect the dynamic execution of various joint 
movements, comparing Gazebo Sim simulations with their real-world counterparts controlled by Choregraphe. Each subplot unveils 
the movement trajectory of a specific joint across all five key frames, offering a nuanced comparison. The left shoulder pitch (Fig. 6a, 
fourth curve), for instance, exhibits remarkable fidelity between Gazebo Sim and Choregraphe across all frames. This close alignment, 
with deviations mostly within 0.01 radians, reaffirms Gazebo Sim’s ability to accurately replicate real-world joint movements. 
Similarly, Fig. 6c (bottom left) scrutinizes the head pitch joint angle, revealing an elegant mirroring of trajectories between the two 
systems. While a keen eye might detect a narrow gap, typically hovering within 0.01–0.02 radians, this minor discrepancy pales in 
comparison to the overall alignment. 

Continuing the analysis, Fig. 7a, b, and 7c help complete Fig. 6 by showing error graphs plotting in detail with inconspicuous units 

Fig. 4. Real-world calculation of joint angles in Pepper robot using NodeMCU 1.0 and MPU6050.  
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in radians of robot head pitch, and yaw; and elbow, shoulder, and wrist on left and right arms, performed during 1000 iterations. The 
errors in the head pitch joint goes from around 0.01 radians to − 0.01 radians, thus giving the impression that a transition has been 
made from positive error to minimally negative and then the error stabilizes. The corresponding graph below it, for the head yaw joint, 
begins with the error that is almost at zero, goes up to a little over 0.01 radians, and then again decreases a bit and becomes stable, 
which suggests a trend of initial alignment followed by small deviations occurring with adjustments. For the right arm, the 2 top graphs 
error starts at very near − 0.01 and 0 radians, respectively, slowly rising to a peak of just over 0.00 radians–0.01 radians. This shift from 
a negative/null error to a positive error would imply an overshoot in the process of validation: the angle of the target would first be 
overcorrected in the undershoot direction and then overcorrected in the overshoot direction before it becomes stable. Such a pattern of 
under-correction to near-positive indicates a kind of overcompensation actually being evidenced by the simulation, but it finally 
stabilizes near zero. The errors are relatively high in the beginning but drastically decrease at the joints of the arm, particularly the 
shoulder; this seems to be due to the good modeling of dynamic behavior on these joints. The errors are low on many joints, especially 
on the left arm, and almost constant; this means that the simulation is accurate and stable. The detailed breakdown of error trends at 
the various joints shows how realistically the simulation can mimic real movements and validates the reliability of the digital twin for 
fine robotics applications. 

Overall, Fig. 7 demonstrates that the error in each joint angle consistently falls within the narrow range of 0.01–0.02 radians. This 
minute deviation, further solidifying the observations from individual joint analyses, underscores the commendable fidelity of the 
Gazebo Sim simulations. While potential factors like sensor noise or slight control variations could contribute to these minor dis-
crepancies, they do not diminish the overall conclusion: Gazebo Sim excels at replicating real-world robot movements with remarkable 
accuracy. 

These findings highlight the power of Gazebo Sim as a robust platform for accurately replicating Pepper’s movement capabilities. 
The close alignment between simulated and real-world data across joints and movement frames suggests that Gazebo Sim not only 
faithfully translates planned trajectories into virtual actions but also provides a reliable bridge between planning and real-world robot 
behavior. This accuracy opens doors for a multitude of applications, ranging from robot training and algorithm development in a safe 
simulated environment to the optimization of movement strategies for specific tasks in the real world. The remarkable fidelity between 
simulated and real-world Pepper movements presented here holds promising implications for advancing robotics and AI, fostering 
precise algorithm training and safe deployment testing. 

4. Conclusion 

The findings presented in this paper offer compelling evidence for the transformative potential of our open-source ROS 2 package in 
revolutionizing humanoid robot training, specifically for dexterous robots like Pepper. The remarkable fidelity achieved between 
simulated and real-world Pepper movements, demonstrably exceeding the limitations of traditional ROS 1 environments, represents a 
significant advancement in robot simulation accuracy. The proposed system provides a high-fidelity environment essential for future 
training and development of machine learning algorithms. By accurately replicating real-world dynamics and enabling seamless 

Fig. 5. From concept to control: Validating gazebo Sim’s movement fidelity for left arm, right arm, and head.  
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Table 5 
Bridging the gap: Numerical validation of Pepper’s joint angles across planning, simulation, and actual movement.  

Left Arm Rviz2 Gazebo Sim Choregraph Reality 

(in rad) T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 T0 T1 T2 T3 T4 

LshoulderP 0.00 − 0.14 − 0.40 − 0.65 − 1.11 0.00 − 0.15 − 0.41 − 0.66 − 1.12 0.00 − 0.14 − 0.40 − 0.65 − 1.11 0.00 − 0.14 − 0.40 − 0.65 − 1.11 
LshoulderR 0.00 0.08 0.21 0.35 0.59 0.01 0.09 0.22 0.36 0.60 0.00 0.08 0.21 0.35 0.59 0.00 0.08 0.21 0.35 0.59 
LElbowY 0.00 0.11 0.29 0.46 0.78 0.00 0.11 0.29 0.46 0.78 0.00 0.10 0.28 0.45 0.77 0.00 0.10 0.28 0.45 0.77 
LElbowR 0.00 − 0.11 − 0.30 − 0.48 − 0.82 − 0.01 − 0.12 − 0.31 − 0.49 − 0.83 0.00 − 0.11 − 0.30 − 0.48 − 0.82 0.00 − 0.11 − 0.30 − 0.48 − 0.82 
LwristY 0.00 − 0.15 − 0.41 − 0.66 − 1.13 0.00 − 0.15 − 0.41 − 0.66 − 1.13 0.00 − 0.14 − 0.40 − 0.66 − 1.13 0.00 − 0.14 − 0.40 − 0.66 − 1.13 
Right Arm  
LshoulderP 0.00 − 0.12 − 0.31 − 0.54 − 1.04 0.00 − 0.13 − 0.32 − 0.55 − 1.05 0.00 − 0.12 − 0.31 − 0.54 − 1.04 0.00 − 0.12 − 0.31 − 0.54 − 1.04 
LshoulderR 0.00 − 0.13 − 0.31 − 0.53 − 1.01 0.01 − 0.13 − 0.31 − 0.53 − 1.01 0.00 − 0.12 − 0.30 − 0.52 − 1.00 0.00 − 0.12 − 0.30 − 0.52 − 1.00 
LElbowY 0.00 0.01 0.05 0.09 0.19 0.00 0.02 0.06 0.10 0.20 0.00 0.01 0.05 0.09 0.19 0.00 0.01 0.05 0.09 0.19 
LElbowR 0.00 0.13 0.32 0.55 1.06 − 0.01 0.14 0.33 0.56 1.07 0.00 O.13 0.32 0.55 1.06 0.00 O.13 0.32 0.55 1.06 
LwristY 0.00 0.14 0.36 0.63 1.22 0.00 0.15 0.37 0.64 1.23 0.00 0.14 0.36 0.63 1.22 0.00 0.14 0.36 0.63 1.22 
Head  
HeadY 0.00 0.28 0.57 0.90 2.05 0.00 0.29 0.58 0.91 2.06 0.00 0.28 0.57 0.90 2.05 0.00 0.28 0.57 0.90 2.05 
HeadP 0.00 − 0.01 − 0.03 − 0.05 − 0.13 0.01 − 0.02 − 0.04 − 0.06 − 0.14 0.00 − 0.01 − 0.03 − 0.05 − 0.13 0.00 − 0.01 − 0.03 − 0.05 − 0.13  
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Fig. 6. Evaluating Fidelity of Simulated and Real-World Pepper - Gazebo vs. Choregraphe.  
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Fig. 7. Quantifying accuracy - error distribution of joint angles in gazebo simulations.  
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integration with various AI frameworks, it supports the potential development and testing of complex AI models. Its modular archi-
tecture enhances flexibility and adaptability, making it suitable for diverse AI research needs. It is important to state here that there is a 
current limitation with the kinematic structure of the hands of the robot within our simulation. The URDF in use within our model does 
handle all finger movements collectively with a single joint, controlled by mimic tags, a feature not supported by Gazebo Sim Fortress. 
This significantly limits the potential of our simulation to fully model the fine finger articulations needed for the performance of 
advanced motor skills, since it does not allow the independent control of each finger joint alone. This limitation affects tasks that 
require precise manipulations. However, it can still support broader tasks, like grasping or pushing with basic hand opening and 
closing. Despite this, this breakthrough unlocks a plethora of opportunities for the development and refinement of complex machine 
learning algorithms designed to equip robots with intricate skills, meticulous movement strategies, and the ability to seamlessly 
interact with the real world. By providing a safe and controlled virtual playground for robot learning, our digital twin paves the way for 
accelerated advancements in the field of humanoid robotics. Furthermore, the system’s high-fidelity simulation capabilities suggest 
that AI models trained in this environment could potentially be transferred to real-world applications with minimal adjustments, 
reducing the sim-to-real gap and enhancing the efficiency of AI integration in robotic systems. We confidently stand by the contri-
bution of this work to the broader robotics and AI communities, offering a robust and accessible platform that invites further research 
and collaboration to explore the exciting frontiers of robot capability and intelligence. This open-source platform signifies our 
commitment to fostering a collaborative environment where, collectively, we can empower robots to become not just tools, but 
valuable partners in shaping the future. 
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