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Abstract

Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated
whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar
organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first
week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First,
we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature
slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned
media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the
effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors,
we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative
PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different
ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-
regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells
and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition
with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells
participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally
regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin.
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Introduction

Oligodendrocytes are central nervous system macroglial cells

that synthesize myelin, a multilayered membrane ensheathing

axons which facilitates rapid nerve conduction [1]. During

development, oligodendrocyte precursor cells (OPCs) divide and

migrate over long distances to reach their final destination where

they differentiate into mature oligodendrocytes and produce

myelin.

Neuron maturation affects oligodendrocyte survival and the

timing of myelin formation, OPCs nonetheless differentiate into

mature oligodendrocytes and generate a myelin sheath in the

absence of axons in vitro [2,3]. In the optic nerve, only the

oligodendrocytes ensheathing axons survive [4,5]. Oligodendro-

cytes are more abundant in transgenic mice with larger numbers

of axons [6]. Myelin formation is correlated with certain

parameters of axonal maturation, such as axon caliber and

neurofilament content [7–9]. Axonal factors which are directly

involved in controlling myelin formation include neuronal

electrical activity [10,11] and the downregulation of various

molecules in axonal membranes, including Jagged1, PSA-NCAM

(polysialic acid-neural cell adhesion molecule) and N-cadherin

[12–14]. Myelin membrane formation is coordinated by a large

number of proteins, through contact mechanisms and integrin

receptors [15]. Furthermore, Rosenberg and colleagues demon-

strated that myelin formation required an axonal microenviron-

ment and a critical density of OPCs [16].

The role of neurons in the switch between OPC proliferation

and differentiation into oligodendrocytes remains unclear. The

timing of this switch depends on both the intracellular timer and

extrinsic factors [17]. For several years, thyroid hormone (T3),

retinoic acid (RA), glucocorticoids and transforming growth factor

(TGFß) were the only molecules known to trigger the initial stages

of OPC differentiation [18,19]. More recently, neuronal activity
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has also been shown to participate in OPC differentiation.

Purinergic receptor activation by non-synaptically released aden-

osine [20] stimulates the differentiation of OPCs into oligoden-

drocytes. Thus, reciprocal neuron-glial interactions are also

required for the complete conversion of OPCs into differentiated

oligodendrocytes. These neuron-glial interactions do not always

have positive effects; connective tissue growth factor (CFTG) has

been reported to inhibit the differentiation of OPCs into

oligodendrocytes through interactions with serum response factor

(SRF), a neuronal transcription factor [21].

In this study, we investigated the existence of neuronal soluble

factors controlling oligodendrocyte differentiation in an integrated

system. For that purpose, we used cerebellar organotypic cultures,

in which neuron-glial interactions mimic those occurring in vivo

and in which only one type of neuron, the Purkinje cell, is

myelinated [22]. We demonstrated that the maturation of Purkinje

cells is one of the key factors controlling the timing of

oligodendrocyte differentiation. Indeed, Purkinje cells timely

release two factors, Sonic Hedgehog (Shh) and vitronectin (VN),

which respectively stimulate OPC proliferation and oligodendro-

cyte differentiation.

Results

Newborn cerebellar slice cultures are immature for
oligodendrocyte differentiation during the first week in
vitro and become mature during the second week

To analyze the timing of the oligodendrocyte differentiation

process in cerebellar slice cultures, we focused on the expression of

MBP because this protein is expressed in mature oligodendrocytes

(both pre- and myelinating oligodendrocytes [1,23]). MBP

immunostaining was detected both on the processes of mature

oligodendrocytes (Fig. 1A9, B9, C9) and the myelin segments

(internodes, Fig. 1B9, C9). The appearance of this protein therefore

reflects the last stages of oligodendrocyte differentiation.

P0 cerebellar slices grown for 7 DIV had very few MBP+
oligodendrocytes (Fig. 1A, 1A9), and very few if any MBP+
internodes were observed at this stage. Indeed, most of the slices

(over 75%) did not present any internodes (Fig. 1A), and we did

not detect more than 25 MBP+ internodes on the other slices. We

defined Group I as the slices containing less than 25 internodes

and Group II as the slices containing more than 26 internodes.

Thus, on P0–7 DIV slices, the density of MBP staining can be used

as an index of oligodendrocyte differentiation, since very few

internodes were present.

At 10 DIV, MBP+ oligodendrocytes were present throughout

the slices (Fig. 1B) and MBP+ internodes can be detected (Fig. 1B9).

At 10 DIV, over 50% of the slices exhibited more than 26

internodes per slice and were therefore in Group II. The process of

oligodendrocyte differentiation is well engaged, whereas myelina-

tion had only just started.

After 14 DIV, the number of MBP+ internodes increased

(Fig. 1C). Almost all of the slices contained more than 26

internodes and were therefore in Group II. Furthermore, myelin

tracts can often be observed (Fig. 1C9). At 14 DIV, the process of

myelination is already well engaged.

Our results therefore showed that most OPCs differentiated into

MBP+ oligodendrocytes between 7 and 10 DIV and most of the

myelination process occurred between 10 and 14 DIV. P0 slices

were thus considered to be immature for oligodendrocyte

differentiation during the first 7 DIV and to be mature during

the following week, in which rapid oligodendrocyte differentiation

occurred.

Mature cerebellar slices release factors that increase
oligodendrocyte differentiation in immature slices

We investigated whether, during the phase of oligodendrocyte

differentiation, cells in the slice culture (between 7 and 14 DIV)

were able to increase oligodendrocyte differentiation on immature

slices (7 DIV). To this aim, P0 cerebellar slices were grown in

culture until 7 DIV, when the differentiation of oligodendrocytes

was beginning and could be called ‘‘mature’’. At this time point,

fresh P0 slices (immature) were added to the Millicell (Fig. 2A)

such that the ratio of immature/mature slices was 1:2. After 7

more DIV, we analyzed the MBP immunostaining on the

immature slices (P0–7DIV control (ctrl) or grown in presence of

mature slices (coc Mature)). We did not detect any increase in the

presence of internodes; all of the P0–7 DIV slices (control slices or

slices grown in the presence of mature slices) were in Group I (i.e.

presenting less than 25 internodes). The MBP+ oligodendrocytes

were evenly distributed in the slices (Fig. 2B). The density of MBP

immunostaining was 2.44 times higher in immature slices grown in

the presence of mature slices (P0–7 DIV Coc-Mature) compared

with control immature slices (P,0.001, Fig. 2B).

Then to confirm that this increase of MBP immunostaining was

indeed due to an increase of the number of oligodendrocytes, we

evaluated the density of APC+/OLIG2+ cells on the slice cultures.

APC is expressed by oligodendrocytes and some astrocytes

[24,25], whereas OLIG2+ is expressed by both OPCs and

oligodendrocytes [26]. Thus, APC+/OLIG2+ cells are oligoden-

drocytes. We found a significant increase in the number of

OLIG2+/APC+ cells in 7 DIV slices grown in presence of mature

slices compared to 7 DIV control slices (Fig. 2C).

These results showed that mature slices release factors that

increase oligodendrocyte differentiation in immature ones. They

also suggest that the switch from OPC proliferation to oligoden-

drocyte differentiation in cerebellar organotypic cultures is

controlled by factors released from cerebellar cells at critical

stages of maturity. Then we investigated whether Purkinje cells

might influence the timing of oligodendrocyte differentiation in

cerebellar slices. Indeed the number of Purkinje cells can be

manipulated during the first week in vitro, i.e. before the addition

of immature slices.

The oligodendrocyte differentiation effect of mature
slices is proportional to the number of Purkinje cells

To investigate whether Purkinje cells might control the secretion

of these differentiation factors, we used two different slice-culture

models in which the numbers of Purkinje cells were markedly

different. To increase the number of Purkinje cells, we applied a

BrdU treatment that kills dividing cells during the first 3 DIV of

the culture [27]. In this model, after 14 DIV, the BrdU-treated

slices contained no MBP+ elements (Fig. 3B1) and much more

Purkinje cells than the P0–14DIV control slices (compare Figs. 3B2

with 3A2).

To decrease the number of Purkinje cells, we took advantage of

the fact that newborn Purkinje cells axotomized after 2 DIV, die in

large numbers in organotypic culture. Indeed, axotomized slices

contained small numbers of surviving Purkinje cells in the second

week of culture (Fig. 3C2). These axotomized slices contained

some MBP+ oligodendrocytes (Fig. 3C1).

We then evaluated whether the Purkinje cells have reached a

differentiated stage at 14 DIV in all 3 different conditions (Ctrl,

BrdU-treated slices or axotomy-treated slices).

We previously showed that at the time of the culture, newborn

Purkinje cells were bipolar, whereas after 7 DIV, most Purkinje

cells have retracted their primitive processes and developed

Purkinje Cells and Oligodendrocyte Differentiation
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numerous perisomatic protrusions [28,29]. After 14 DIV, Purkinje

cells presenting two other types of dendritic morphology were

observed in the slices: Purkinje cells bearing either multipolar

dendritic processes, or a single elaborated dendritic processes

[28,29]. Numerous branches and spines were detected on these 2

types of Purkinje cells and they corresponded to mature Purkinje

cells. Interestingly, these two types of morphology were observed

in all 3 conditions, i.e. control, BrdU-treated, and axotomy-treated

slices (Fig. 3A3, B3, C3). Furthermore, it is known that Purkinje

cells initiate their expression of Parvalbumin in parallel to their

dendritic differentiation [30,31]. In the three types of slices,

control, BrdU-treated, and axotomy-treated slices, about half of

the Purkinje cells were Parvalbumin immunoreactive after 14 DIV

(Fig. 3A3, B3, C3). From these data, we can conclude that the

different types of treatments do not affect two important

parameters of Purkinje cell differentiation, i.e. dendritic differen-

tiation and parvalbumin expression.

Thus, the use of conditioned medium taken from BrdU treated

slices (BrdU-CM) allowed us to study the effect of slice cultures

containing high numbers of differentiated Purkinje cells and no

MBP+ oligodendrocytes. Whereas taking the CM from the

‘‘axotomy’’ slices (Axt-CM) allowed us to study of the effect of

slice cultures containing very few differentiated Purkinje cells.

For P0 slices grown for seven days in the presence of

conditioned medium from P0 7DIV–14DIV cultures (Ctrl-CM,

Fig. 4A), the density of MBP immunostaining was significantly

higher than in control slices, (1.72 times; Fig. 4E). Although this

difference was smaller than for co-cultures, the obtained results

show that mature slices release diffusible factors that increase

oligodendrocyte differentiation in immature slices and that OPCs

do not migrate from the mature to immature slices across the

Millicell membrane.

We then tested the CMs from the two different culture

conditions described above to manipulate the number of Purkinje

cells. In all experimental conditions, we did not detect slices in

Group II (i.e. presenting a significant number of internodes). Thus,

the density of MBP might be used as an index of oligodendrocyte

differentiation. P0 slices grown with BrdU-CM (Fig. 4C) had a

density of MBP immunostaining that was 2.75 times higher than

that in P0 slices grown with Ctrl-CM (Fig. 4B, E). In contrast, P0

slices grown with Axt-CM (Fig. 4D) had a very low density of MBP

immunostaining which was 8.47 times smaller than P0 slices

grown with Ctrl-CM (Fig. 4B, E). These findings suggest that

BrdU-CM contained larger amounts of oligodendrocyte differen-

tiation factors than Ctrl-CM, whereas Axt-CM contained less of

these factors. This is consistent with a role for Purkinje cells as they

are the only cell type whose numbers strongly changed in the two

conditions, i.e. a large increase in BrdU treated slices and a large

decrease in axotomy treated slices (see discussion). During their

maturation, Purkinje cells therefore release or promote the release

of factors stimulating oligodendrocyte differentiation.

Sonic Hedgehog gene expression in the cerebellar cortex
decreases during the first 10 postnatal days whereas that
of vitronectin increases

To understand how Purkinje cells could be involved in the

timing of oligodendrocyte differentiation, we looked for genes

Figure 1. Oligodendrocyte differentiation and myelination on mouse newborn slices occurred during the second week of
organotypic culture. A-A9. Photomicrographs of a newborn cerebellar slice maintained for 7 days in vitro (DIV) and labeled with antibodies against
MBP. A9 is an enlargement of A. Note that the number of MBP immunoreactive processes of the oligodendrocytes (arrowheads) is low, indicating the
immature stage of 7 DIV slices in terms of oligodendrocyte differentiation. B-B9. Photomicrographs of a P0 cerebellar slice maintained for 10 DIV and
labeled with antibodies against MBP. B9 is an enlargement of B. The MBP immunoreative elements are composed of oligodendrocyte processes
(arrowhead) and of internodes (arrow). Note that the number of MBP immunoreative oligodendrocytes is very high and that of MBP immunoreactive
internodes is consequent, indicating that 10 DIV slices have reached a mature stage of 10 DIV oligodendrocyte differentiation, although myelin
formation has just started. C-C9. Photomicrographs of P0 cerebellar slice maintained for 14 DIV and labeled with antibodies against MBP. C9 is an
enlargement of C. The MBP immunostaining reveals both oligodendrocytes (arrowhead) and internodes (arrows). The numbers of MBP
immunoreactive oligodendrocytes and internodes are high, indicating that both oligodendrocte differentiation and myelin formation are well
advanced. Bar is 350 mm in A, B and C and 60 mm in A9, B9 and C9.
doi:10.1371/journal.pone.0049015.g001
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which are: regulated during postnatal development, expressed by

Purkinje cells and are coding for extracellular proteins. We used

Affymetrix arrays for transcriptome analysis on cerebellar cortical

regions, at time points P0, P3, P5, P7, and P10. Statistical and

gene ontology analyses identified 4 extracellular proteins encoded

by genes displaying an expression that decreased, and 6 displaying

an expression that increased by more than twofold during the first

10 postnatal days (see Table 1). Two of these, Sonic Hedgehog

(Shh) and vitronectin, were of interest to us for various reasons; in

particular the proteins of both are present in Purkinje cells [32–

36]. Furthermore, Sonic Hedgehog (Shh) acts as a mitogen for

OPCs [37,38] and vitronectin overrides the proliferation response

of granule cell progenitors to Shh, leading to the initiation of

differentiation [39]. We confirmed the affymetrix expression

patterns of Shh and vitronectin by qPCR (compare Fig. 5A and

5B).

Then to check the expression patterns of Shh and vitronectin in

developing Purkinje cells, we performed real-time quantitative

PCR using mRNAs extracted from fluorescent flow cytometry

sorted (FACS) Purkinje cells of L7-GFP transgenic mice at

different ages (P0, P3, P7 and P10). In these experiments, the

results obtained from P0 and P3 Purkinje cells were pooled

together and compared to those of pooled P7 and P10. From this

comparison, it clearly appeared that over the ten first postnatal

days Shh presented a decreased expression, whereas vitronectin

displayed an increased expression in Purkinje cells (Fig. 5C).

As Shh and vitronectin were good candidate modulators of the

timing of cerebellar oligodendrocyte differentiation, we analyzed

their roles in the control of the OPC proliferation/differentiation

balance in organotypic cultures.

Figure 2. Mature slices increase the density of MBP+ oligodendrocytes in immature slices, but not of OLIG2+ cells. A. Schematic
diagram of the coculture experiment: 2 P0 cerebellar slices (gray) were plated. After 7 DIV, they became mature (black) and one fresh P0 cerebellar
slice (gray) was added to the same Millicell, which was incubated for a further 7 days. B. Photomicrographs of P0 cerebellar slices maintained until 7
DIV and labeled with antibodies against MBP. There are fewer MBP+ elements in the control slice (B, P0–7 DIV) than in the P0–7 DIV immature slice
co-cultured in the presence of 2 P0 7–14 DIV mature slices (P0–7 DIV coc Mature). Quantitative evaluation of the density of MBP immunostaining in
P0–7 DIV immature slices (Ctrl) and P0–7 DIV immature slices co-cultured in the presence of P0 7–14 DIV mature slices (coc Mature). *** P,0.001
(Mann-Whitney test). C. Mature slices increase the density of OLIG2+/APC+ oligodendrocytes in immature slices: Photomicrographs of P0 cerebellar
slices maintained until 7 DIV and labeled with antibodies against OLIG2 (green) and APC (red). There are fewer OLIG2+/APC+ (stars) cells in the control
slice (P0–7 DIV) than in the P0–7 DIV immature slice co-cultured in the presence of 2 P0 7–14 DIV mature slices (P0–7 DIV coc Mature). Quantitative
evaluation of the number of OLIG2+/APC+ cells in P0–7 DIV immature slices (Ctrl) and P0–7 DIV immature slices co-cultured in the presence of P0 7–
14 DIV mature slices (coc Mature). *** P,0.001 (Mann-Whitney test). Scale bar represents 320 mm in B and 35 mm in C.
doi:10.1371/journal.pone.0049015.g002
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Shh stimulates OPC proliferation and inhibits
oligodendrocyte differentiation in organotypic culture

We investigated the effects of Shh treatment on OPC

proliferation in P0–7DIV cultures by counting the OPCs

(OLIG2+) incorporating BrdU following a short pulse. Treatment

with Shh increased the number of OLIG2+/BrdU+ cells around

Purkinje cell axons close to deep nuclear neuron regions (see

Fig. 6A). Indeed, 8.8 cells per 150,000 mm2 were observed for

control slices, whereas we observed 19.9 cells per 150,000 mm2 in

the presence of Shh. Thus, Shh stimulates OPC proliferation in

cerebellar P0–7 DIV slices.

We then investigated whether Shh inhibited OPC differentia-

tion. We added Shh to the culture medium between the 7th and

10th days of culture (Fig. 6B) during a period of strong

oligodendrocyte differentiation (compare Fig. 1A with 1B). In

the presence of Shh, the density of MBP staining was smaller than

in control P0–10DIV slices (Fig. 6B). Concerning the internodes,

the presence of Shh on the P0–10 DIV slices did not significantly

influence the percentage of slices in group II (presenting more than

26 internodes). The presence of Shh therefore slowed the rate of

oligodendrocyte differentiation.

We then investigated whether Shh inhibition promoted

oligodendrocyte differentiation. We added cyclopamine —an

alkaloid known to block the Shh signaling pathway [40] — to

the culture medium of P0 cerebellar slices during the first seven

days of culture. This treatment greatly increased the density of

MBP staining (Fig. 6C). However, cyclopamine did not affect the

rate of myelination since all of the slices were in Group I

(presenting less than 25 MBP+ internodes). These results indicated

that inhibition of Shh induced an increase in oligodendrocyte

differentiation but did not affect myelination.

Finally, we investigated whether Shh blocked oligodendrocyte

differentiation in immature slices induced by the factors released

by mature slices. We used BrdU-treated mature slices (depleted of

OPCs; Fig. 3B) to prevent biases due to the possible effects of Shh

on OPCs from the donor slices. We added Shh during the co-

culture period. The density of MBP staining increased in P0–

7DIV immature slices co-cultured with BrdU treated mature slices

(Fig. 6D). In contrast, the density of MBP immunostaining in P0–

7DIV immature slices co-cultured with 3DBT mature slices in the

presence of Shh was similar to that in control immature P0–7DIV

slices (Fig. 6D). Thus, in the presence of Shh, mature slices cannot

stimulate oligodendrocyte differentiation in immature slices.

Figure 3. Slice culture treatments allowing drastic modifications of Purkinje cell and oligodendrocyte numbers. Photomicrographs of
P0–14 DIV cerebellar slices double-labeled with antibodies against MBP (A1, B1, and C1) and Calbindin (Calb1 = CaBP; A2, B2, and C2) and double-
labeled with antibodies against Calb1 (green) and Parvalbumin (PV, red) for A3, B3, and C3. A. P0–14 DIV control slice: note the presence of numerous
MBP+ internodes (A1) and Calb1/CaBP positive Purkinje cells (A2). B. P0 cerebellar slice treated during the first 3 days with a high dose of BrdU. Note
the absence of MBP staining (B1) and the high density of Calb1+ Purkinje cells (B2). C. The P0 slices were axotomized after 2 DIV (dotted line represent
the lesion). The resulting density of Purkinje cells (C2) is much lower than that under the conditions for A and B. In all 3 conditions (A3, B3, and C3),
Purkinje cell were differentiated since some of them presented elaborated dendritic tree with spines and expressed parvalbumin (yellow Purkinje
cells). Scale bar is 390 mm for A1, B1, C1, A2, B2, and C2 and 30 mm in A3, B3, and C3.
doi:10.1371/journal.pone.0049015.g003
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These results suggest that Shh prevents OPCs from exiting the

cell cycle and inhibits the effects of oligodendrocyte differentiation

factors —released by mature slices— on immature slices.

Vitronectin promotes oligodendrocyte differentiation in
organotypic culture

We investigated the effects of vitronectin on immature slices.

Addition of vitronectin (5 mM) during the first 7 DIV increased the

density of MBP staining on P0–7DIV slices (Fig. 7A).

To affect oligodendrocyte differentiation, the extracellular

matrix protein vitronectin must be released from cerebellar slices.

Experiments with serum-free medium were also performed (see

materials and methods) to test for the effects of soluble vitronectin

in the medium. In co-culture experiments in serum-free medium,

mature slices also significantly promoted oligodendrocyte differ-

entiation in immature slices (*** P,0.001 Mann-Whitney test;

data not shown).

We also compared the amounts of vitronectin in control,

axotomized and BrdU treated P0–10DIV slices. As expected, we

observed more vitronectin in BrdU treated slices than in control

and axotomized slices (Fig. 7B). We detected only a slight

difference in the amount of vitronectin between control and

axotomized slices (Fig. 7B). These results demonstrate that

increasing the number of Purkinje cells increased the amount of

vitronectin.

Finally, we used blocking antibodies to determine whether

vitronectin present in the CM induced the increase in OPC

differentiation. In the presence of these antibodies, the CM did not

promote OPC differentiation in immature slices (Fig. 7C2, 7C4),

Figure 4. The effects of CM (conditioned media) from mature slices on OPC differentiation in immature slices are correlated with
the presence of Purkinje cells. A. Schematic diagram of the co-culture experiment: P0 donor slices were grown for 14 days. The medium was
changed at 3, 5, 7, 10, 12, and 14 DIV. The CM taken at 10 DIV was used for the culture of fresh recipient P0 slices from days 0 to 3; the CM taken at 12
DIV was used to culture recipient slices from days 3 to 5, and the CM taken at 14 DIV was used to culture recipient slices from days 5 to 7. B. The
recipient P0–7 DIV slices grown in the presence of Ctrl-CM contained many MBP+ elements. C. The recipient P0 slice grown with BrdU-CM contains
more MBP+ elements than that grown with Ctrl-CM (compare B and C). D. The recipient P0 slice grown with the Axt-CM contains few MBP+ elements
(compare B and D). E. Quantitative evaluation of the density of MBP immunostaining in recipient P0-7DIV slices. Conditions: Ctrl corresponds to
control P0–7DIV slices. Ctrl-CM corresponds to P0–7 DIV slices grown with the medium conditioned by untreated P0 7–14 DIV mature donor slices.
BrdU-CM corresponds to P0–7 DIV slices grown with the medium conditioned by P0 7–14 DIV mature donor slices treated, for the first 3 DIV, with a
high dose of BrdU. Axt-CM corresponds to P0–7 DIV slices grown with the medium conditioned by P0 7–14 DIV mature donor slices axotomized after
2 DIV. ** P,0.01 (Mann-Whitney tests). Scale bar is 390 mm for all images.
doi:10.1371/journal.pone.0049015.g004

Purkinje Cells and Oligodendrocyte Differentiation
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whereas the CM alone (Fig. 7C1, 7C4), or in the presence of a

control antibody, promoted OPC differentiation (Fig. 7C3, 7C4).

Our findings suggest that Sonic Hedgehog and vitronectin play

important antagonistic roles in controlling the timing of OPC

differentiation during cerebellar development.

Discussion

Different cell types differentiate in parallel during development.

The synchronization of cell development is particularly important

for cell types that have strong interactions, such as oligodendro-

cytes and neurons. OPCs start to differentiate if a mitogenic

stimulus is removed or a differentiation stimulus is added. This cell

differentiation is inhibited in the presence of a mitogenic stimulus

and the absence of a differentiation stimulus [17]. After exiting the

cell cycle, OPCs become immature oligodendrocytes which

undergo different phases of differentiation [1,23]. The last two

phases of oligodendrocyte differentiation are the production of

myelin proteins and myelination. In the present study, we found

that Purkinje cells control the timing of oligodendrocyte differen-

tiation in cerebellar organotypic culture by releasing diffusible

factors. Indeed Shh and vitronectin, two proteins present in the

extracellular space and expressed by Purkinje cells, had opposite

patterns of expression during development and showed opposing

effects on oligodendrocyte differentiation.

Role of mature Purkinje cells in oligodendrocyte
differentiation in organotypic cultures

Mature slices promoted oligodendrocyte differentiation in

immature slices. We modified the number of Purkinje cells present

in the slices to investigate whether this cell type is involved in the

stimulation of oligodendrocyte differentiation during the second

week of culture. We have previously reported, that high doses of

BrdU treatment during the first three days of culture generates

cerebellar slices with large numbers of Purkinje cells and reactive

astrocytes, but with markedly decreased numbers of oligodendro-

cytes and microglial cells [27]. Furthermore, we have not detected

any changes in other neuronal population, such as granule cells

and molecular interneurons [27]. The increase in Purkinje-cell

number in BrdU-treated slices may be due to the depletion of

microglial cells, which enhances Purkinje cell survival in

organotypic culture [41].

In the present study, CM from mature slices treated with BrdU

had a stronger effect on oligodendrocyte differentiation than CM

from control mature slices. The almost complete absence of

oligodendrocytes and microglial cells from mature slices treated

with BrdU rules out the self-stimulation of oligodendrocyte

differentiation [18,42] and the release of factors from microglial

cells. The present study therefore implies a role for Purkinje cells

or astrocytes. The use of CM from axotomized mature slices favors

a role for Purkinje cells and not for reactive astrocytes. Indeed, no

oligodendrocyte differentiation was observed in slices treated with

CM from axotomy treated slices, despite the persistence of reactive

astrocytes in the manipulated slices (data not shown). However, we

cannot exclude that the reactivity of astrocytes is different between

BrdU and axotomy experiments and therefore that they release

different molecules under these two conditions, as recently

reported in a different context [43].

Altogether our findings indicate that among the cells in mature

slices, Purkinje cells and astrocytes might be responsible for

directly or indirectly releasing factors promoting oligodendrocyte

differentiation in immature cultures. We verified through the

analysis of two parameters (dendritic morphology and expression

of parvalbumin) that Purkinje cell differentiation occurred after the

two types of treatment (BrdU and axotomy).

During maturation, Purkinje cells down regulate the
expression of Shh and up regulate the expression of
vitronectin

We then hypothesized that during their maturation Purkinje

cells might express differentially genes to synchronize OPC

differentiation with their own differentiation. Transcriptome

analysis performed on cerebellar cortex during the first postnatal

week showed a decreasing expression profile of 4 genes and an

increasing expression profile of 6 genes. Interestingly, among

them, Shh and vitronectin were of special interest. Shh is well

known to be produced by Purkinje cells [32–35,39] and is a

mitogen for OPCs [37,38]. Interestingly, Gupta and colleagues

showed that vitronectin is expressed in Purkinje cells at P0 and this

expression is upregulated at P8 [36]. Last, vitronectin overrides the

proliferation response of granule cell progenitors to Shh, leading to

the initiation of their differentiation [39].

The transcriptome analysis has been performed on cerebellar

cortex. Nevertheless, the same profiles were observed for Shh and

Table 1. Selected gene candidates.

Affymetrix ID Gene Symbol P0/P0 P3/P0 P5/P0 P7/P0 P10/P0 Expression Pattern

1450716_at Adamts1 1.000 0.825 0.679 0.599 0.364 decreased

1426670_at Agrn 1.000 0.783 0.772 0.616 0.409 decreased

1451119_a_at Fbln1 1.000 1.172 0.806 0.720 0.412 decreased

1436869_at Shh 1.000 1.158 0.843 0.673 0.421 decreased

1424186_at Ccdc80 1.000 1.644 3.097 4.046 4.829 increased

1449581_at Emid1 1.000 1.816 1.848 1.993 2.525 increased

1424010_at Mfap4 1.000 1.344 1.982 2.699 2.063 increased

1417678_at Mmp24 1.000 0.980 1.367 1.374 2.041 increased

1451342_at Spon1 1.000 2.148 2.245 2.652 3.499 increased

1420484_a_at Vtn 1.000 1.640 2.284 2.717 3.334 increased

Expressions of the 10 transcription factors belonging to GO Cellular Component term ‘extracellular region/space’ (GO:0005576) and presenting a significant increase or
decrease of expression measured by Affymetrix from cerebellar cortices during the first 10 postnatal days. Values for P0, P3, P5, P7, and P10 are expressed as a ratio of P0
values.
doi:10.1371/journal.pone.0049015.t001
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vitronectin in GFP expressing PCs sorted by FACS, demonstrating

that during their maturation Purkinje cells down regulate the

expression of Shh and up regulate their vitronectin expression.

Thus, Purkinje cells might indeed control the differentiation of

OPC by regulating the expression of Shh and vitronectin during

their differentiation.

Role of Shh and vitronectin in oligodendrocyte
differentiation in organotypic cultures

Then, we checked whether Shh and vitronectin were able to

participate to the control of OPC differentiation process in

organotypic culture.

We showed that Shh stimulated proliferation of OPCs and

inhibited oligodendrocyte differentiation in our cultures. Shh

affects OPC in different ways. First, Shh plays an important role in

OPC specification in the spinal cord [44–46] and brain [47–51].

Second, Shh stimulates OPC proliferation [37,38,52]. Our results

confirm the mitogenic effect of Shh on OPCs. These results also

suggest that changes in Shh expression may control the timing of

OPC differentiation (see below). Thus, Purkinje cells, through Shh

secretion, participate in the control of OPC proliferation in the

cerebellum.

The addition of vitronectin to immature slices enhanced

oligodendrocyte differentiation and vitronectin-blocking antibod-

ies inhibited the effects of mature-slice induced differentiation on

immature slices. Furthermore, when the slices cultures contained

more Purkinje cells (following BrdU treatment), levels of vitronec-

tin were elevated. Only a slight difference between control and

axotomized slices was detected likely because we are closed to the

threshold of detection. Thus, our results clearly demonstrate that

vitronectin is required for mature slices to promote oligodendro-

cyte differentiation in immature slices. Previous studies reported

no effect of vitronectin on OPC differentiation [53]. Moreover, it

has been shown that the CG4 cell lines grown on vitronectin

proliferate more that those grown on polylysine [54]. However,

combinations of vitronectin and mitogenic factors (Shh, retinoic

acid, and noggin) stimulate the differentiation of embryonic stem

cells into oligodendrocytes, whereas vitronectin alone has no effect

[55]. Interestingly, Vitronectin inhibits the effects of Shh in other

systems, through biochemical interactions in the spinal cord [56]

or the signaling pathway induced by its binding to integrin in

cerebellar granule cells [39,57]. Nevertheless, Shh and vitronectin

may also control OPC differentiation through different mecha-

nisms.

The oligodendrocyte differentiation is regulated
temporally by multiple factors in an integrated system:
the importance of orchestration

Organotypic culture is an integrated system, in which cell

interactions mimic those occuring in vivo, and is easier to

manipulate than in vivo models. Furthermore only one type of

neuron is myelinated in this system: the Purkinje cell. Using this

system, we showed that the maturation of the Purkinje cell is

involved in controlling the timing of oligodendrocyte differentia-

tion. Indeed, our results suggest that Purkinje cells release different

factors during their maturation, which have opposing effects on

oligodendrocyte differentiation. This temporal regulation probably

synchronizes the differentiation of oligodendrocytes and Purkinje

cells. However, as discussed above, oligodendrocyte differentiation

occurs even when the number of Purkinje cells is reduced

(axotomy experiment). This suggests the presence of other

differentiating factors in cultured slices or medium. Many of the

factors known to affect oligodendrocyte development, such as

TGFß, IGF-1, and progesterone [1], are present in the cerebellum

[58–63]. Oligodendrocyte differentiation rates were lower in

serum-free medium than in the presence of serum. Thyroid

Figure 5. Sonic Hedgehog expression decreases and vitronec-
tin expression increases during development. A and B.
Temporal expression of vitronectin, ep300, and Shh mRNAs in cerebellar
cortices enriched in Purkinje cells by Affymetrix (A) and qPCR (B) during
the first 10 postnatal days. Values for P3, P5, P7, and P10 are expressed
as a percentage of P0 values. Note the opposing developmental
changes in the expression of Shh and VN, whereas the expression of
ep300 does not vary. C. Expressions of Shh and vitronectin by RT-qPCR
from L7-GFP purified PCs on a FACsAria apparatus during the first 10
postnatal days. Values for P0 and P3, and P7 and P10 are pooled
respectively; P7–P10 values are expressed as a percentage of P0–P3
values.
doi:10.1371/journal.pone.0049015.g005
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Figure 6. Role of Sonic Hedgehog in OPC proliferation and differentiation. A: Proliferation of OPCs in response to Shh. The
proliferative capacity of OLIG2+ cells was assessed in the presence or absence of Shh. Images containing pixels labeled for both OLIG2 and BrdU were
generated using the ‘‘AND’’ function of Metamorph software. Thus, these labeled cells were counted in presence or absence of Shh. OLIG2+ cell-
proliferation rates were higher in the presence of Shh, as illustrated by the histogram. ** P,0.01 (Mann-Whitney test). B: Differentiation of OPCs
in response to Shh. Diagram of Shh treatment schedule: P0–10 DIV mature slices cultured in the presence of Shh for the last 3 days of culture, i.e.
between the 7th and 10th DIV. Photomicrographs of P0 cerebellar slices maintained for 10 DIV (mature) and labeled with antibodies against MBP. The
MBP+ elements are less numerous in the slices treated with Shh for the last 3 days of culture (right) than in the control slice (left). Quantification of
the density of MBP immunostaining (representing both oligodendrocytes and internodes) in P0–10 DIV mature control slices (Ctrl) and P0–10 DIV
slices treated with Shh (Shh). * P,0.05 (Mann-Whitney test). C: OPC differentiation in response to cyclopamine. Photomicrographs of P0
cerebellar slices maintained for 7 DIV (immature) and labeled with antibodies against MBP. In the control slice (P0–7 DIV), the density of MBP
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hormones (TH) are crucial for both oligodendrocyte and Purkinje

cell differentiation [1,64]. Among the factors involved in

controlling OPC proliferation and differentiation, our study

identifies two molecules with developmentally regulated expression

patterns which are involved in the switch between OPC

proliferation and oligodendrocyte differentiation. Vitronectin has

been detected in active multiple sclerosis plaques [65] and a

decrease in Shh levels has been observed in the white matter of

patients with multiple sclerosis [66]. These actors are thus present,

but it is unclear as to whether they are correctly synchronized.

Determining how the timing of the various steps leading to

myelination or remyelination is controlled is therefore still a major

challenge.

The findings of the present study strongly imply that Purkinje

cells initially inhibit OPC differentiation during their maturation

by releasing Shh and then subsequently promote OPC differen-

tiation by producing vitronectin. Purkinje cells thus appear to

orchestrate OPC differentiation in cerebellar organotypic cultures.

Materials and Methods

Slice culture
All procedures were submitted and approved by the Regional

Ethics Committee in Animal Experiment Nu3 of Ile-de-France

region (p3/2009/020). Cerebellar organotypic cultures were

established from newborn (P0) Swiss mice (Mus musculus, Janvier,

Le Genset St Isle, France), as previously described [67]. Mice were

decapitated and their brains were dissected out in cold Gey’s

balanced salt solution (Invitrogen, Cergy Pontoise, France)

supplemented with 5 mg/ml glucose. Cerebellar parasagittal slices

(350 mm thick) were cut on a McIlwain tissue chopper and

transferred onto 30 mm diameter Millipore culture inserts with

0.4 mm pores (Millicell, Millipore, Molsheim, France). Slices were

maintained in culture in six-well plates containing 1 ml of nutrient

medium per well, at 35uC, under a humidified atmosphere

containing 5% CO2. The nutrient medium consisted of 50% basal

medium with Earle’s salts (BME, Invitrogen), 25% Hanks’

balanced salt solution (Invitrogen), 25% horse serum (Invitrogen),

L-glutamine (1 mM), and 5 mg/ml glucose [68].

For each result, At least 5 animals and 25 slices were studied in

3 independent experiments. In the figures, ‘‘N’’ is the number of

animals. The experimental plan was designed in accordance with

the European Union Guidelines for the care and use of

experimental animals.

In experiments evaluating the effect of a decreased number of

Purkinje cells, tissue slices were dissected along the midline

between the dorsal and ventral halves, with two needles, under a

dissection microscope, after 2 days in vitro (DIV). The two parts

were gently separated to ensure complete axotomy and were then

re-apposed.

Exposure of cerebellar slices to Sonic Hedgehog,
cyclopamine, vitronectin, anti-vitronectin antibody, or 5-
bromo-2-deoxyuridine

We added Shh (3 mg/ml, R&D Systems, Lille, France),

cyclopamine (5 mM, Toronto Research Chemicals, North York,

Ontario, Canada), vitronectin (VN; 5 mM, Oxford Chemical

Research, Euromedex, Souffelweyersheim, France), goat anti-VN

antibody (0.2 mg/ml, Abcam, Cambridge, UK), or a control goat

antibody (goat anti-Brn3b, 0.2 mg/ml, Santa Cruz Biotechnology,

Santa Cruz, CA) to the medium. The medium and the added drug

were replaced every two to three days. Untreated slices were used

as controls.

Cerebellar slices were depleted of mature oligodendrocytes by

killing OPCs through the addition of 5-bromo-2-deoxyuridine

(BrdU; 150 mM; Sigma, Saint Louis, MO) in NaCl solution (9 g/l)

to the nutrient medium for the first 3 DIV (P0 slices with a 3-day

BrdU treatment: P0–3DBT [27].

To study the effect of Shh on OPC proliferation, both control

and treated (5 mM Shh) slices were incubated with BrdU (20 mM)

for 3 h before fixation.

Co-culture and conditioned medium (CM) experiments
P0 slices maintained in culture until 7 DIV contained very few

MBP (myelin basic protein) immunoreactive oligodendrocytes

(Fig. 1A, A9), whereas culture of these slices for an additional 3

DIV (10 DIV in total) resulted in the accumulation of MBP

immunoreactive oligodendrocytes and few MBP immunoreactive

internodes (myelin segments, Fig. 1B, B9). Seven DIV was

therefore used as the cutoff to distinguish between ‘‘immature

slices’’ and ‘‘mature slices’’. P0 slices were placed in culture and,

when these slices became mature after 7 DIV, fresh P0 slices were

added (immature).

A slice ratio of 2 matures: 1 immature (Fig. 2A) was used to

assess whether mature slices promoted oligodendrocyte differen-

tiation in immature slices. Co-cultures were incubated for 7 DIV

before fixation.

In some experiments, immature slices were cultured on

conditioned medium (CM). CM was obtained from cultures of

P0 slices, between the 8th and the 14th days of culture (Fig. 4A).

Different types of CM were generated by treating P0 slices to

modify the number of Purkinje cells; control P0 slices provided

Ctrl-CM, BrdU treated slices provided BrdU-CM, and axoto-

mized slices provided Axt-CM.

Antibodies and staining procedure
Mouse monoclonal antibodies against MBP (diluted 1/500,

Chemicon, MAB381, Millipore) were used to visualize mature

oligodendrocytes and myelin [22,27,69]. Goat antibodies against

OLIG2 (1/500 R&D Systems Europe, Abingdon, UK) were used

to visualize OPCs and oligodendrocytes [26]. Mouse monoclonal

antibodies against APC (1/1000, Calbiochem, VWR, Fontenay

sous bois, France) were used in combination with anti-OLIG2 to

immunostaining is low. In contrast, the density of MBP immunostaining is much higher in P0–7 DIV slices cultured in the presence of cyclopamine
(P0–7 DIV Cyclo), a Shh inhibitor. Quantification of MBP immunostaining density in control (Ctrl) and cyclopamine-treated P0–7 DIV (Cyclo) immature
slices. The density of MBP immunostaining was determined. ** P,0.01 (Mann-Whitney test). D: OPC differentiation in co-culture experiments
in the presence or absence of Shh. Photomicrographs of P0 cerebellar slices labeled with antibodies against MBP at 7 DIV. These slices were co-
cultured in the presence of P0 7–14 DIV mature slices treated with a high dose of BrdU during the first 3 days of culture (coc-BrdU) in the presence or
absence of Shh. In the presence of Shh, the density of MBP immunostaining present in this immature slice was similar to that of control P0–7 DIV
slices (compare C left and D right). In contrast, in the absence of Shh, there were more MBP+ elements in P0–7 DIV slices co-cultured with BrdU
treated mature slices (coc-BrdU, left). Quantification of the density of MBP immunostaining in P0–7 DIV immature slices co-cultured in the presence or
absence of BrdU treated mature slices and/or Shh. *** P,0.001 (Mann-Whitney tests). Scale bar in A is 70 mm for A and 425 mm for B, C, and D.
doi:10.1371/journal.pone.0049015.g006
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Figure 7. Role of vitronectin in oligodendrocyte differentiation. A: Vitronectin increased oligodendrocyte differentiation. A1–2.
Photomicrographs of P0 cerebellar slices labeled with antibodies against MBP at 7DIV. The density of MBP+ elements in the control slice P0–7 DIV
(A1) was lower than that in the slice grown in the presence of vitronectin (P0–7 DIV+VN, A2). A3. Quantification of MBP immunostaining in P0–7DIV
immature slices. * P,0.05 (Mann-Whitney test). Ctrl (control slices), and VN (P0–7 DIV grown in the presence of vitronectin). B: Immunoblots
revealing the presence of vitronectin. Immunoblot of vitronection (VN) in total lysates from P0–10 DIV cerebellar slices: control (Ctrl) or 2 DIV
axotomy (Axt) or BrdU treated (BrdU) slices. Note the increase of vitronectin in BrdU treated slices in comparison to control and axotomized slices.
The clathrin heavy chain (CHC) has been used as a loading control. C: Photomicrographs of P0 cerebellar slices labeled with antibodies against MBP
at 7 DIV. C1. P0–7 DIV slice grown in the presence of CM (conditioned medium, as explained in Fig. 2). C2. P0–7 DIV slice grown in the presence of CM
and an antibody against VN. C3. P0–7 DIV slice grown in the presence of CM and a control antibody. C4. Quantification of the density of MBP
immunostaining in P0–7 DIV immature slices grown under various conditions: Control P0–7 DIV slices (Ctrl). In the presence of a blocking antibody
against vitronectin (+ anti-VN). In the presence of a control antibody (+Ctrl antibody). With medium conditioned by P0 7–14 DIV control mature slices
(CM). With medium conditioned by P0 7–14 DIV mature slices and a blocking antibody against vitronectin (CM+anti-VN). With medium conditioned
by P0 7–14 DIV mature slices and a control antibody (CM+Ctrl antibody). *** P,0.001 versus the control (Mann-Whitney tests). Scale bar in A1 is
418 mm in A1–2 and 375 mm in C1–3.
doi:10.1371/journal.pone.0049015.g007
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detect oligodendrocytes. Mouse monoclonal antibodies against

BrdU (1/400 Progen, Heidelberg, Germany) or were used to

identify proliferating cells. Rabbit polyclonal antibodies against

calbindin (Calb1; diluted 1/5,000; Swant, Bellinzona, Switzerland)

and goat antibodies against Parvalbumin (1/5000, Swant) were

used to visualize differentiated Purkinje cells [22].

After 7, 10, or 14 DIV, the cultures and co-cultures were fixed

by incubation in 4% paraformaldehyde in phosphate buffer

(0.1 M, pH 7.4) for 1 h at room temperature. Slices incubated

with anti-MBP antibody were washed in PBS (Invitrogen) and

immersed in Clark’s solution (95% ethanol/5% acetic acid) for

20 min at 4uC to extract some of the lipids —increasing the

accessibility of MBP antigens— and were then washed several

times with PBS. All slices were incubated for 1 h in PBS

containing 0.2% gelatin, 0.1% sodium azide (PBSGA) and

0.1 M lysine. This was followed by an overnight incubation at

room temperature with primary antibody diluted in PBSGA. The

primary antibodies were detected with the following secondary

antibodies: CY3-conjugated goat anti-mouse (1/200 dilution;

Jackson ImmunoResearch Laboratories Inc, West Baltimore Pike,

PA), FITC-conjugated sheep anti-rabbit (1/200 dilution, Chemi-

con), CY3-conjugated donkey anti goat (1/200 dilution, Jackson

Immunoresearch), Alexa Fluor 488-conjugated donkey anti mouse

(1/400 dilution, Invitrogen), AMCA-conjugated donkey anti

rabbit (1/50 dilution, Jackson Immunoresearch), CY3-conjugated

goat anti-rabbit (1/200 dilution; Jackson ImmunoResearch). Slices

incubated for 2 h with the secondary antibodies in PBSGA were

washed several times in PBS and mounted in Mowiol (Calbio-

chem). The sections were analyzed under a Leica DMR

microscope equipped with a Coolscan camera (Princeton Instru-

ments, Evry, France).

MBP immunostaining quantifications
MBP immunoreactive oligodendrocytes and internodes (myelin

segments) were quantified by acquiring an image of each slice

using the software, Metaview. The images were then analyzed

using the software, Metamorph (Universal Imaging Corporation).

Contours of the slices were drawn —the threshold was adjusted

based on the MBP immunostaining— and the density of MBP

immunostaining was determined for each slice. Means and

standard errors of the mean (SEM) were calculated for each type

of slice.

To distinguish between oligodendrocyte differentiation and

myelination, we performed a semi-quantification of MBP+
internodes which did not consider the number of differentiated

oligodendrocytes. The65 pictures were enlarged on the computer

screen (zoom 4) to evaluate the number of internodes, and the first

26 internodes were pointed and counted using ImageJ software.

Two groups were specified: Group I included slices that either did

not contain MBP+ internodes (myelin segments) or contained less

than 25 internodes; group II included slices containing more than

26 internodes.

Quantification of OLIG2 positive and APC positive cells
On slides with Calb1 labeling of Purkinje cells, pictures of areas

centered on white matter close to the deep nuclear neurons were

acquired for OLIG2 and APC using the Metaview software. Then,

number of cells positive for both OLIG2 and APC per

81,000 mm2 were determined manually using ImajeJ software.

Means and standard errors of the mean (SEM) were calculated for

each type of slice.

Quantification of OLIG2-positive and BrdU-positive cells
A proliferation index for OPCs was calculated by determining

the number of cells positive for both OLIG2 and BrdU. On slides

with Calb1 labeling of Purkinje cells, single areas of white matter

close to the deep nuclear neurons were chosen, 1 mm thick

confocal sections were acquired for OLIG2 and BrdU labeling

(Leica confocal microscope; Plateforme d’Imagerie, IFR83). Using

the software Metamorph, images containing pixels labeled for

both OLIG2 and BrdU were generated and the number of

double-stained cells per 150,000 mm2 was determined.

Statistic analysis
Mann-Whitney tests were used to compare two groups and

Kruskal-Wallis tests were used for multiple comparisons. P

values#0.05 were considered to significant. In the figures, the

values are represented as the percentage of the control.

Statistical analysis of Affymetrix data, microarray
annotation, and functional analysis

Affymetrix microarrays were used to assess patterns of gene

expression in murine cerebellar cortical areas. Total RNA was

extracted from dissected areas centered on the layer of Purkinje

cells from vermal lobules 5 and 6 of Swiss mice of various ages: P0,

P3, P5, P7, and P10 (4 replicates = 4 independent measurements

for each stage; different litters were used for each measurement).

RNA was extracted using RNAeasy Mini Kit (Qiagen, Courta-

boeuf, France). Following reverse transcription, cDNAs were

hybridized with Affymetrix microarrays (MOE430 GeneChip,

Affymetrix Platform, Institut Curie, Paris, France). All the

experimental procedures and results have been loaded on

ArrayExpress database (E-MEXP-3444, Experiment name: PC

transcriptome, http://www.ebi.ac.uk/arrayexpress/experiments/

E-MEXP-3444).

Matlab was used for mathematical manipulations and statistical

analysis. The aim was to identify transcripts displaying a significant

increase or decrease over time from P0 to P10.

The four replicates were used to estimate the intrinsic variability

of expression, or pure error, for each transcript. We used the pure

error in F-tests of lack of fit [70] for constant, affine, and quadratic

models. The Benjamini-Hochberg procedure [71] was used for

correction, with estimation of the number of true null hypotheses

[72] to guarantee an FDR of 1%.

A constant model was retained (i.e. no lack of fit) for 26,912 of

the 31,818 transcripts, an affine model was retained (lack of fit of

the constant model, but not of the affine model) for 4,474

transcripts, and a quadratic model was retained (lack of fit of the

constant and affine models, but not of the quadratic model) for the

remaining 432 transcripts. All ‘‘constant’’ transcripts were

discarded. We retained all of the ‘‘affine’’ transcripts as potential

candidates. We also searched for ‘‘quadratic’’ transcripts display-

ing continual increases or decreases. One quadratic transcript was

identified with a continually decreasing pattern over time. Two

lists were therefore generated: 2,262 affine transcripts showing

continuous increases in expression and 2,213 transcripts with

continuous decreases in expression (2,212 quadratic, 1 affine).

Among the latter, we selected transcripts with at least a two-fold

difference in expression (higher or lower) at P10 compared with

P0. This gave a list of 1190 transcripts, from which we further

discarded those with a very low level of expression (below 45), to

give a final list of 627 candidate transcripts.

Gene annotations were expanded and upgraded with NCBI

Entrez Gene ID, Unigene, and PubMed for the remaining 627

candidate probesets. Transcribed sequences and expression
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sequence tags (ESTs) with no identified function were eliminated

from the reported lists. Gene annotations for the MOE430

GeneChip obtained from Webgestalt (web-based gene set analysis

toolkit [73]) and from the Affymetrix website were compared.

Gene ontology (GO) terms were applied and 10 genes were

identified based on the GO cellular component term ‘‘extracellular

region/space’’ (GO:0005576).

Quantitative RT-PCR
RT-PCR quantified in real time was carried out on two

independent sets of mRNA for each age (P0, P7, P10), to assess

Shh and VN mRNA levels using a LightCycler 480 real-time PCR

system (Roche). First-strand cDNAs were synthesized from 500 ng

total RNA (Thermo Scientific, Surrey, UK), in accordance with

the manufacturer’s instructions. The reaction mixture contained

16 SYBR Green I Master (Roche Diagnostics, Mannheim,

Germany), 1.5 ng of the first-strand cDNA and 240 nM of each

forward and reverse primer, in a total volume of 13 ml. Thermal

cycle parameters were: 95uC for 5 min, followed by 40 cycles of

95uC for 10 s, 56uC for 20 s, and 72uC for 20 s. All primers were

synthesized by Eurofins MWG Operon (Ebersberg, Germany).

The following primer sequences were used: VN forward: 59-

GCCAGCAAGAAGTGTCAGTG-39, VN reverse: 59-

GCTTTAGAGTGCCGTCCGTC-39, Shh forward: 59-

TCACCCCCAATTACAACCCC-39, Shh reverse: 59-

ACTCCTCTGAATGATGGCCG-39, Ep300 forward: 59-

GAGGGTAAGAAATGACTCCAGTG-39, Ep300 reverse: 59-

CAGTTGAGGGTTTTTGCTTTC-39. Data were analyzed by

the LightCycler 480 software, release 1.4.9 (Roche), and target-

transcript expression was quantified using the second-derivative

maximum method. Control reactions without reverse transcriptase

were performed to check for genomic DNA contamination. All

samples were normalized with respect to the reference gene,

Ep300, which displays minimal variation during the first 10 days

of cerebellar development. Two independent experiments were

used for quantification. Data are presented as means 6 SEM.

Purkinje cell sorting
Purkinje cells were isolated from BacL7-GFP mice as described

previously [74]. Briefly, cubes (0.5-mm3) of cerebella at indicated

ages were digested for 10 min at 37uC with 0.025% trypsin (type I;

Sigma-Aldrich, Saint Louis, MO) in dissociation solution consist-

ing of Ca2+-free Hanks’ balanced salt solution (HBSS) containing

3 mg/ml BSA, 15 mM Hepes, 1.5 mM MgSO4, and 3 mg/ml

glucose (pH 7.4). The enzymatic reaction was stopped by adding

of one volume of dissociation solution containing 0.25 mg/ml

soybean trypsin inhibitor, 40 mg/ml DNase I, 50 mM APV,

20 mM DNQX and 0.1 mM TTX (all from Sigma-Aldrich).

Tissues were triturated mildly by sequential passage through wide-

bore and fine-tipped pipettes. Cells were filtered through a 40 mm

nylon mesh, and were resuspended in Ca2+- and Mg2+-free

dissociation solution at a final concentration of 5.106 cells per ml.

To label the dead cells, PI (Propidium iodide; Sigma-Aldrich) was

added at a final concentration of 2 mg/ml. Cell sorting was

performed on a FACsAria machine. The sorting decision was

based on the measurements of FSC, PI fluorescence and GFP

fluorescence.

RNA preparation and real time quantitative RT-PCR for
purified Purkinje cells

Total RNA was extracted from approximately 3.104 purified

Purkinje cells at indicated stages with Trizol reagent (Invitrogen).

The cDNA was prepared by reverse transcription of 100 ng RNA

using SuperScript III First-Strand Synthesis System (Invitrogen)

with an oligo-dT primer according to the manufacturer’s

instructions. The resulting cDNA was used as a template for real

time PCR using a Light Cycler 480 thermocycler (384 plates,

Roche Diagnostics) with a home-made SYBR Green QPCR

master mix [75]. Thermal cycling parameters were 2 min at 95uC,

followed by 45 cycles of 95uC for 10 s, 64uC for 15 s and 72uC for

25 s. To normalize expression data, multiple internal control genes

(TATA box binding protein, Actin beta and Tubulin beta 2A)

were selected as described by Vandesompele et al. [76]. Sequences

of the primers used can be obtained upon request.

Western blots
Cerbellar slices were lysed in RIPA buffer (50 mM Hepes,

150 MM NaCl, 5 mM EDTA, 1% NP-40, 0.5% SDS; pH 7.7).

Lysates were clarified by centrifugation. The protein pellet was

collected by centrifugation, washed with cold acetone and

recentrifuged. The pellet was then allowed to air dry and

resuspended in 10 mM Tris pH 8. The DCA protein assay

(Biorad, Hercules, California) was used to determine protein levels.

Samples (2 mg of CM proteins) were denatured by heating for

3 min at 95uC in Laemmli buffer, separated by 10% SDS-PAGE,

and transferred to a polyvinylidene difluoride membrane (PVDF,

Amersham Biosciences, GE Healthcare, UK). TBS supplemented

with 0.1% Tween-20 and 5% dry milk powder was used for

blocking and antibody incubations. Primary (rabbit polyclonal

anti-VN, 1/1000) and secondary Alkaline phosphatase conjugated

goat anti-rabbit polyclonal antibody (1/7500, Promega, Madison,

WI). Membranes were incubated overnight at 4uC with the

primary antibody and then for 1 h at room temperature with the

secondary antibody. They were then washed three times in TBS

supplemented with 0.1% Tween-20 and once in TBS. The

alkaline phosphatase-conjugated antibody was detected by NBT/

BCIP (Promega). A prestained protein ladder (Fermentas,

Euromedex, Souffelweyersheim, France) was used as the size

marker.
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