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Abstract: Antimicrobial resistance is mushrooming as a silent pandemic. It is considered among the
most common priority areas identified by both national and international agencies. The global devel-
opment of multidrug-resistant strains now threatens public health care improvement by introducing
antibiotics against infectious agents. These strains are the product of both continuous evolution and
unchecked antimicrobial usage (AMU). The ESKAPE pathogens (Enterococcus faecium, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species) are the leading cause of nosocomial infections throughout the world. Most of them are now
multidrug-resistant, which pose significant challenges in clinical practice. Understanding these bacte-
ria’s resistance mechanisms is crucial for developing novel antimicrobial agents or other alternative
tools to fight against these pathogens. A mechanistic understanding of resistance in these pathogens
would also help predict underlying or even unknown mechanisms of resistance of other emerging
multidrug-resistant pathogens. Research and development to find better antibacterial drugs and
research on tools like CRISPER-Cas9, vaccines, and nanoparticles for treatment of infections that
can be further explored in the clinical practice health sector have recognized these alternatives as
essential and highly effective tools to mitigate antimicrobial resistance. This review summarizes the
known antimicrobial resistance mechanisms of ESKAPE pathogens and strategies for overcoming
this resistance with an extensive overview of efforts made in this research area.

Keywords: antimicrobial resistance; ESKAPE; bacteria; antibiotics

1. Introduction

In the mid-20th century, when the clinical practice of antimicrobial drugs was intro-
duced, it revolutionized the public health sector [1]. The infectious microorganisms that
had threatened human survival are now at the mercy of different chemical compounds. The
introduction of antibiotics significantly reduced the risks linked with childbirth, injuries,
and intrusive medical procedures [2]. On the other side, what has been observed in the last
70 years is ongoing microbial experimentation on a large scale and the haphazard use of an-
timicrobials in large amounts. This poses a genuine threat to human beings by pathogenic
bacteria that acquire antimicrobial resistance. This alarms a coming time where common
infections are as untreatable as in the pre-antimicrobial era [3]. It is assessed that by 2050,
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10 million lives may be lost per year due to antimicrobial resistance. This exceeds the
number currently lost due to cancer, 8.2 million lives [4]. To put this figure in perspective,
every year, 700,000 people die globally due to acquired resistance against different antimi-
crobials, more than the total number of deaths caused by measles, cholera, and tetanus.
The drivers of antimicrobial resistance are lesser knowledge about the best-applied practice
of antibiotic stewardship and its education [5]; overuse of inappropriate antibiotics; unfair
practices such as under or overdosing to treat minor bacterial, fungal, or viral infections;
and most importantly the uncontrolled use of antibiotics in animal’s food to increase their
meat production [6]. It is feared that if the current rise in antimicrobial resistance continues,
the world economies will be hit by a loss of $100 trillion by the year 2050 [7]. As efforts are
being made in research and development to find better antibacterial drugs, more research
is performed in areas like CRISPER/Cas9, vaccines, and nanotechnology. The world health
organization recognized these alternatives as essential and highly effective tools to mitigate
antimicrobial resistance.

2. Drivers of Antimicrobial Resistance

During the 1960s, the first bacteria showing resistance to multiple drugs were Shigella,
Salmonella, and Escherichia coli [8–10]. The increase in antimicrobial-resistant bacteria/
pathogens poses a serious threat to the health sector and leads to extra-economic burdens.
One of the significant contributors to this increasing antimicrobial use are the health care
systems fighting against it, which allow inappropriate prescriptions and availability of
antimicrobials without prescription to the patients, especially in developing countries. All
this is then backed by the poor sanitation services, which aid the transmission, and low
healthcare budgets have to rely on cheap antibiotics instead of the safer but more expensive
ones [11].

We are not creating antimicrobial resistance; we are simply endorsing it by putting
on selective evolutionary pressure, which will result in the evolution of numerous genetic
mechanisms [12]. Mechanisms by which antibiotics imply selective pressure are poorly
understood. We have represented the genetic mechanism of antimicrobial resistance in
the ESKAPE pathogen in Figure 1. Routes associated with antimicrobial resistance are
dynamic and less predictable. Problems related to antimicrobial resistance can be assessed
by simply recognizing two components: the antimicrobials that inhibit an organism’s
susceptibility and the resistant genetic determinants in the microorganism selected by
antimicrobials [13,14]. Subsequently, the resistance emerges when these two components
interact in an environment or hosts, leading to several clinical problems. Over the years,
constant evolution has led to the emergence of that Enterobacteriaceae strains, which have
both MDR (multidrug-resistant) and XDR (extensively drug-resistant) strains [15], to nearly
all antibiotics available, without any promising treatment alternatives [16].

Bacterial strains are tremendously effective vehicles to spread the antibiotic resistance
traits, transferring them horizontally through mobile genetic elements (transposons and
plasmids) or vertically to its daughter cells and other species [17]. These genes usually
confer resistance against a single group or a family of antibiotics. A high level of resis-
tance arises through sequential mutation in chromosomes, in the absence of plasmids
and transposons, which typically mediate high-level resistance [18–20]. This scenario was
the foremost reason for the initial emergence of penicillin and tetracycline resistance in
Neisseria gonorrhoeae. Likewise, a group of Enterobacteriaceae acquired resistance to fluo-
roquinolones due to mutations in topoisomerase enzymes that alter gene expression and
accelerate the membrane proteins that pump the drug out of the cell [18,20,21]. Resistant
Staphylococcus aureus strains first appeared in response to vancomycin [22], followed by
high-level resistant transposon from Enterococci [23,24]. An effective administration of
contemporary antimicrobials, and the sustained development of the novel candidate, is
crucial to protect human and animal health against bacterial pathogens [25].
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Figure 1. Genetic mechanism of Antimicrobial resistance in ESKAPE pathogen.

3. Global Dissemination of Antibiotic Resistance

Several studies have been conducted on different samples of resistome from various
environments, including studies of human and animal gut microflora, soil, and wastewater
microbial communities [26,27]. Meanwhile, it has become clearly understood that ARGs
(antimicrobial-resistant genes) related to clinical sides are prevalent in the environment [28].
Studies utilize metagenomics approaches to directly recover DNA from all microorgan-
isms in a biological sample to investigate the resistome properly. Massive data has been
generated from the sequencing of metagenomes and placed in databases. Such data will
help in resolving different public health concerns. However, these studies’ data is only
limited to identifying genes or predicting novel sequence-based on the same homology to
the known reported sequence. Annotation by using sequence-based studies and functional
genomics revealed the already known ARGs, which are prevailing in diverse conditions
and environments such as in microflora of animals [29] and humans [30,31] in soil [32,33] as
well as in activated sludge [34]. Numerous examples show that ARGs in human pathogens
originated from soil and wastewater bacteria. One of the most well-known examples is
blaCTX−M genes, which are the significant root of extended-spectrum b-lactamases (ES-
BLs) diaspora in Enterobacteriaceae globally and the main starting point of clinical treatment
complications [35]. These genes’ marks were identified from chromosomal DNA of differ-
ent conservational Kluyvera species found in soil and sewage. This can be the origin from
where they are disseminated to diverse bacterial species [36]. Likewise, plasmid-encoded
qnrA genes, presumed to be originated from fresh marine water species i.e., Shewanella
algae, which confers Quinolone resistance, with its various Vibrionaceae species might
also be considered as reservoirs [37]. This spread in different Enterobacteriaceae species
globally in some areas with a high prevalent rate [38]. Even more, beta-lactamase genes, i.e.,
OXA-48-type carbapenem-hydrolyzing, progressively reported in various Enterobacteriaceae
species, were also found to be originated from environmental Shewanella species [39]. It
is thus believed that many clinically relevant resistance genes are found to be originated
from non-pathogenic bacteria underlining the colossal potential of horizontal gene transfer
(HGT) for these pathogens in overcoming human use of antibiotics.

4. Emerging Resistance–Development of Resistant Strains

Resistance genes exist in association with genes specifying resistance to other antimi-
crobials on similar plasmids that lead to multiple drug resistance [40]. The occurrence of



Microorganisms 2021, 9, 954 4 of 20

MDR plasmids assures the plasmid’s presence if any one of the resistances offers survival
benefit to the host bacterium. This principle similarly implies every determining factor of
resistance to biocides like quaternary ammonium compounds because plasmids bearing
efflux genes exist that offer resistance to antibiotics in S. aureus [41]. Some studies show a
decline in resistance frequencies when an antibiotic is removed [42]. A noteworthy coast-
to-coast setback of macrolide resistance in Streptococcus pyogenes occasioned from a Finnish
countrywide operation to reduce macrolide practice. In two years, the resistance dropped
from about 20% to less than 10%. If a bacterium is resistant to a particular antimicrobial
agent, then all the daughter cells would also be resistant (unless additional mutations
occurred in the meantime). Persistence, however, describes bacterial cells that are not
susceptible to the drug but do not possess resistance genes. The persistence is because
some cells in a bacterial population may be in the stationary growth phase (dormant).
Most antimicrobial agents do not affect cells that are not actively growing and divid-
ing. These persister cells occur at around 1% in a culture in the stationary phase [43,44].
Figure 2 shows the difference between persistent and resistant bacterial cells. As depicted
in Figure 2, persister cells tolerate the antibiotics by changing to a dormant state. These cells
do not divide, and they develop tolerance to a high level of antibiotics. Unlike, resistant
cells which develop resistance through accumulating mutations, tolerant persister cells are
not antibiotic-resistant mutants. Antibiotic tolerance in persister cells is developed through
going to a reversible physiological state in a small subpopulation of bacterial cells [45].

Figure 2. Illustration of the comparison of Resistance and Persistence in the bacterial population.

5. ESKAPE, Healthcare Concomitant Bugs–Bad Bugs with No Drugs

ESKAPE is an acronym for the group of pathogens, including Gram-positive and
Gram-negative species, comprising Enterococcus faecium, Staphylococcus aureus K. pneumoniae,
Acinetobacter baumannii, P. aeruginosa, and Enterobacter species (Table 1). The Infectious Dis-
ease Society of America has started referring to this group of hospital-originated pathogens
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as ESKAPE [46,47]. These bacteria are usually the reasons behind most life-threatening
nosocomial infections amongst immunocompromised and critically ill individuals [7].
Klevens [48] revealed that around 1.7 million people are affected by hospital-acquired
infections (HAIs) in the US hospitals, which are responsible for nearly 99,000 deaths each
year. A survey of HAI in the United States (US) in 2011 reported a total of about 722,000 re-
ported cases, with 75,000 deaths associated with nosocomial infections [11]. It has also been
shown that hospitals using antibiotics are where drug-resistant strains first appeared [46].
For instance, S. aureus, which is known to be resistant to penicillin, threatened London’s
civilian hospitals soon after the penicillin drug was introduced in the 1940s [7].

Table 1. Narrative of pathogenic bacterial strains (ESKAPE) that instigated nosocomial infection [49].

Bacterial Strain Gram Staining Type Resistance Type Antibiotics Treatment Option Resistance Level

Acinetobacter Negative Multidrug

Ceftazidime,
aminoglycoside,

fluoroquinolones,
carbapenems

Carbapenems,
b-Lactamase inhibitors,

Tigecycline,
Aminoglycosides,

Polymyxin therapy,
Synergy, and

combination therapy

High level

E. coli Negative Multidrug

Cephalosporins
(ESBL-producers),
fluoroquinolones,
aminoglycosides

GyrB/ParE
programme,

EV-035
High level

K. pneumoniae Negative Multidrug

Cephalosporins
(ESBL-producers),
fluoroquinolones,
aminoglycosides,

carbapenems

POL7080 and
ACHN-975
compounds

High level

P. aeruginosa Negative Multidrug

Piperacillin/tazobactam,
ceftazidime,

ciprofloxacin,
aminoglycosides,

carbapenems

POL7080 and
ACHN-975
compounds

High level

Enterococcus spp. Positive Multidrug
Ampicillin,

aminoglycosides,
glycopeptides

RX-04 lead series, 50S
ribosomal subunit;

inhibit translation by
stabilizing a distorted

mode of P-tRNA
binding

High level

S. aureus Positive, Multidrug

β-lactam antibiotics
(except new anti-

methicillin-resistant
S. aureus

cephalosporins),
macrolides,

fluoroquinolones,
aminoglycosides

RX-04 lead series, 50S
ribosomal subunit;

inhibit translation by
stabilizing a distorted

mode of P-tRNA
binding

High level

6. General Mechanism of Antimicrobial Resistance

Many bacteria live as complex communities called biofilms in their natural habitat,
including human hosts. These communities of bacteria offer enhanced resistance to environ-
mental stress, including resistance to antibiotics [50]. The resistance that microorganisms
obtain via biofilm formation can be approximately 1000 folds higher than the resistance
obtained at the cellular level [50,51]. The development of resistance at a cellular level
is endogenous gene mutations and horizontal gene transfer of resistance determinants
through plasmids to other microbes (Figure 3). Apart from resistance, tolerance is also
one way to evade antibiotics developed in persister cells, described previously [52]. Both
types of resistance may be simultaneous, hence increasing the microbial community’s
antimicrobial resistance [50] (Table 2).
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Figure 3. Illustration of the general mechanism of antimicrobial resistance in bacteria.

Table 2. Types of antimicrobial resistance at the cellular level.

Resistance Proposed Mechanism Examples Ref.

Inactivation of Drug Use of hydrolysis or
modification

b-lactamase for
b-lactam resistance,

acetyltransferases for
aminoglycoside

resistance

[53,54]

Alteration of Target
Reduction of binding
affinity to the drug by

bypassing the drug target

DNA gyrase
mutation for

fluoroquinolone
resistance

[55]

Drug influx
Reduction

By decreasing
permeability

Gram-negative outer
membrane [56]

Extrusion of Drug Efflux pumps Accessory membrane
fusion proteins [57]

Horizontal gene
transfer

By resistance
determinants from other

microorganisms
[58]

7. Alternative Mechanisms for Combating Multidrug Resistance in ESKAPE
Pathogens
7.1. CRISPR-Cas9

There are several applications of the cutting-edge technology known as Clustered Regu-
larly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR/Cas
system). As the CRISPR induces double-standard breaks, one could be the knocking out
of a particular bacterial gene. This characteristic of CRISPR/Cas has led to its use to
target specific genes for resistance located in plasmids. One of the advantages of using the
CRISPR/Cas system is that it has the capability of multiplexing against different targets,
which then enables it to target different resistance genes simultaneously. The question
arises whether this approach can be effective in the removal of the resistant genes from
MDR bacteria that are present in intestinal microbiota or not? The main limitation is to have
a collection of appropriate temperate phages designed against multiple resistance genes,
and that resistance genes carried by the bacteria should be known. This is feasible in the
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current situation. It has been observed that phages are well tolerated when they are orally
administered [9]. The orally administered phase therapy for bacteria targeting present in
the intestinal tract has been a success. However, to avoid bacteriophages’ deactivation by
acid, the stomach must be passed before using the CRISPR/Cas approaches. However,
there is a need to conduct further studies to confirm whether the phages will still be active
then they reach the intestinal tract, and if not, how can we make sure of it? There is also a
need to know the optimal dose that should be used.

Another advantage of this approach is that without compromising the patients’ nor-
mal microbiota, susceptibility to antibiotics is restored. Further development of the two
approaches discussed above would be revolutionary in the fight against antimicrobial
resistance. These techniques could be used for patients with MDR bacteria in various
settings to prevent the spread of MDR bacterial strain [59]. On the other hand, the animals
have also been shown to play an essential role in reservoirs of MDR bacteria. Therefore,
these techniques can also be used for them.

7.2. Nanotechnology and Nanoparticles to Combat Multidrug Resistance

Several hypotheses have been put forwarded for the mechanism of nanoparticles of
metals and metal oxides. The hypothesis includes protein dysfunction, physically disrupt-
ing the cell structure, generation of reactive oxygen species and depletion of antioxidants,
impairing of membrane and interfering with the nutrient assimilation and use of dephos-
phorylation of the peptide substrates on tyrosine residues which help to alter the signal
transduction resulting in its inhibition and suppressing the bacterial growth [60]. The
nanoparticles derived from zinc oxide and silver can penetrate the bacterial cell wall and
result in changes of its cell membrane, which causes structural damage; hence, the integrity
of the membrane is lost, leading to cell death [61,62].

Silver nanoparticles are also known to mount on the cell wall and form pits in it,
while gold nanoparticles apply their antibacterial activities by disintegrating the bacterial
cell membrane [63]. Apart from these mechanisms, there is another mechanism in which
free radicals are produced to generate oxidative stress. These generated reactive oxygen
species can destroy the bacteria by destroying its DNA, membrane, and mitochondria,
hence ultimately killing the bacterial cell [64]. However, there is a chance that the bacterial
cells, to fight these reactive oxygen species, may produce more detoxification enzymes [65].
The metallic nanoparticles can interact with phosphorus and sulfur, present in biomaterials
in bacterial cells like DNA bases. Hence, these can help destroy DNA resulting in killing
the cell [66], (Table 3). Some of the possible action mechanisms of nanoparticle-induced
death of bacteria are shown in Figure 4.
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Table 3. Mechanism of bactericidal activity of Nanoparticles and synergic effect of antibiotic-conjugated metal oxide
nanoparticles against ESKAPE Pathogen.

Nanoparticles (NP)

Mode of
Action/Mechanism of
Nanoparticles against
ESKAPE Pathogens

Antibiotic Used Microorganism
Synergic Effects

(Antibiotics-
Nanoparticles)

Ref.

AgNPs

Damage the bacterial cell
membrane and disrupt the

activity of membranous
enzymes. Cell wall

distraction by cell DNA was
condensed to a tension state

and could have lost its
replicating abilities

Doxycycline K. pneumoniae Observed [68]

Gentamicin and
Neomycin S. aureus

AgNPs +
Gentamicin

showed resistance
in 50% strains

while AgNPs +
Neomycin showed
synergy 45% of the

strains.

[69]

E. coli, S. aureus

Observed increase
in activity was

such that
Erythromycin

showed 18.9.6%,
Kanamycin =

27.9.3%,
Chloramphenicol

= 18.1.3%, and
Ampicillin =

74.8.9%

[69]

β-Lactam,
cefotaxime E. coli, S. aureus

Synergistic
increase in activity

was such that
17.2%, 13.5% for E.
coli and S. aureus,

respectively

[70]

Ampicillin,
chloramphenicol,
and kanamycin

S. aureus, E. coli,
and P. aeruginosa

Synergistic effects
observed [71]

Beta-lactam:
cephem S. aureus

Cephalothin and
cefazolin showed a

30% increase in
activity when used

in combination
with 20 µg/ mL
AgNPs against

Micrococcus luteus,
and Bacillus subtilis

[72]
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Table 3. Cont.

Nanoparticles (NP)

Mode of
Action/Mechanism of
Nanoparticles against
ESKAPE Pathogens

Antibiotic Used Microorganism
Synergic Effects

(Antibiotics-
Nanoparticles)

Ref.

AuNPs
Disturb membrane potential

by inhibiting ATPase
activities; inhibit the subunit

of the ribosome from
binding tRNA. Cellular
death induced by gold

nanoparticles do not include
reactive oxygen

species-based mechanisms

Ampicillin,
streptomycin, and

kanamycin
E. coli and S. aureus

15%, 12%, and 34%
increase in

inhibition zone for
E. coli with

A/S/K+Au,
respectively; 20%,

109%, and 18%
increase in

inhibition zone for
M. luteus

A/S/K+AuNPs,
respectively; 12%
and 34% increase
in inhibition zone
for S. aureus with

A/ K+AuNPs,
respectively

[73]

Beta lactams:
cefaclor S. aureus and E. coli

MICs of cefaclor
reduced gold

nanoparticles were
10 mg/mL and 100

mg/mL for S.
aureus and E. coli,

respectively

[74]

ZnONPs

Interactions between
reactive oxygen species and
membrane proteins result in

cell damage. ZnO-NPs
disrupt bacterial cell

membrane integrity, reduce
cell surface hydrophobicity,

and down-regulate the
transcription of oxidative
stress-resistance genes in

bacteria

Ceftriaxone E. coli

Synergistic
antibacterial effects
against E. coli have
been observed by

ZnO nanorods
with ceftriaxone

[75]

Ciprofloxacin S. aureus and E. coli

Increase in
inhibition zones in

S. aureus = 27%
and 22% in E. coli

when ciprofloxacin
and ZnONPs were

applied in
synergism

[76]

Beta lactams,
aminoglycosides,

and azolides
S. aureus

The highest
increase was
observed for

penicillin G and
amikacin, i.e., 10

mm increase in the
zone of inhibition,

whereas for
clarithromycin, a 2
mm increase had

been observed

[77]
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Table 3. Cont.

Nanoparticles (NP)

Mode of
Action/Mechanism of
Nanoparticles against
ESKAPE Pathogens

Antibiotic Used Microorganism
Synergic Effects

(Antibiotics-
Nanoparticles)

Ref.

TiO2NPs

Electrostatic interaction
between TiO2 NPs and the
bacterial cell surface results

in suppression of cell
division, degradation of the

cell wall and cytoplasmic
membrane due to the
production of reactive
oxygen species such as
hydroxyl radicals and

hydrogen peroxide

Penicillin G,
amikacin,

cephalexin,
cefotaxime

MRSA

10 mm increase in
zone size. TiO2
nanoparticles
significantly

improved
antibiotic efficacy
against S. aureus
when combined

with beta-lactams,
cephalosporins,

and
aminoglycosides

[78]

Fe3O4NPs

Generation of reactive
oxygen species from the

disruption of the electronic
transport chains owing to
the resilient affinity of the

iron-based nanoparticles for
the cell membrane. Reactive
oxygen species generated by

Fe3O4 nanoparticles kill
bacteria without harming

non-bacterial cells

Streptomycin S. aureus, E. coli,
and P. aeruginosa

Zones of inhibition
at concentrations

(10, 20, 40, and 80):
S. aureus (15 mm,

14 mm, 17 mm, 20
mm), E. coli (12
mm, 14 mm, 15
mm, 17 mm), P.

aeruginosa (13 mm,
14 mm, 15 mm, 18

mm)

[79–81]

Kanamycin and
rifampicin E. coli and S. aureus

Kanamycin formed
an inhibition zone

against both,
whereas rifampicin

formed an
inhibitory zone
against S. aureus

only

[81]

Amoxicillin E. coli and S. aureus

A total of 9.9% and
8.9% increase in
inhibitory effect
observed in the
presence of Cu

NPs for E. coli and
S. aureus,

respectively

[80]

CuNPs

Generation of reactive
oxygen species, lipid
peroxidation, protein
oxidation, and DNA

degradation. Cu2+ ions
released from nanoparticles
penetrate bacterial cells and
are subsequently oxidized

intracellularly

Amikacin,
ciprofloxacin,
gentamicin,
norfloxacin

E. coli, P. aeruginosa,
Klebsiella spp. S.

aureus

At 60 mg/mL, 18
mm for E. coli, 16
mm for Klebsiella

[82]
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Table 3. Cont.

Nanoparticles (NP)

Mode of
Action/Mechanism of
Nanoparticles against
ESKAPE Pathogens

Antibiotic Used Microorganism
Synergic Effects

(Antibiotics-
Nanoparticles)

Ref.

BiNPs
Production of reactive

oxygen species

Ciprofloxacin,
norfloxacin,

tetracycline, and
metronidazole

K. pneumoniae

A synergistic effect
was observed

between all
antibiotics and

BiNPs.

[83]

Cefotaxime,
ampicillin,
ceftriaxone,

cefepime

E. coli, K.
pneumoniae,

and P.aeruginosa

Significant
decrease in MIC

decrease with
cefotaxime and

ZnO NPs against K.
pneumoniae (85.7%),
P. aeruginosa (70%),

and E. coli (50%)
has been observed.

Meanwhile, a
decrease in MIC
due to ZnO NP

with other
antibiotics has
been observed.

[84]

Norfloxacin,
Ofloxacin, and

Cephalexin
P. aeruginosa, E. coli

Significant increase
in inhibition zone
of antibiotics with
ZnONPshave been
observed against

all isolates.

[67]

Figure 4. Suggested action mechanisms of metallic nanoparticles against gram-negative bacteria.
Adopted from [67].
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8. Host-Directed Therapies
Promoting Bacterial Clearance through Modulating Host’s Inflammatory Responses Regulating
PRR Signaling Pathways

To detect pathogen-associated molecular patterns, we can use pattern recognition
receptors (PRRs). The known PRRs are RIG-I-like receptors, Toll-like receptors (TLRs), and
NOD-like receptors (NLRs). A few germline-encoded pattern recognition receptors can
identify a wide variety of molecular structures linked with the pathogens. Till now, a total
of 13 Toll-like receptors have been found. The first nine of these receptors are reported
to be conserved in humans and mice. However, it has been reported that humans do not
express the other four TLRs. Studies with mice have revealed that each TLR has a different
role in recognizing PAMP and the immune responses [85]. If we take an example of the
TLR-2, it can heterodimerize with TLR-1 or TLR-6 in recognizing bacterial lipopeptides.
TLR-9 can detect CpG islands that have an abundance of the bacterial genome, while
TLR-4 can detect the presence of lipopolysaccharide. It has been seen that except TLR-3,
all the TLRs activate a MyD88-mediated signaling cascade, which leads to nuclear factor
kappa-light-chain-enhancer of B cells activation and upregulation of proinflammatory gene
expression [86].

NOD-like receptors are also used to detect PAMPs present in cytosol, for exam-
ple, NLR-P3 and NLR-C4. NLR-P3 is an inflammasome producing NLR. It involves the
oligomerization of procaspase-1 through an adapter protein, the apoptosis-associated
speck-like protein containing a CARD (ASC) [87]. Autoproteolytic cleavage of procaspase-1
results in its activation and can subsequently convert pro-interleukin-1 (pro-IL-1) and
pro-IL-18 to their active forms [88]. Another molecule with the name of MCC950 was also
discovered, which can inhibit NLR-P3-induced ASC oligomerization; however, it cannot
work for NLR-C4 signaling activation [89]. Further studies are required to characterize
the role of MCC950 in regulating bacterial infection. Identifying small molecules that can
selectively prevent cytokine secretion upon NLR-P3 inflammasome activation appears to
be a promising new therapeutic strategy.

9. Vaccine Development

Vaccines help train the immune system to identify and appropriately respond by
generating a fast and effective defense against any pathogen, hence preventing disease/
infection [90]. Some of the vaccines are also reported to protect the unvaccinated subjects,
which is possible because of herd Immunity. Herd immunity is carried out for a large pop-
ulation. The population licensed to be vaccinated in the herd immunity is protected from
the disease, but it also helps prevent transmission of pathogen/disease to unvaccinated
subjects [91]. It is tested that herd immunity helps protects a much larger number of people
than those who were vaccinated in the community. The studies show herd immunity’s
success, for example, vaccines used against S. pneumoniae and Hib, which prevent pathogen
colonization in vaccinated subjects.

One of the first vaccines that showed high effectiveness in preventing the disease
and reduced antibiotic use was the Haemophilus influenzae type b (Hib) vaccine. It showed
promising results in infants as well as older children by herd immunity. If we investigate
the past before introducing the Hib conjugate vaccine in 1980, Hib was a very dangerous
pathogen for infants and children. Hib cases at that time ranged from 3.5–601 cases per
0.1 million for children under the age of 5 years [92]. Due to the use of antibiotics during
the 1970s, a rise in Hib β-lactam resistance was also noted mediated by bacterial expression
of β-lactamases and, to a lesser extent, modified penicillin-binding proteins [93]. Another
surveillance study was carried out globally during 1999 and 2000, and it showed that 16.6%
of all Hib strains worldwide were β-lactamase positive. However, the numbers varied
mainly from country to country [94]. Providentially, Hib conjugate vaccines’ discovery
and proper deployment have turned the tide against antimicrobial resistance [95]. The
early vaccines developed for Hib during the 1960s consisted of the Hib polysaccharide
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capsule conjugated to carrier proteins. It was reported that due to its introduction, the
cases dropped rapidly [96].

Consequently, there was a reported decrease in the nasopharyngeal carriage as well,
and this was a prerequisite for herd immunity and extended protection of unvaccinated
populations. The numbers showed a significant decrease in cases after the introduction
of a vaccine in 1980 from 2.6 cases per 100,000 (1986–1987) to 0.08 cases per 100,000
in (2011–2015) [26,27]. Similarly, within few years of vaccine introduction in the United
Kingdom in 1992, the Hib disease in children less than five years was almost eliminated [97].
Reports also show that as soon as the vaccine was introduced, there was a significant drop
in b-lactamase-positive strains [98].

Another disease reported to be leading the cause of serious illness in both adults
and children worldwide is S. pneumoniae. This pathogen is responsible for causing an
estimated 1.6 million deaths annually. WHO reported these figures in 2005 [99]. Before
introducing pneumococcal vaccines during the 1990s, around 63,000 cases (children only)
were reported on average each year in the USA [100]. In parallel to this, the resistance to
drugs like penicillin and other antibiotics was also reported to be developing, with invasive
pneumococci becoming resistant to three or more classes of drugs [101,102]. Expectedly,
the vaccine’s introduction was a tremendous success with more than 90% efficacy against
the invasive pneumococcal disease (IPD) in children less than five years of age. Reportedly,
the vaccine in parallel to preventing the disease also reduced the bacterial colonization
in children. This, in the end, contributed towards the herd immunity in the subjects who
were not targeted for immunizations [103].

10. Inhibition of Quorum Sensing

Microbes communicate with each other by using signal molecules to exchange infor-
mation, known as quorum sensing. Microorganisms use this information to initiate the
infection and expressed the pathogenicity in eukaryotes through regulation. The main
issue from quorum sensing is the formulation of biofilms, stimulation of the efflux pump,
which increases the bacterial antibiotic resistance [104]. Pathogens occupied the host by
forming colonies active the quorum sensing, resulting in the production of virulence factors
and biofilms. This suggests that to break the signaling, it is recommended to break this
bacterial conversation by utilizing the anti-quorum sensing agents and increase the suscep-
tibility of pathogens to antibiotics and host immunity. To tackle this issue, quorum sensing
inhibition strategies are introduced from diverse origins, which have shown potential as a
therapeutic target, including receptor inactivation, signal degradation, blocking of signals
by an antibody, and inhibiting the signal synthesis [105].

11. Other Molecular Mechanisms
11.1. Next-Generation Sequencing and Antimicrobial Peptide Prediction

There is a need to understand the susceptibility of an infectious agent and host resis-
tance mechanism for the development of innovative approaches to prevent or treat human
infectious ailments [106]. Technologies like next-generation sequencing revolutionized the
world of science. They opened the door for the researcher to understand different organ-
isms’ physiological responses through genomics and transcriptomes at high throughput.
As a result, new tools are introduced to design novel antimicrobials [107]. Antimicrobial
peptides (AMPs) are tools to fight antimicrobial resistance, which are constantly searched
for in different organisms.

The venom of scorpion Hetermetrus petersii consists of four antimicrobial and cytosolic
peptides as shown by platform 454 sequencing [108]. A few genes consisting of those
encoding AMPs are down-regulated as specified by the 454-analysis due to AcMNPV
infection in Spodoptera exigua larvae. For perspective, different techniques are revealed in
various organisms. New viewpoints are offered for AMP mode of action due to the linkage
between transcriptome and proteomics technologies. In the bivalve mollusk Ruditapes
philippinarum, the identification of 36 AMP sequences is due to the use of 454 platforms [109].
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In American dog tick being affected by various microbes, the transcriptome analysis helped
identify new defense mechanisms in the response transcripts of the Arachnids immune
system [110]. Because of increased diversity in organisms and different tissues, a variety of
novel AMPs obtained from biodiversity opens a new area for research purposes.

Molecular surveillance using whole-genome sequencing (WGS) can be a valuable
addition to AMR’s phenotypic surveillance [111]. With the advent of WGS technology, it is
now possible to determine and evaluate the entire genome sequence of microorganisms at
low costs in a limited time, making it an ideal tool for bacterial antimicrobial resistance
surveillance. By providing definitive genotype information, WGS offers the highest practi-
cal resolution for characterizing an individual microbe. This includes the full complement
of resistance determinants, including resistance to compounds not routinely tested phe-
notypically. WGS can also differentiate bacteria that have identical resistance patterns
caused by different mechanisms. What makes WGS ground-breaking is that it can help
researchers predict antimicrobial resistance more efficiently and offer valuable information
to augment or supplant the phenotypic approaches in clinical decision making. However,
its cost-related issues and complexity, WGS is currently carried out in high-income coun-
tries. Establishing WGS as a surveillance tool could be very important in producing an
accurate global picture and informing the national and international action plans against
AMR. The online database developed named as BacWGSTdb 2.0 which provides a quick
and convenient tool for monitoring the antimicrobial resistance and pioneering the move-
ment of WGS from proof-of-concept studies to routine use in the clinical microbiology
laboratory [112]. The mentioned database is designed for clinical microbiologists, hospital
epidemiologists, and clinicians. BacWGSTdb offers a convenient and rapid platform for
users worldwide to address the clinical issues related to antimicrobial resistance [113].

11.2. Prediction of Antimicrobial Peptide from DNA/RNA Library: Antimicrobial Peptides
Search Tools

The native and acquired immune responses of organisms have a direct relationship
with the antimicrobial peptides, and their ability to destroy microorganisms that are resis-
tant to a variety of antibiotics has been an area of interest to the pharmaceutical field. In this
regard, keys to search and generate antimicrobial peptides have opened new opportunities
in new drugs’ research. Development in bioinformatics has given way to a routine search
in ESTs’ databases in plants via defensins and a testing validation such as antimicrobial
testing [114]. One of the primary databases of the antimicrobial peptides includes APD2
(antimicrobial peptide database second version) that permits users to research peptide fam-
ilies and modified peptides [115]. To obtain necessary information regarding peptides like
total charge or the rate of hydrophobicity along the alignment of sequences, APD2 gives an
opportunity to calculate AMPs [116]. Such information could be related to the data about
hydrophobic phenomena predicted via web-program known as HydroMcalc [117,118].
Thus, making possible antimicrobial peptides’ identification. Along with APD, CAMP (Col-
lection of Antimicrobial Peptides) is a similar AMP database [119]. These techniques refer
to the sequencing, protein biological effect, source organisms’ taxonomy, MIC identifying
target organisms, peptides’ hemolysis process, and relation with the external databases like
SwissProt, PDB, PubMed, and the NCBI Taxonomy [120]. A web-server iAMP-2L [121] is
used for the identification of sequences that are uncharacterized like antimicrobial. When
a sequence is predicted as antimicrobial, the server shows which category (antibacterial,
anticancer, antifungal, anti-HIV, and anti-viral) peptide is related. Peptides are unstable
molecules and are categorized into several classes and families [122]. Such fundamen-
tals brace how these novel techniques can disclose many novel drugs and biologically
active compounds. For the development of such a research field, keys for the modeling of
bioinformatics are necessary [123].

12. Conclusions

Antimicrobial resistance, especially in the ESKAPE pathogen, is an intricate multifac-
torial process. Many factors contribute to the increase in resistance to antimicrobials in
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these pathogens. Studies have concluded that there are diverse genetic processes involved
in the development of resistance in ESKAPE pathogens. There are different strategies
developed to evade multi-drug resistance in ESKAPE pathogens. Novel antimicrobials,
ranging from nanomaterials to antimicrobial peptides, have been developed to overcome
the challenges of antimicrobial resistance. 1.7 million people are affected Although many
new strategies show promising results in few pathogens, clinical microbiologists should
keep their keen eyes on an even slight increase in the minimum inhibitory concentration
of antimicrobials that predicts uncontrollable resistance. Moreover, the mechanism by
which antibiotics imply selective pressure is poorly understood. There is an utter need to
make specific suggestions that will help improve the studies related to natural selection of
these organisms on antibiotics. These types of understanding play a fundamental role in
designing a rational dogma of antibiotic practices to maximize existing antibiotics’ lifespan
and minimize the influence of resilient infections.
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