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Background: Colorectal cancer (CRC) is one of the most prevalent malignant cancers world-
wide. Immune-related long non-coding RNAs (IRlncRNAs) are proved to be essential in the
development and progression of carcinoma. The purpose of the present study was to de-
velop and validate a prognostic IRlncRNA signature for CRC patients.
Methods: Gene expression profiles of CRC samples were downloaded from The Cancer
Genome Atlas (TCGA) database. Immune-related genes were obtained from the ImmPort
database and were used to identify IRlncRNA by correlation analysis. Through LASSO Cox
regression analyses, a prognostic signature was constructed. Functional enrichment analy-
sis was performed by gene set enrichment analysis (GSEA). TIMER2.0 web server and tumor
immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the associa-
tion between our model and tumor-infiltrating immune cells and immunotherapy response.
The expression levels of IRlncRNAs in cell lines were detected by quantitative real-time PCR
(qPCR).
Results: A 9-IRlncRNA signature was developed by a LASSO Cox proportional regression
model. Based on the signature, CRC patients were divided into high- and low-risk groups
with different prognoses. GSEA results indicated that patients in high-risk group were asso-
ciated with cancer-related pathways. In addition, patients in low-risk group were found to
have more infiltration of anti-tumor immune cells and might show a favorable response to
immunotherapy. Finally, the result of qPCR revealed that most IRlncRNAs were differently
expressed between normal and tumor cell lines.
Conclusion: The constructed 9-IRlncRNA signature has potential to predict the prognosis
of CRC patients and may be helpful to guide personalized immunotherapy.

Introduction
Colorectal cancer (CRC) is the third most common malignancy worldwide, with almost 1.8 million new
cases and approximately 8.6 million deaths in 2018 [1]. Although the diagnosis and treatment of CRC have
improved significantly in the past decade, the prognosis is still poor for patients with newly diagnosed
CRC presented with distant metastasis, especially liver metastasis [2]. Meanwhile, as a heterogeneous dis-
ease, the diversity of phenotypes and prognosis of CRC present a huge challenge in making individualized
clinical decisions to improve the survival rate of patients [3]. Therefore, it is urgent to establish an effective
risk assessment model to identify patient subgroups with different prognoses, which may also help to find
potential therapeutic targets.

In recent years, genomic approaches have been applied to investigate the underlying mechanism of can-
cer development and explore molecular biomarkers for cancer diagnosis [4,5]. Besides the well-recognized
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protein-coding genes in the human genome are proved to be involved in tumorigenesis, accumulating evidence has
demonstrated that long non-coding RNAs (lncRNAs), a class of non-coding RNA with more than 200 nucleotides in
length, are also closely associated with the pathogenesis of tumor including cell proliferation, apoptosis, migration,
and epithelial-to-mesenchymal transition [6,7]. Therefore, these findings indicate that a large number of lncRNAs
can serve as potential targets and biomarkers for the diagnosis and prognosis of malignant tumors including lung,
breast, liver, and colorectal cancer [8–11].

Proverbially, the immune system plays a critical role in the development of tumors. With the advent of immuno-
logic agents, many cancers have shown positive responses to immunotherapy [12–14]. The previous study has indi-
cated that numerous lncRNAs show an overwhelming effect on diverse stages of cancer immunity, such as antigen
release and presentation, immune cell differentiation, migration, and infiltration [15]. Lnc-SNHG1 was proved to
enhance regulatory T cells (Tregs) differentiation via regulating miR-448/IDO axis, which induced Tregs mediated
immunosuppression and promoted immune escape in breast cancer [16]. Likewise, LncRNA MIR17HG was reported
to directly bind to PD-L1 protein for accumulation in CRC, which blocked T cells activation [17]. Therefore, the dys-
regulation of these immune-related lncRNAs (IRlncRNAs) may suppress immune response and promote immune
escape, which contributes to the occurrence and progression of various tumors.

In the present study, based on immune-related genes from the ImmPort database, we used RNA-seq dataset from
The Cancer Genome Atlas (TCGA) and two microarray datasets (GSE17536 and GSE38832) from The Gene Expres-
sion Omnibus (GEO) to develop and validate a 9-IRlncRNA signature for patients with CRC. Next, we constructed a
nomogram based on the 9-IRlncRNA signature, age, and M stage to evaluate clinical significance. Finally, TIMER2.0
web server and tumor immune dysfunction and exclusion (TIDE) algorithm were employed to analyze the association
between our model and tumor-infiltrating immune cells and immunotherapy response.

Materials and methods
Data acquisition
RNA expression data, somatic mutation data, and clinical data of colon adenocarcinoma and rectal adenocarcinoma
samples were downloaded from the TCGA portal (http://portal.gdc.cancer.gov/projects). 530 samples (488 tumors
and 42 normal tissues) were contained in CRC patients’ dataset. For clinical data, samples with an overall survival
time of less than 30 days or any missing data were excluded, and finally, 431 samples were included for subsequent
study.

The gene expression profile matrix files of GSE17536 and GSE38832 were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Raw microarray expression data were normalized using Robust Multichip Av-
erage (RMA) and converted to Log2 pattern. Probes were annotated through the Affymetrix Human Genome U133
Plus 2.0 Array. 177 samples with overall survival (OS) and disease-specific survival (DSS) from GSE17536 and 122
samples with DSS from GSE38832 were set as external validation. Details of the TCGA cohort and the two testing
cohorts were shown in Table 1.

Acquisition of immune-related lncRNAs
The Ensemble IDs of genes from the TCGA cohort were transformed into gene symbols via the Ensemble database
(http://asia.ensembl.org/index.html). Next, mRNAs and lncRNAs were extracted from the gene matrix respectively
according to their biotypes. Then, mRNAs were intersected with immune-related genes (IRGs) obtained from the
ImmPort database (https://immport.niaid.nih.gov) to get IRGs in colorectal cancer samples [18]. Pearson correlation
analysis was applied to identify IRlncRNAs via evaluating the correlation between the IRGs and lncRNAs expression
in colorectal cancer samples (|r| >0.3 and P<0.001).

Construction and validation of the prognostic signature based on
IRlncRNAs
The TCGA cohort was used for training the model. To construct the prognostic signature, 873 IRlncRNAs were
intersected with the genes from GSE17536 and GSE38832, and only the IRlncRNAs contained in all cohorts were
involved in the subsequent study. The expression level of these common IRlncRNAs in three cohorts was normalized
using R package “sva”. Then, the least absolute shrinkage and selection operator (LASSO) Cox proportional hazard
regression with 10-fold cross-validation was applied to establish IRlncRNAs signature model for the prediction of
colorectal cancer prognosis. 9-IRlncRNA signature was constructed according to the optimal λ value, and the risk
score for each patient was calculated by the following algorithm: risk score = (β1 × expression of lncRNA1) + (β2
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Table 1 Clinical information of patients with colorectal cancer in three datasets

Character TCGA GSE17536 GSE38832

Age (years)

≤65 192 83 N/A

>65 239 94 N/A

Gender

Male 235 96 N/A

Female 196 81 N/A

Grade

Low N/A 150 N/A

High N/A 27 N/A

T stage

T1 13 N/A N/A

T2 78 N/A N/A

T3 296 N/A N/A

T4 44 N/A N/A

N stage

N0 252 N/A N/A

N1-2 179 N/A N/A

M stage

M0 365 N/A N/A

M1 66 N/A N/A

AJCC stage

I-II 243 81 53

III-IV 188 96 69

Survival status

Alive 360 104 94

Deceased 71 73 28

× expression of lncRNA2) + . . . + (βn × expression of lncRNAn). All patients were divided into a high-risk group
and a low-risk group according to the cut-off value (median risk score).

To validate the 9-IRlncRNA signature, the risk score was also calculated in two testing datasets (GSE17536 and
GSE38832) and the patients were classified into high- and low-risk groups based on the same cut-off value.

Establishment and evaluation of predictive nomogram
The nomogram containing the 9-IRlncRNA signature and other independent prognostic indicators was plotted using
the “rms” package of R software. The total score of each patient could be calculated via the nomogram, and then was
used to predict the OS rate of 1-, 3- or 5-year. The accuracy of the nomogram was evaluated using the calibration
curves and the time-dependent receiver operating characteristic (ROC) curves. Decision curve analysis (DCA) was
used to compare the reliability of the nomogram with that of age, M stage, or risk group.

Calculation of tumor mutation burden (TMB)
The somatic mutation data of CRC samples were detected using VarScan. To calculate the TMB score of each sample,
all base substitutions and indels in the coding region of targeted genes were counted, and silent mutations failing to
lead to an amino acid change were not counted. Then, the total number of mutations counted was divided by the
exome size (approximate 38 megabases) [19].

Bioinformatics analysis
Principal component analysis (PCA) was employed to reveal the expression pattern of samples in the TCGA
cohort. Gene set enrichment analysis (GSEA) was performed using Broad Institute GSEA software 4.0.1
based on TCGA datasets containing 431 CRC patients classified into high- and low-risk groups [20]. The
GO gene sets “c5.bp.v7.1.symbols.gmt”, KEGG gene sets “c2.cp.kegg.v7.1.symbols.gmt”, Reactome gene sets
“c2.cp.reactome.v7.1.symbols.gmt”, and PID gene sets “c2.cp.pid.v7.1.symbols.gmt” were downloaded from Molec-
ular Signatures Database (http://software.broadinstitute.org/gsea/msigdb/index.jsp). For each gene set analysis, per-
mutations were performed 1000 times to acquire a normalized enrichment score (NES). A normalized P-value <

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

http://software.broadinstitute.org/gsea/msigdb/index.jsp


Bioscience Reports (2022) 42 BSR20220078
https://doi.org/10.1042/BSR20220078

Table 2 List of primers used in the present study

Gene Primer sequence (5′-3′)

PCED1B-AS1 Forward: TCAAGCCAATCAGCTGACAC

Reverse: AAACAAATGCCCTGCTTGAC

VPS9D1-AS1 Forward: ATGGGTAACCAGGGGTCAAG

Reverse: AGTAACAGTGGTAGAGCCGAC

PCAT6 Forward: ACCCCACTTTCCAGCCTG

Reverse: AGGGAGGCTCACGGACAC

BOLA3-AS1 Forward: ATACCCCTCGTGCTCCTGAT

Reverse: CCGCGTGCTGGACCAT

ZNF503-AS2 Forward: AGGAAACTCACTTCAAAAGCAGC

Reverse: AAAACCGGCACTGAGAGTCC

ZEB1-AS1 Forward: TCCCTGCTAAGCTTCCTTCAGTGT

Reverse: GACAGTGATCACTTTCATATCC

LINC01138 Forward: TATTTACGAAAGCTGAAAGCG

Reverse: CTGCATGGGATAGGAGAAAC

WAC-AS1 Forward: GTTCAAGGCAGAAGGCCGTG

Reverse: GGTTCAGCGTTGTTCCCAAG

COLCA1 Forward: ACTCTGATTAGGTCGGGGGA

Reverse: ACCCACTAGCTGCCATGTTC

GAPDH Forward: TGGTGAAGACGCCAGTGGA

Reverse: GCACCGTAAGGCTGAGAAC

0.05 was considered significantly enriched. TIMER2.0 web server (http://timer.cistrome.org), which integrated six
state-of-the-art algorithms, including quanTIseq, CIBERSORT, xCell, MCP-counter, TIMER, and EPIC, was used to
analyze the composition of tumor-infiltrating immune cells in patients in high- and low-risk groups [21]. The TIDE
algorithm was used to evaluate the predictive efficiency of the 9-IRlncRNA signature for the immunotherapy response
in CRC [22].

Cell culture
Human colorectal cancer cell lines (HCT116 and SW480) were purchased from the American Type Culture Collec-
tion (Manassas, VA, U.S.A.). Human colon epithelial cell line NCM460 was purchased from the Cell Bank of Type
Culture Collection of Chinese Academy of Sciences (Shanghai, China). Dulbecco’s modified Eagle medium (DMEM)
containing 10% fetal bovine serum (FBS, Gibco, U.S.A.) and 1% penicillin–streptomycin was used for the cultivation
of HCT116 and SW480 cells, and Roswell Park Memorial Institute (RPMI-1640) medium containing 10% FBS and
1% penicillin–streptomycin was used for NCM460. All cell lines were allowed to grow in a 37◦C incubator containing
5% CO2.

RNA extraction and quantitative real-time PCR
Total RNA was extracted using Cell Total RNA Isolation kit (Foregene, Chengdu, China) following the manufacturer’s
protocol, and RNA (1 μg) was reverse-transcribed to cDNA using the PrimeScript RT reagent kit (TaKaRa, Osaka,
Japan). Quantitative real-time PCR (qPCR) was conducted using the SYBR Green qPCR Supermixes (Bio-Rad) on
the CFX 192 Connect Real-Time PCR system (Bio-Rad, U.S.A.). The qPCR analysis was performed in triplicate with
the primers shown in Table 2. The relative expression levels were normalized to GAPDH using the 2−��CT method.

Statistical analysis
Statistical analyses were conducted with R software (version 4.0.1) and GraphPad Prism 5.0 software (San Diego,
CA, U.S.A.). Kaplan–Meier curve was employed to reflect the survival difference between high- and low-risk groups,
which was assessed by log-rank test. Univariate and multivariate Cox proportional hazard regression models were
used to analyze the prognostic significance of 9-IRlncRNA signature. The performance of the 9-IRlncRNA prognostic
model was evaluated by area under curve (AUC) value of ROC curve and Harrell’s concordance index (C-index).
Two tailed Student’s t test and paired t test were utilized to compare the statistical relevance between two groups.
Quantitative data are shown as the mean +− standard deviation (SD). A two-tailed P-value < 0.05 was regarded as
statistically significant.
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Results
Construction of the prognostic IRlncRNAs signature
To make the procedure of our study clearer, a detailed flowchart is illustrated in Figure 1. TCGA dataset was em-
ployed to set as training cohort, and a total of 161 IRlncRNAs were common among all datasets. Then, we conducted
univariate Cox regression analysis to explore the prognosis-related IRlncRNAs and then 18 IRlncRNAs were iden-
tified for subsequent analysis (Figure 2A). Next, LASSO penalized Cox regression was used to establish prognostic
IRlncRNAs signature, and 9 of the 18 IRlncRNAs (PCED1B-AS1, VPS9D1-AS1, PCAT6, BOLA3-AS1, ZNF503-AS2,
ZEB1-AS1, LINC01138, WAC-AS1, and COLCA1) were singled out in training dataset (Figure 2B,C). Risk score of
each patient was calculated according to the expression of 9 IRlncRNAs and their coefficients: risk score = (0.0109 ×
expression of PCED1B-AS1) + (0.0166 × expression of VPS9D1-AS1) + (0.0204 × expression of PCAT6) + (0.0867 ×
expression of BOLA3-AS1) + (0.1806 × expression of ZNF503-AS2) + (0.5488 × expression of ZEB1-AS1) + (0.0448
× expression of LINC01138) + (0.0011 × expression of WAC-AS1) + (0.0587 × expression of COLCA1).

Analysis of the 9-IRlncRNA signature in the training cohort
Based on the median risk score, we classified the patients with CRC in TCGA cohort into 215 high-risk and 216
low-risk groups. As the risk score increased, both the expression of 9 IRlncRNAs and the mortality of CRC pa-
tients were elevated (Figure 3A). Similarly, Kaplan–Meier curve and log-rank test demonstrated that CRC patients
with high-risk scores showed a worse OS than those with low-risk scores [hazard ratio (HR) = 3.187, 95% confi-
dence interval (CI): 1.993–5.097, P<0.001] (Figure 3B). The time-dependent ROC curves showed the AUC values
of 1- and 5-year OS prediction were 0.727 and 0.779, respectively, which indicated a favorable predictive value of the
9-IRlncRNA signature for the prognosis of CRC patients in the training cohort (Figure 3C).

Validation of the 9-IRlncRNA signature in the testing cohort
To further validate the robustness of the 9-IRlncRNA signature in survival prediction in different cohorts, GSE17536
and GSE38832 datasets from the GEO database were set as external testing cohorts. The same cut-off value from the
training cohort was used to divide the patients into high- and low-risk groups. As shown in Figure 4A,B, the higher the
risk score, the more CRC patients dead. In GSE17536 dataset, we found that the OS and DSS of patients in high-risk
group were obviously lower than those in low-risk group (HR = 1.865, 95% CI: 1.174–2.963, P=0.008; HR = 2.804,
95% CI: 1.646–4.778, P<0.001) (Figure 4C,D). Likewise, in GSE38832 dataset, patients with high-risk scores had a
shorter DSS than those with low-risk scores (HR = 2.471, 95% CI: 1.139–5.361, P=0.022) (Figure 4E). These results
were consistent with the finding in the training cohort. In addition, for the 9-IRlncRNA prognostic model, the AUC
values of ROC curve of 1- and 5-year OS were 0.645 and 0.601 in GSE17536 dataset, and in GSE38832 dataset, the
AUC values of the ROC curve of 1- and 5-year DSS were 0.651 and 0.605 (Figure 4F,G).

The 9-IRlncRNA signature acts as an independent prognostic factor in
CRC patients
To determine that the 9-IRlncRNA signature can be an independent prognostic indicator, we employed univariate and
multivariate Cox regression analyses to compare the prognostic value of the 9-IRlncRNA signature with other clinical
features. The result of univariate analysis showed that age (HR = 1.929, 95% CI: 1.150–3.238, P=0.013), American
Joint Committee on Cancer (AJCC) stage (HR = 3.846, 95% CI: 2.289–6.464, P<0.001), N stage (HR = 3.523, 95%
CI: 2.127–5.834, P<0.001), M stage (HR = 5.360, 95% CI: 3.322–8.647, P<0.001), and 9-IRlncRNA signature risk
score (HR = 3.487, 95% CI: 2.036–5.973, P<0.001) were significant prognostic factors. These factors were then in-
corporated into multivariate analysis and the results indicated that age (HR = 2.382, 95% CI: 1.400–4.052, P=0.001),
M stage (HR = 2.968, 95% CI: 1.666–5.289, P<0.001), and 9-IRlncRNA signature risk score (HR = 2.266, 95% CI:
1.295–3.965, P=0.004) were independent prognostic factors (Figure 5A). Similarly, in testing cohort (GSE17536),
9-IRlncRNA signature risk score (HR = 2.236, 95% CI: 1.362–3.671, P=0.001) was also considered to be an indepen-
dent prognostic indicator for OS (Figure 5B).

Stratification analysis of the 9-IRlncRNA signature
We employed stratification analysis to confirm the prognostic value of the 9-IRlncRNA signature. Patients were strati-
fied into different subgroups based on age (≤ 65 versus > 65 years), T stage (T1-2 versus T3-4), N stage (N0 versus N1-2),
M stage (M0 versus M1), and AJCC stage (stage I-II versus stage III-IV), and were classified into high- and low-risk
groups in each subgroup according to the median risk score. Interestingly, the 9-IRlncRNA signature was effective
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Figure 1. Flowchart detailing the development and validation of prognosis-related IRlncRNAs signature
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Figure 2. Establishment of prognostic IRlncRNAs signature

(A) Univariate Cox regression analysis identified 18 IRlncRNAs associated with OS. (B, C) A 9-IRlncRNA prognostic model was

constructed by a LASSO regression analysis.

in young (HR = 5.996, 95% CI: 2.448–14.690, P<0.001) and elderly subgroup (HR = 2.359, 95% CI: 1.360–4.091,
P=0.002). As for TNM stage, patients with high-risk scores predicted a poor prognosis in T3-4 subgroup (HR = 3.287,
95% CI: 2.003–5.393, P<0.001), N0 subgroup (HR = 2.376, 95% CI: 1.006–5.612, P=0.048), N1-2 subgroup (HR =
2.580, 95% CI: 1.458–4.566, P=0.001), M0 subgroup (HR = 3.404, 95% CI: 1.821–6.365, P<0.001), and stage III-IV
subgroup (HR = 2.655, 95% CI: 1.517–4.645, P<0.001) (Figure 6A–E).

As several multi-gene signatures have been previously constructed to predict the prognosis of CRC, we evaluated
their performance in parallel with our 9-IRlncRNA signature using time-dependent ROC curves and C-indexes.
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Figure 3. The 9-IRlncRNA signature predicts prognosis for CRC patients in TCGA training cohort

(A) The distribution of risk score and survival status of each patient, and the heatmap of the 9 hub lncRNAs expression. (B) Ka-

plan–Meier survival curve of OS of patients with CRC in high- and low-risk group. (C) Time-dependent ROC curves for predicting

1- and 5-year OS.

Obviously, the 9-IRlncRNA signature was superior to the other four models in terms of both the AUC values of 1-
and 5-year OS prediction and C-index (Figures 3C and 7A–E).

Construction of predictive nomogram
To provide a clinical tool to predict the probability of 1-, 3-, and 5-year OS in patients with CRC, three independent
prognostic factors including age, M stage and the risk score of 9-IRlncRNA signature were employed to construct
a nomogram (Figure 8A). Their respective point which indicated on the top scale was added up to a total point
which was corresponding to the 1-, 3-, and 5-year survival rates in the below scale. Calibration plots indicated that
the nomogram predicted short-term survival (1- and 3-year) better than long-term survival (5-year) (Figure 8B).
Moreover, DCA curves showed that the nomogram achieved the highest net benefit among the four factors examined
(age, M stage, risk model, and nomogram) (Figure 8C). Besides, the AUC values of the nomogram at 1-, 3-, and 5-year
were 0.751, 0.763, and 0.824, respectively, which also displayed the most excellent predictive performance (Figure 8D).

Analysis of functional enrichment based on 9-IRlncRNA signature
Compared with all genes and all IRlncRNAs, the 9-IRlncRNA signature could completely distinguish high-risk pa-
tients from low-risk patients, which indicated good specificity (Figure 9A–C). To further investigate the biological
process and signaling pathways involved in the 9-IRlncRNA signature, we employed GSEA to explore the pathways
that were significantly altered between high- and low-risk groups. The results showed that several canonical pathways
including the mTOR signaling pathway, WNT/β-catenin signaling pathway, Notch signaling pathway, and the TGF-β
downstream pathway were highly enriched in the high-risk group (Figure 9D–F).
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Figure 4. Validation of the 9-IRlncRNA signature in two testing cohorts

The distribution of risk score and survival status of each patient, and the heatmap of the 9 hub lncRNAs expression in (A) GSE17536

cohort and (B) GSE38832 cohort. (C, D) Kaplan–Meier survival curves of OS and DSS of patients with CRC in high- and low-risk

group in GSE17536 cohort. (E) Kaplan–Meier survival curve of DSS of patients with CRC in high- and low-risk group in GSE38832

cohort. (F) Time-dependent ROC curves for predicting 1- and 5-year OS in GSE17536 cohort. (G) Time-dependent ROC curves for

predicting 1- and 5-year DSS in GSE38832 cohort.

Assessment of immune infiltration and immunotherapy-related markers
with 9-IRlncRNA signature, and detection of 9 IRlncRNAs expression
levels in CRC
We further investigated the differences in immune infiltration between high- and low-risk CRC patients. Based on
quanTIseq and CIBERSORT, the results indicated that the infiltration of CD4+ T cells (non-regulatory), CD4+ mem-
ory activated T cells and M1 macrophages were higher in the low-risk group, and the content of M2 macrophages was
higher in the high-risk group (Figure 10A–D). Moreover, we employed the TIDE algorithm to predict the possibil-
ity of response to immunotherapy. Interestingly, we found that low-risk group had a lower tumor immune exclusion
score than high-risk group, and the microsatellite instability (MSI) score of the low-risk group was significantly higher
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Figure 5. Cox regression for identifying independent prognostic factors in patients with CRC

(A) Univariate and multivariate analyses of prognostic factors in training cohort. (B) Univariate and multivariate analyses of prognostic

factors in testing cohort (GSE17536).

Figure 6. Stratification analyses

Kaplan–Meier curves showed the OS of the high- and low-risk CRC patients stratified by (A) age, (B) T stage, (C) N stage, (D) M

stage, and (E) AJCC stage.
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Figure 7. Model comparisons

Comparison of 9-IRlncRNA signature with four previously proposed signatures using (A–D) time-dependent ROC curves for pre-

dicting 1- and 5-year OS and (E) C-index.

than that of the high-risk group (Figure 10E,F). Besides, patients in low-risk group also had a higher TMB (Figure
10G).

Subsequently, we detected the expression levels of these 9 IRlncRNAs in NCM460, HCT116, and SW480 cell lines
using qPCR. The result indicated that the expression levels of WAC-AS1, LINC00138, ZEB1-AS1, BOLA3-AS1,
VPS9D1-AS1, COLCA1, and PCAT6 were significantly up-regulated in CRC cell lines (HCT116 and SW480),
whereas the expression level of ZNF503-AS2 was lowly expressed in CRC cell lines (Figure 10H).

Discussion
Recently, lncRNAs have been proved to play critical roles in the development and progression of many cancers
[23]. In CRC, emerging evidence has indicated that lncRNAs act mostly as signaling molecules in many significant
CRC-related pathways, and are frequently involved in different phases of CRC from precancerous lesions to distant
metastasis [24]. A previous study has found that lncRNAs can also regulate cancer immunity, and concluded that
these IRlncRNAs are a new but essential part of cancer immunotherapy and prognosis [25]. In the present study,
we constructed a 9-IRlncRNAs signature that can successfully divide CRC patients into high- and low-risk groups.
Meanwhile, through multivariate Cox regression analysis, the 9-IRlncRNA signature was proved to be an indepen-
dent OS prognostic factor. In subsequent subgroup analysis, this prognostic signature also showed favorable stability
in different subgroups. Besides, we noted that patients in high-risk group were involved in cancer-related signaling
pathways such as MAPK, WNT/β-catenin, and Notch pathway, which might result in their short OS.

Through our analysis, all the nine IRlncRNAs (PCED1B-AS1, VPS9D1-AS1, PCAT6, BOLA3-AS1, ZNF503-AS2,
ZEB1-AS1, LINC01138, WAC-AS1, and COLCA1) were associated with a dismal prognosis, which was consistent
with their biological functions reported by previous studies. LncRNA PCED1B-AS1 was reported to promote the
proliferation and inhibit the apoptosis of glioma cells via miR-194-5p/PCED1B axis [26]. However, in the present
study, we found that there was no significant difference in the expression level of PCED1B-AS1 between CRC cell
lines and normal colon epithelial cell lines. In non-small cell lung cancer (NSCLC), the expression of VPS9D1-AS1
was higher in NSCLC tissues than in paired adjacent tissues, and the high expression of VPS9D1-AS1 suggested an
adverse prognosis [27]. Similarly, PCAT6 can bind with EZH2 which can bind to the promoter region of LATS2 and
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Figure 8. Nomogram establishment and evaluation

(A) Nomogram for predicting survival probability at 1-, 3-, and 5-year for CRC patients. (B) Calibration curves for the nomogram.

(C) DCA curves showing the comparison between the nomogram and age, M stage or risk group for predicting 1-, 3-, and 5-year

OS for CRC patients. (D) Time-dependent ROC curves showing the comparison between the nomogram and age, M stage or risk

group for predicting 1-, 3-, and 5-year OS for CRC patients.

inhibit LATS2 expression in NSCLC. LATS2 overexpression can suppress cell proliferation and promote apoptosis.
Therefore, lncRNA PCAT6 exerts an oncogenic function on NSCLC [28]. LncRNA ZEB1-AS1 is a well-recognized
tumor-related lncRNAs and is overexpressed in several malignancies. In CRC, ZEB1-AS1 overexpression is signifi-
cantly related to tumor invasion and distant metastasis, which indicates a poor OS and low recurrence-free survival
rate [29]. Moreover, LINC01138 has been reported as a tumor promoter that can exert its biological functions via the
tumor-related IGF2BP1/IGF2BP3-LINC01138-PRMT5 axis in hepatocellular carcinoma (HCC), which can serve as a
robust biomarker and therapeutic target for HCC [30]. Recent study has reported that lncRNA WAC-AS1 is highly ex-
pressed in liver cancer tissues and cell lines, and verified that WAC-AS1 can regulate ARPP19 by sponging miR-320d
to promote glycolysis and tumor proliferation [31]. Although the function of other lncRNAs remains unknown in
carcinoma, their expression levels are up-regulated in CRC cell lines according to our findings, which may provide
the foundation for the further exploration of the association between these IRlncRNAs and tumorigenesis. More-
over, the identification of additional targets of these nine IRlncRNAs is also a critical step to further explore their
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Figure 9. PCA and functional enrichment analysis

(A) PCA between high- and low-risk groups based on the whole genes. (B) PCA between high- and low-risk groups based on the

whole immune-related lncRNAs. (C) PCA between high- and low-risk groups based on the 9-IRlncRNA signature. GSEA based on

TCGA cohort to explore the underlying mechanism of the 9-IRlncRNA signature, including gene set of (D) KEGG, (E) PID, and (F)

REACTOME. Normalized P-value < 0.05.

function. With the development of RNA-centric approaches, such as isolation of chromatin by RNA purification [32]
and captured hybridization analysis of RNA targets [33], we will be able to identify the potential interaction targets
of lncRNAs in a native context, which may deepen our understanding of lncRNA-mediated regulation of immune
pathways and improve our insight in lncRNA functions.

Tumor-infiltrating immune cells are reported to be associated with tumor prognosis and have the ability to guide
therapeutics [34]. In our study, patients in low-risk group had more infiltration of CD4+ T cells (non-regulatory),
CD4+ memory activated T cells, and M1 macrophages. CD4+CD25+ regulatory T cells are proved to suppress an-
titumor response and result in tumor immune escape, while non-regulatory CD4+ helper T cells may be beneficial
to the host defense against tumor [35]. CD4+ memory T cells were located in the secondary lymphoid node or-
gans and tissues. When re-exposure to tumor antigen, CD4+ memory T cells undergo fast expansion and induce
more effective and faster immune response against tumor antigen and may prevent tumor relapse [36,37]. Similar-
ity, M1 macrophages were reported to lead to the promotion of inflammation and tumor suppression [38]. There-
fore, the favorable prognosis of patients in low-risk group may be a result of the activation of various anti-tumor
immune cells, and the accumulation of these immune cells may allow patients to benefit from immunotherapy. In
addition to immune cell infiltration, we also found that patients in low-risk group had higher MSI and TMB scores.
In CRC, immune checkpoint therapy received regulatory approval in 2017 to treat heavily mutated tumors that are
mismatch-repair-deficient or harbor high levels of MSI [12]. Similarity, tumors with a higher TMB have a higher like-
lihood of immunotherapy response [39]. Therefore, these results further confirm that patients in low-risk group may
show a favorable response to immunotherapy, and the 9-IRlncRNA signature we constructed may serve as a novel
biomarker for the immunotherapy of CRC patients.

Previous studies have also constructed various lncRNA signatures to predict the prognosis of patients with CRC, but
the 9-IRlncRNA we established shows more excellent performance via higher C-index and AUC values of OS [40–43].
Nevertheless, several limitations of this study should be addressed. First, the prognostic model is constructed using
retrospective data, thus, the results should be further validated using prospective data or clinical trials. Second, due to
the sample size was not large enough in the validation datasets, the accuracy of the prognostic model has decreased.

Conclusion
In conclusion, we constructed a 9-IRlncRNA prognostic model to predict the prognosis of CRC patients based on
the TCGA dataset. The prognostic value of this model was further validated in two external cohorts from the GEO
database. Moreover, the signature was identified as an independent prognostic factor of CRC and was involved in
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Figure 10. Association of the 9-IRlncRNA signature with tumor-infiltrating immune cells and its ability to predict im-

munotherapy response

(A–D) The infiltration of four immune cells with significant differences in high- and low-risk groups. (E–G) Association of 9-IRlncRNA

signature with several immunotherapy-related markers. (H) The qPCR analysis of expression levels of 9 IRlncRNAs in NCM460,

HCT116 and SW480 cell lines; * P<0.05, ** P<0.01, and *** P<0.001.

several cancer-related signaling pathways. Furthermore, the signature was associated with tumor-infiltrating im-
mune cells and immunotherapy-related markers. Hence, the 9-IRlncRNA signature can serve as a robust prognostic
biomarker for CRC patients and may be helpful to guide personalized immunotherapy.
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