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Gene Ontology Enrichment 
Improves Performances of 
Functional Similarity of Genes
Wenting Liu1, Jianjun Liu1 & Jagath C. Rajapakse2

There exists a plethora of measures to evaluate functional similarity (FS) between genes, which is a 
widely used in many bioinformatics applications including detecting molecular pathways, identifying 
co-expressed genes, predicting protein-protein interactions, and prioritization of disease genes. 
Measures of FS between genes are mostly derived from Information Contents (IC) of Gene Ontology 
(GO) terms annotating the genes. However, existing measures evaluating IC of terms based either 
on the representations of terms in the annotating corpus or on the knowledge embedded in the GO 
hierarchy do not consider the enrichment of GO terms by the querying pair of genes. The enrichment 
of a GO term by a pair of gene is dependent on whether the term is annotated by one gene (i.e., 
partial annotation) or by both genes (i.e. complete annotation) in the pair. In this paper, we propose a 
method that incorporate enrichment of GO terms by a gene pair in computing their FS and show that 
GO enrichment improves the performances of 46 existing FS measures in the prediction of sequence 
homologies, gene expression correlations, protein-protein interactions, and disease associated genes.

Gene ontology (GO) provides a controlled vocabulary of gene functions and molecular attributes that are 
arranged in a directed acyclic graph (DAG) representing semantic relations among GO terms. GO is often used 
to interpret results and make inferences of biological experiments. Functional similarity (FS) between two genes 
is inferred from GO terms annotating the genes and is widely adopted in detecting and interpreting genetic 
interactions, functional interactions, protein-protein interactions1, biological pathways2,3, prioritization of disease 
genes4, and disease similarities5. Most FS measures in the literature are computed using information contents (IC) 
of GO terms annotating the querying pair of genes. The IC of a GO term is evaluated using either the representa-
tion of GO terms in the annotation corpus associated with a species (corpus-based methods) or the structure of 
the DAG (structure-based methods).

Functional similarity between two genes is given by the common information or semantic similarity of the GO 
terms annotating the two genes. Semantic similarity (SS) among GO terms is generally evaluated by the ICs of 
common ancestor terms as ancestors subsume semantic concepts of descendants due to the hierarchical nature of 
the DAG. Corpus-based SS measures such as Resnik6, Lin7, Nunivers8, and Schlicker9 are based on the ICs of the 
most informative common ancestor, and XGraSM10 and TopoICSim11 have extended Lin and Nunivers measures 
to include IC of all the common ancestors. Structure-based methods such SORA12 and WIS13 determine the ICs 
of a GO term based on the number of descendants and/or the depth of the term in the DAG. Semantic similarity 
of a GO term set is derived from the ICs of (i) individual terms, (ii) pairs of terms, or (iii) the term set. The ICs 
of a term set is derived combining individual or pair of terms by using statistical averaging measures or Tversky’s 
ratios14.

Functional similarity of two genes are measured by ICs of common GO terms annotating the genes, which are 
evaluated purely based on the annotations of the corpus or the expert knowledge embedded in the DAG. Figure 1 
illustrates how two genes are represented in a DAG by their GO terms and as seen, some GO terms in the DAG 
annotate only one gene while others annotate both genes or none. However, existing IC measures ignore the local 
context or how GO terms are represented in the querying gene pair. For example, when measuring FS of a gene 
pair, GO terms annotating both genes are more likely to be enriched than those annotating only one gene. To 
overcome this drawback of existing FS measures, we propose to incorporate GO-enrichment by querying gene 
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pair in the computation of IC of a GO term. Specifically, in the context of two genes, the probability of a GO term 
is defined as the joint probability of the term as inferred by background corpus and as annotated by two querying 
genes. We investigate the effect of introducing GO enrichment on 46 existing FS measures and demonstrate that 
enriched FS (FS*) measures outperform the prediction of sequence homologies, gene expression correlations, 
protein-protein interactions, and disease-associated genes in majority of the cases.

Results
Performance on FS* on all datasets.  We assessed performances of FS* measures on benchmark datasets 
for predicting sequence similarities, gene expression (GE) correlations, protein-protein interactions (PPI), dis-
ease genes (DG) and compared with those of corresponding FS measures. Table 1 shows one-sided p-values of 
the improvement of performances of all the experiments on five benchmark datasets, by using Wilcoxon signed 
rank tests15. As seen, FS* measures showed significant improvement over FS measures in the prediction of dis-
ease genes on 138 experiments, protein interactions on 138 experiments of yeast PPI data and 138 experiments 
of human PPI data, gene co-expressions on 138 experiments of yeast GE data, and sequence similarities on 276 
experiments on CESSM dataset; and on all 828 experiments. Irrespective of the ontology (BP, MF, or CC) and the 
type of FS measure, incorporation of GO enrichment significantly improved the prediction of sequence similari-
ties, gene co-expression patterns, protein-protein interactions, and disease associated genes.

Performance of FS* measures on individual datasets.  Table 2 lists 46 FS measures that are computed 
based on ICs of individual terms, pairs of terms, and the set of terms annotating the genes. Lin7 (L), Nunivers8 
(N), Schlicker9 (C), and extended (XGraSM10) Lin (XL) and Nunivers (XN), Zhang16 (Z) GO-universal8 (U) and 
Wang17 (W) are corpus-based methods using IC son individual terms or pairs of terms (i.e., SS). Functional sim-
ilarities of the gene pair are computed by combining ICs of annotating GO terms by using GIC1 (Jaccard index), 
DIC8 (dice index), and UIC8 (universal index) on individual terms, and Average (AVG), Maximum (MAX), 
Best-Match Average (BMA) and Average Best-Matches (ABM) on pairs of terms; SORA12 (R) and WIS13 (I) are 

Figure 1.  Illustration of a DAG representing GO terms annotating two genes. (A) The DAG representing GO 
terms that annotates the two genes, and (B) the two genes g1 and g2 and their GO term sets Tg1

 and Tg2
. The FS is 

derived as the semantic similarity or the common information contents (IC) in the two term sets. Our approach 
takes care of differential enrichment of GO terms by the querying gene pair: for example, blue terms annotates 
only g1, green terms annotates only gene g2, and red terms annotates both genes g1 and g2.

Data Type Data Sets #Protein pairs ontology #Experiments p-value

Disease Genes DG_BP; DG_MF; DG_CC 6084 BP; MF; CC 138 5.619e-08

Yeast PPI PPI_BP; PPI_MF; PPI_CC 8654; 7166; 8852 BP; MF; CC 138 2.885e-07

Human PPI PPI_BP; PPI_MF; PPI_CC 2408; 2576; 2108 BP; MF; CC 138 3.528e-03

Yeast GE GE_BP; GE_MF; GE_CC 4800 BP; MF; CC 138 6.912e-09

CESSM ECC; Pfam; SeqSim 13430 BP; MF 276 4.94e-16

Total DG; PPI; GE; ECC; Pfam; SeqSim 35376; 34056; 35274 BP; MF; CC 828 <2.2e-16

Table 1.  Details of five datasets and statistical significances of the improvement of performances by FS* over 
corresponding FS measures on predicting disease genes, protein interactions on yeast PPI dataset and yeast 
GE dataset, gene co-expressions on yeast GE dataset in different ontological domains (BP, MF, and CC), and 
sequence similarities on CESSM datasets (ECC, Pfam, and SeqSim).
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structure-based methods that define ICs for individual terms from information from DAN and compute ICs on 
the whole term set by using Overlap Ratio (OR) and Intersection to Union Ratio (IUR).

Tables 3, 4, 5 and 6 lists the top five performers of FS/FS* measures on each dataset. As seen from the tables, 
the best performers (ranked by AUC values of prediction) are mostly FS* measures: (i) IIUR* on predicting 
sequence similarity on both BP and MF ontology, Pfam similarity on MF ontology, and PPIs of yeast on CC 
ontology; (ii) ROR* on predicting ECC similarity on MF ontology, gene co-expressions of yeast on both BP and 
MF ontology, and disease genes on both BP and MF ontology; (iii) WABM* on predicting Pfam similarity on BP 
ontology and PPIs of human on CC ontology; ZBMA* on predicting PPIs of human on BP ontology; and (iv) 
XNBMA* on predicting ECC similarity on BP ontology, PPIs of yeast on BP ontology, and disease genes on BP 
ontology. For predicting PPIs of yeast on MF ontology, both DUIC and DUIC* performed best with quite similar 
AUC score of 0.6930 and 0.6928, respectively, followed by DDIC* and DGIC* with AUC score both of 0.6926. SABM 
performed best on predicting human PPIs from MF ontology.

We notice that the best performers are mostly FS* measures derived from structure-based IC measures (IIUR* 
and ROR*), corpus-based IC measures that considered ancestors of the terms (WABM* and ZBMA*) or extended 
corpus-based measures (XNBMA*). This indicates that using only the information of annotating corpus is insuffi-
cient and both the structure of DAG and GO enrichment by the querying gene pair are essential for determining 
FS between genes.

Supplementary Tables 1–6 give the details of performances of FS* over all 46 FS measures in predicting 
sequence similarities, gene co-expressions, protein-protein interactions and disease genes. The tables list corre-
lations or AUC scores of the measures, percentages improvement of FS* over FS, and statistical significances of 
improvement on every dataset. The significant improvements at FDR < 0.01 are indicated in bold and the signif-
icant drops in performance are marked in red; for each dataset, top FS and top FS* performers are indicated in 
bold.

Our results show that GO enrichment improves on almost all 46 FS measures on all the datasets, except infer-
ring human PPIs on MF ontology. The corpus-based measures (Lin7, Nunivers8, GO-universal8, Wang17, Zhang16) 
and graph-based extensions of corpus-based measures (XGraSM10 of Lin7 and Nunivers8) were improved signif-
icantly with GO enrichment on most datasets. In general, BMA and ABM methods provided best performances 
and performed equally well on most semantic similarity measures. Adaptation of efficient correction factors 
improved the performance on some measures: Schlicker9 uses the IC value of MICA and does not significantly 

Acronyms IC/SS FS measures

U GO-universal8 UABM, UBMA, UMAX, UAVG, UDIC, UGIC, UUIC

Z Zhang16 ZABM, ZBMA, ZMAX, ZAVG, ZDIC, ZGIC, ZUIC

W Wang17 WABM, WBMA, WMAX, WAVG, WDIC, WGIC, WUIC

N Nunivers8 NABM, NBMA, NMAX, NAVG

XN Extended Nunivers10 XNABM, XNBMA, XNMAX, XNAVG

L Lin7 LABM, LBMA, LMAX, LAVG

XL Extended Lin10 XLABM, XLBMA, XLMAX, XLAVG

S Schlicker9 SABM, SBMA, SMAX, SAVG

D Direct-term based18 DDIC, DGIC, DUIC

R SORA12 ROR

I WIS13 IIUR

Table 2.  Details of 46 FS measures. The types of IC/SS and methods used to compute FS measures: GIC1 
(Jaccard index), DIC8 (dice index), and UIC8 (universal index) for individual terns; Average (AVG), Maximum 
(MAX), Best-Match Average (BMA) and Average Best-Matches (ABM) for measures based on pairs of terms; 
and Overlap Ratio (OR) and Intersection to Union Ratio (IUR) for measures based on sets of terms.

Datasets Methods Correlation Datasets Methods Correlation Datasets Methods Correlation

ECC_BP

XNBMA
* 0.4748

Pfam_BP

WABM
* 0.5261

SeqSim_BP

IIUR
* 0.8028

XNBMA 0.4748 WBMA
* 0.5223 IIUR 0.7927

XLBMA
* 0.4748 ROR

* 0.5199 ROR 0.7884

XLBMA 0.4708 IIUR
* 0.5005 WABM

* 0.7741

NBMA
* 0.4651 ROR 0.4933 ROR

* 0.7738

ROR
* 0.7828 IIUR

* 0.6961 IIUR
* 0.7217

WBMA
* 0.7665 ROR

* 0.6829 IIUR 0.7165

ECC_MF

XNBMA
* 0.7567

Pfam_MF

IIUR 0.6627

SeqSim_MF

ROR 0.6505

XNBMA 0.7525 ROR 0.6565 DGIC
* 0.6358

NBMA
* 0.7525 WABM

* 0.6283 DGIC 0.6285

Table 3.  Top five performers of FS and FS* measures on predicting ECC, Pfam, and SeqSim similarities of 
protein pairs of CESSM datasets, using BP and MF ontologies.
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improve the performance of the Lin7 approach; XGraSM10 uses all common informative ancestors to correct Lin7 
and Nunivers8 approaches in order to improve their performances. Thus, including common informative ances-
tors in the conception of SS improves performance, especially for approaches including only the features of child 
terms in the computation of IC such as Zhang16, Wang17, SORA12 and WIS13 measures.

As FS* measures differently treats GO terms uniquely annotating (i.e., annotating one gene) and GO terms 
commonly annotating (i.e., annotating both genes) the querying genes, measures including both types of terms 
are significantly improved with GO enrichment: for example, Lin7, Nunivers8, and Direct-term based18 measures 
consider both common terms and individual terms; GO-universal8 measure considers all children terms (com-
mon or individual terms); and Zhang16, Wang17, SORA12 and WIS13 measure consider all ancestors (common 
terms) and children terms (common or individual terms). Especially, Wang17 measures (WABM, WBMA) improved 
significantly on capturing sequence homology with a correlation improvement of 8% of ECC, 25% of Pfam, 34% 
of SeqSim on MF ontology; and 13% of Pfam, 16% of SeqSim on BP ontology while Wang17 measures (WABM, 
WBMA, WMAX) improved significantly for GE correlations on BP and MF with a correlation improvement of 3.5% 
on BP, and 16% on MF. Wang17 measure (WAVG) also improved most significantly for inferring human PPIs on CC 
with 3% AUC improvement, yeast PPIs on BP and CC with AUC improvement 4% and 3%, respectively. SORA12 
approach (ROR) improved most significantly for predicting yeast PPIs on MF ontology with AUC improvement 
2%, disease genes on MF ontology with AUC improvement 4%. WIS13 approach (IIUR) improved most signif-
icantly for GE correlations on BP, MF, and CC with correlation improvement of 5%, 6%, and 5%, respectively. 
GO-universal approach (UAVG) improved most significantly (labelled as green) for GE correlations on BP and CC 
with correlation improvement of 3% and 10%, respectively; and inferred human PPIs on BP, yeast PPIs on CC 
with AUC improvement both 1%.

Direct term-based DGIC
18 and DDIC

18 are improved most significantly for inferring human PPIs on BP and MF, 
yeast PPIs on BP and CC, GE correlations on BP and CC, disease genes on CC. Out of all 46 FS measures, the 
performance of measure related to UIC measure didn’t improve with GO enriched FS* measures. This is because 
the UIC measure does not discriminate common terms and unique terms while the enrichment is manifested by 

Datasets Methods AUC Datasets Methods AUC Datasets Methods AUC

human PPI_BP

ZBMA
* 0.8750

human PPI_MF

SABM 0.7787

human PPI_CC

WABM
* 0.7775

ZBMA 0.8747 LABM 0.7777 WBMA
* 0.7697

NBMA
* 0.8739 SABM

* 0.7771 IIUR
* 0.7678

NBMA 0.8737 LABM
* 0.7762 UABM

* 0.7658

SBMA
* 0.8721 NABM 0.7718 UABM 0.7657

yeast PPI_BP

XNBMA
* 0.8565

yeast PPI_MF

DUIC 0.6930

yeast PPI_CC

IIUR
* 0.8248

XNMAX
* 0.8563 DUIC

* 0.6928 IIUR 0.8158

XLMAX
* 0.8561 DDIC

* 0.6926 ROR
* 0.8143

XNMAX 0.8559 DGIC
* 0.6926 UABM

* 0.8072

XNBMA 0.8559 DGIC 0.6916 NABM
* 0.8068

Table 4.  Top five performers of FS and FS* measures predicting protein-protein interactions of human and 
yeast PPI datasets, using three ontologies: BP, MF, and CC.

Datasets Methods Correlation Datasets Methods Correlation Datasets Methods Correlation

yeast GE_BP

ROR
* 0.2927

yeast GE_MF

ROR
* 0.2138

yeast GE_CC

ZDIC
* 0.4263

DGIC
* 0.2877 ROR 0.2087 ZDIC 0.4253

ROR 0.2876 DGIC
* 0.2023 ZGIC

* 0.4236

ZGIC
* 0.2875 DGIC 0.2022 ZGIC 0.4233

DGIC 0.2873 DDIC
* 0.2008 ZUIC 0.4229

Table 5.  Top five performers of FS and FS* measures predicting gene co-expressions on yeast GE dataset, using 
three ontologies: BP, MF, and CC.

Datasets Methods AUC Datasets Methods AUC Datasets Methods AUC

Disease Genes_BP

XNBMA
* 0.8065

Disease Genes_MF

ROR
* 0.7541

Disease Genes_CC

ROR
* 0.7064

ROR 0.8062 UBMA
* 0.7357 UBMA 0.7032

XNBMA 0.8058 UBMA 0.7357 ROR 0.7031

IIUR 0.8030 NBMA
* 0.7344 UBMA

* 0.7029

NBMA
* 0.8019 NBMA 0.7330 WBMA 0.7006

Table 6.  Top five performers of FS and FS* measures predicting disease genes on benchmark dataset, using 
three ontologies: BP, MF, and CC.
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the differences between common and unique terms. UIC is defined as the sum of IC of the terms annotated by 
both genes, divided by the maximum of the sum of ICs annotated individual genes and GIC is defined as the sum 
of ICs of GO terms annotated by both genes, divided by the sum of ICs of terms annotated by individual genes. 
The enriched IC term leads to increase the ICs of the terms that are annotated by both genes more than those 
annotated by one gene. When there are only a few terms annotated by both genes, GIC*/UIC* do not perform 
as good as UIC. Therefore, the FS with GIC*/UIC* lead to quality loss when predicting sequence similarity as 
seen in Supplementary Table 2. The loss in predicting with GIC* is smaller than the loss in predicting with UIC*.

Supplementary Figs 1–3 show ROC curves of overall best performers (IIUR, ROR, XNBMA, ZBMA and DGIC) of 
FS to FS*, predicting human and yeast PPIs, disease genes on three ontologies, respectively. As seen, most of top 
performers are FS*, underscoring that GO enrichment indeed improves performance of best FS performers on 
all the datasets.

Conclusions
Many FS measures have been proposed using GO annotation to quantify similarities between genes for exploita-
tion and validation of biological knowledge embedded in omics data. These measures were derived based on the 
topological structure of GO semantics and/or the GO annotations of the genes/proteins annotating (background) 
corpus. However, the representativeness of GO terms in the two querying genes has not been considered in evalu-
ating FS measures. In other words, differential enrichment of the terms annotating one gene and the terms anno-
tating two genes in the querying pair has been ignored in the existing FS measures. We proposed an enriched FS 
measure, FS*, that can be used to incorporates the enrichment of GO terms by querying genes in the existing FS 
measures and demonstrated improved performances of FS* measures in the prediction of sequence similarities, 
protein-protein interactions, gene co-expressions, and disease associated genes.

We tested GO enrichment on 46 FS measures on five benchmark datasets including sequence similarities of 
the CESSM dataset, yeast GE data, human and yeast PPI data, and disease genes, and presented comparison of 
performances of FS and FS* measures. Results indicate that FS* outperforms FS measures in a vast majority of 
the experiments. We conclude that consideration of GO enrichment by the querying genes is an essential step for 
computation of FS between genes. As seen, FS measures including both commonly and individually annotating 
terms, the performances of FS* between genes improved much significantly over FS measures. We also noticed 
that FS* significantly outperformed on datasets containing a lot of uniquely annotated genes (i.e., those annotated 
by the terms in the low levels of GO hierarchy).

Enriched FS* of structure-based measures (IIUR and ROR), corpus-based methods using DAG structure (WABM 
and ZBMA), or graph-based extensions of corpus-based measures (XNBMA) achieved best performances on all the 
benchmark datasets except predicting human and yeast PPIs on MF ontology. This indicate that introducing the 
annotations of the corpus and the querying pair of genes in the structure-based IC measures gives accurate FS 
measures, underscoring the need for incorporating the representativeness of querying genes.

Enriched FS* is easily adapted to and generally improves the performance of any FS measure that uses ICs 
of GO terms. On the other hand, the accuracy of GO annotation naturally limits the performance of existing FS 
measures as they do not consider both the local context of two genes and the background distribution of terms in 
the annotating corpus. Our experiments suggest that the local context of querying genes is sensitive to the miss-
ing and spurious terms in the GO annotating corpus. One could extend our method to evaluate the functional 
coherence of gene sets, which will have applications in the detection of functional modules or pathways. FS* 
measures more accurately identify functionally similar genes than FS measures and will provide more reliable 
computational evidences for finding new pathways and disease genes. We conclude that the GO enrichment is an 
essential step when assessing FS of two genes and a set of genes.

Methods
Data Sets.  Molecules with sequence similarities show similar functions or MF ontology, and with similar 
gene expressions are likely to belong to same pathway or so have similar BP ontology. Interacting proteins are 
located in the same cellular location and so have the similar CC ontology. Therefore, we evaluated the perfor-
mances of FS* measures by their correlations with sequence similarities, gene co-expressions, protein-protein 
interactions, and disease association of genes on benchmark datasets.

Correlation with sequence similarity.  Various studies have shown that molecules with sequence simi-
larities have similar ontological annotations19, so we used sequence similarities to demonstrate the goodness of 
FS measures20,21. For BP and MF, we downloaded sequence similarities of selected human proteins with known 
relationships from CESSM22 online tool (http://xldb.di.fc.ul.pt/tools/cessm/) and compared the performances 
of different FS measures predicting sequence similarities. The CESSM website provides a list of protein pairs 
and similarities between pairs of proteins, using three distinct evaluations: sequence similarity (SeqSim), Pfam 
domain similarity, and enzyme commission class (ECC) similarity. The goodness of prediction was evaluated by 
the correlations between protein similarities captured by SeqSim, Pfam similarity, and ECC similarity and the FS 
measures.

Correlation with gene co-expressions.  Genes involved in the same biological process, sharing simi-
lar functions or cellular components, tend to exhibit similar expression patterns, so a good correlation ought 
to exist between co-expressed genes and their FS. We used the S.cerevisiae gene-expression dataset used in 
earlier studies20,21, which contains co-expression values of 4800 pairs of genes for each ontology, downloaded 
from GeneMANIA23 and other microarray experiments. We computed Pearson’s correlations between gene 
co-expressions and FS values of BP, MF and CC ontologies.

http://xldb.di.fc.ul.pt/tools/cessm/
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Correlations with AUC on predicting protein-protein interactions.  Two interacting proteins have 
same CC ontology, share similar functions, and are likely to belong to same BP, so the FS between two proteins 
is an indicative of an interaction24,25. The prediction of protein-protein interaction (PPI) was formulated as a 
classification problem where FS exceeding a certain threshold indicated an interaction between two proteins. We 
used yeast PPI datasets from the Jain and Davis’s database21,26, which contain 4385 PPIs on BP, 3858 PPIs on MF, 
and 4469 PPIs on CC. The human PPIs was downloaded from the Database of Interacting Proteins (DIP)27 that 
contains 1435 PPIs on BP, 1441 PPIs on MF, and 1431 PPIs on CC. The same numbers of negative interactions 
generated by randomly choosing annotated protein pairs in BP, MF, and CC ontology. The area under the curve 
(AUC) values of receiver operating characteristic (ROC) curves of the predictor were used to evaluate perfor-
mances. A ROC curve plots true positive rates (sensitivity) against false positive rates (1-specificity) of prediction 
at different thresholds.

Correlations with AUC on predicting disease genes.  Recent studies28,29 have combined gene-gene 
similarities, disease gene associations, and disease–disease similarities in order to predict disease associated 
genes. For example, Zeng et al.28 used a path-based similarity measure HeteSim30 to calculate the similarities 
between nodes in heterogeneous networks constructed using protein-protein interactions, gene-phenotype asso-
ciations, and phenotype-phenotype similarity, to prioritize candidate disease genes; and Zou et al.29 constructed a 
microRNA-disease network from microRNA–microRNA and disease–disease networks. Inspired by these works, 
we formulate the prediction of disease associated genes as a FS between a known set of disease genes31 and the 
candidate gene. The FS between disease-associated genes and the candidate gene were computed using 46 FS 
measures and the performances were evaluated using AUC values of the prediction of the candidate gene as a 
disease associated gene. The dataset for disease associated gene prediction was constructed from a preliminary 
set of 78 OMIM (http://www.omim.org) disease phenotypes collected by Schlicker et al.31. For each of the pheno-
types, one disease protein was randomly selected and predicted as a disease candidate by using functional profiles 
of other genes. Thereby, a disease genes benchmark set consisting of 78 phenotypes and 78 randomly selected 
known disease proteins as candidates was constructed.

Significance test for correlation improvement.  To determine statistical significance of an improve-
ment of correlations between FS and FS* measures and sequence similarities, gene co-expressions, and AUCs 
of prediction of PPI and disease associated genes, we adopted Williams test32 for correlations between two met-
rics33,34. Specifically, to test whether the population correlation between X1 and X3 equals the population correla-
tion between X2 and X3, we computed the following t-test:
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The higher the correlation between the metric scores, the greater the statistical power of this test than the 

Fisher r to z-transformation test on independent correlations is. As FS and FS* are highly correlated, we used this 
Williams test32 and adopted FDR for multiple test correction.

To determine whether correlations or AUC values are significantly improved for all FS measures to FS* meas-
ures on each dataset (CESSM, yeast GE, yeast PPI, and the combination of the three datasets), we implemented 
the Wilcoxon signed rank test with continuity correction35, which tests repeated measurements on a single sample 
to assess whether their population mean ranks differ. This test is suggested as an alternative for t-test for depend-
ent samples when the population cannot be assumed to be normally distributed. We used one-sided Wilcoxon 
signed rank test to show whether FS* significantly improves the performance of FS irrespective of the FS measure 
and the type of ontology.

Funsim measures.  Information content of a gene ontology term.  Gene ontology (GO) is an ontology of 
terms describing how gene products behave in a cellular context in a species-independent manner and comprises 
of three ontological domains: biological process (BP), molecular function (MF), and cellular component (CC)36: 
BP is a collection of molecular events, MF defines gene functions in biological processes, and CC describes gene 
localizations inside a cell. There are three semantic relations between two GO terms: is-a is used when one GO 
term is a subtype of another GO term, part-of is used to represent part-whole relationship in the GO terms, and 
regulate is used when the occurrence of one biological process directly affects the manifestation of another pro-
cess or quality37. GO terms and their semantic relations form a hierarchical directed acyclic graph (DAG) where 
three domains, BP, MF and CC, are represented as the root terms. The ancestor terms in the hierarchy subsume 
the semantics of descendant terms.

A gene is associated (or annotated) with GO terms describing the properties of its products (i.e., proteins) and 
with a corpus consisting of GO annotations (GOA) of all genes in an organism. GOA data of species can be read-
ily downloaded from the GO annotation database (http://www.geneontology.org/GO.downloads.annotations.
shtml). Functional similarity of a gene pair or a set is determined by the semantic similarities of the GO terms 
annotating the gene pair or set. Semantic similarity defines a distance between terms in the semantic space of GO 
and is quantified by the information contents (IC) of the terms. The information content (IC) of a GO term t is 
defined by negative log-likelihood:

= −IC t p t( ) log ( ) (2)

http://www.omim.org
http://www.geneontology.org/GO.downloads.annotations.shtml
http://www.geneontology.org/GO.downloads.annotations.shtml
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where term probability P(t) of term t is determined from the annotations of the corpus (corpus-based) or from the 
structure of the DAG (structure-based). The intuition is that terms in lower levels of DAG, that is, the terms with 
lower probability carry more specific information than the terms at higher levels in the hierarchy. Corpus-based 
methods evaluate the term probability as

=p t M
N

( ) (3)

where M is the number of genes annotated by term t and N is the total number of genes in the annotating corpus.
Structure-based methods evaluate term probability based on the location and the number of children and 

ancestors of the term. For example, SORA12 method defines a term IC as

= ∗





−
+ 




IC t depth t
C t

T
( ) ( ) 1

log( ( ) 1)
log( ) (4)total

where depth (t) is the depth and C (t) is the set of children of term t and Ttotal is the total number of terms in the 
DAG. The WIS13 method extends the idea from SORA12 and defines the IC of term t not only based on its children 
but also its depth, as

= ∗ ∗







−
∑ + 





∪∈( )
IC t depth t A t

T
( ) ( ) log( ( ) ) 1

log 1

log( )
(5)

x C t t depth x

total

( ) { }
1

( )

where A (t) the set of the ancestor (parent) terms of term t. The GO-universal method8 combines information 
from both the corpus and the DAG and defines term probability as

∏=








 ∈

p t
if t is root

p x
C x

otherwise( )
1,

( )
( ) (6)x P t( )

Semantic similarity measures between GO terms.  A semantic similarity measure defines a semantic distance 
between a pair or a set of GO terms and is evaluated as the IC of the gene pair or set. Since the ancestor terms in 
the DAG subsume the concepts of descendent terms, semantic similarities are mostly computed based on the ICs 
of common ancestors of the terms. Let = −A T a a a( ) { , , }n0 1 1  denote the set of ancestor terms of the GO-terms 
in the set T where a0 denotes the most informative common ancestor (i.e., the ancestor with the largest IC). The 
measures by Resnik6, Lin7, Jiang & Conrath38, Nunivers8, Schlicker9, and XGraSM10 (Extended Lin and Nunivers) 
define semantic similarities or IC t t({ , })1 2  of a pair of terms, t1 and t2, based on the IC of their most informative 
common ancestor:

Resnik6:

= = ∈IC t t IC a IC x x A t t({ , }) ( ) max{ ( ): ({ , })} (7)1 2 0 1 2

Lin7:

=
×

+
IC t t IC a

IC t IC t
({ , }) 2 ( )

( ) ( ) (8)1 2
0

1 2

Nunivers8:

=IC t t IC a
IC t IC t

({ , }) ( )
max { ( ), ( )} (9)1 2

0

1 2

Zhang16:

= −IC t t IC a({ , }) exp( ( )) (10)1 2 0

Schlicker9:

=
×

+
− −IC t t IC a

IC t IC t
IC a({ , }) 2 ( )

( ) ( )
(1 exp( ( )))

(11)1 2
0

1 2
0

Extended Lin10:

∑=
×

+






+



=

−IC t t IC a
IC t IC t n

IC a
IC a

({ , }) 2 ( )
( ) ( )

1 1
( )
( ) (12)j

n j
1 2

0

1 2
1
1

0

Extended Nunivers10:
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∑=





+



=

−IC t t IC a
IC t IC t n

IC a
IC a

({ , }) ( )
max{ ( ), ( )}

1 1
( )
( ) (13)j

n j
1 2

0

1 2
1
1

0

All the above similarity measures assign unit weight to every edge in the DAG. Edge-based similarity meas-
ures such as Wang17, SORA12 and WIS13 incorporate weights to the edges of the DAG. Wang17 defined a semantic 
value st of term t by assigning semantic weight w of 0.8 and 0.6 for is-a and part-of associations, respectively, and

=





=
′ ′ ∈

s x
if x t

w x x C x otherwise
( )

1,
max{ ( ): ( )}, (14)

t

And the IC of a term and semantic similarity between terms are computed from semantic values of the ances-
tors as respectively given by

∑
∪

=
∈

IC t s x( ) ( )
(15)x A t t

t
({ }) { }

=
∑ +

+
∈IC t t

s t s t

IC t IC t
({ , })

( ) ( )

( ) ( ) (16)
t A t t t t

1 2
({ , })

1 2

1 2 1 2

In methods of SORA12 and of WIS13, the IC of a term is considered to be composed of an inherited IC from the 
parent and an extended IC intrinsic to the term; and the extended IC is expressed as a weighted inherited IC from 
the parent. For a term t and its parent a, the IC of the pair is given by

= + → = + −IC a t IC a IC a t IC a IC t wIC a({ , }) ( ) ( ) ( ) ( ) ( ) (17)extended

where w denotes the weight of the association between parent and the term, In SORA12 w = 1 and in WIS13, the 
weight is computed from the numbers of their children as =w C t

C a
( )
( )

. Eq. (17) provides a means of computing the 
IC of a given term set without repeatedly summing the shared ICs of ancestors; and SORA and WIS methods 
define the semantic similarity of a term set T as the IC of the term set.

Functional similarity measures between two genes.  Functional similarity (FS) between two genes is computed 
using the ICs of individual terms (term-based) or the semantic similarities between the pairs of terms (term 
pair-based) or among the set of terms (term set-based). Let Tg1

 and Tg2
 be the set of GO terms annotating genes g1 

and g2, respectively. Term-based measures such as GIC1 (Jaccard index), DIC39 (dice index), and UIC39 (universal 
index) are defined using ICs of individual terms:

GIC1:

=
∑

∑

∩

∪

∈

∈

FS g g
IC t

IC t
( , )

( )

( ) (18)

t T T

t T T
1 2

g g

g g

1 2

1 2

DIC39:

=
× ∑

∑ + ∑

∩∈

∈ ∈

FS g g
IC t

IC t IC t
( , )

2 ( )

( ) ( ) (19)

t T T

t T t T
1 2

g g

g g

1 2

1 2

UIC39:

=
∑

∑ ∑

∩∈

∈ ∈

FS g g
IC t

IC t IC t
( , )

( )

max{ ( ), ( )} (20)

t T T

t T t T
1 2

g g

g g

1 2

1 2

Term pair-based methods are defined by pairwise gene similarities and use statistical closeness measures such 
as Average (AVG) and Maximum (MAX), Best-Match Average (BMA) and Average Best-Matches (ABM):

AVG:

∑=
| || | ∈ ∈FS g g
T T

IC t t( , ) 1 ({ , })
(21)g g

t T t T1 2 , 1 2g g
1 2

1 1 2 2

MAX:

= ∈ ∈FS g g IC t t t T t T( , ) max{ ({ , }): , } (22)g g1 2 1 2 1 21 2

BMA:
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∑ ∑=




| |
+

| |





∈ ∈
FS g g

T
IC t t

T
IC t t( , ) 1

2
1 ({ , }) 1 ({ , })

(23)g t T g t T
1 2 1 2 1 2

g g1 1 1 2 2 2

AMB:

∑ ∑=
| || |






+





∈ ∈
FS g g

T T
IC t t IC t t( , ) 1 ({ , }) ({ , })

(24)g g t T t T
1 2 1 2 1 2

g g1 2 1 1 2 2

Term set-based measures Overlap Ratio (OR) and Intersection to Union Ratio (IUR) were introduced by 
SORA12 and WIS13 methods, respectively, and use ICs of term sets:

OR:

∩ ∩
=






+






FS g g

IC T T

IC T

IC T T

IC T
( , ) 1

2

( )

( )

( )

( ) (25)

g g

g

g g

g
1 2

1 2

1

1 2

2

IUR:

∩
∪

=FS g g
IC T T

IC T T
( , )

( )

( ) (26)

g g

g g
1 2

1 2

1 2

Table 2 lists 46 FS measures itemized based on nine corpus-based and two structure-based semantic simi-
larities of GO terms, which are combined using direct-term based measures (DIC, GIC, and UIC), pair-based 
measures (MAX, AVG, BMA, and ABM), and set-based operations (OR and IUR). There exist several packages 
implementing some of these measures: for example, GOSemSim40, an R package implementing five measures, 
Resnik, Lin, Jiang, Schlicker and Wang’s similarity, and A-DaGO-Fun41, a python package, implementing 44 
corpus-based FS measures. We extend these works to include structure-based methods such as SORA and WIS 
and developed EnrichFunSim (https://gitlab.com/liuwt/EnrichFunSim), a python package that implements all 46 
FS measures and corresponding FS* measures discussed in this paper.

Association of a candidate gene with a disease.  The association of a candidate gene with a specific disease is 
computed as the FS between a set of known disease associated genes and a candidate gene. Given the set Gd of 
disease-associated genes of disease d and a candidate gene g, the association of gene with the disease is given by 
FS (Gd, g), the functional similarity between Gd and g.

Enriched Functional Similarity.  Generally, FS measures of genes are derived from ICs of GO terms annotating 
the genes and the ICs are computed by either how terms are annotated or represented in the corpus or how terms 
are represented in the DAG. However, how GO terms are represented in the querying gene pair or set has not 
been considered when evaluating the FS of a pair or a set of genes. In other words, the existing FS measures do 
not consider how GO terms are represented or enriched by the querying pair of genes. The enrichment of a GO 
term by the pair of gene is dependent on whether the term is annotated by one gene (i.e., partial annotation) or by 
both genes (i.e. complete annotation) in the pair. For example, consider the protein pair (P01906, P17693) shown 
in Fig. 2 and the GO DAG of their terms set. The terms GO:006955 and GO:0019882 are commonly annotated to 
both proteins; GO:0002504 is annotated to only P01906; and GO:002474 and GO:0006968 are annotated to only 
P17693. The enrichment of a term by the querying gene pair depends on whether the term annotates one gene 
or both the genes. Existing FS measures does not take note of whether the term annotates only one gene or both 
genes when computing their ICs.

We introduce GO term enrichment by the pair of genes in the computation of IC and propose enriched FS 
(FS*) between two genes. The probability of term t annotating k genes in a gene set of size n is given by a hyper-
geometric distribution as

=

−
− = 

( )( )
( )

p k n t

M
k

N M
n k

N
n

k n( , ) , where {0, , }

(27)

where N is the number of genes in the corpus and M is the number of genes that annotate term t. Figure 3 shows 
the Venn diagram depicting how a gene is enriched by the annotating corpus and the querying gene set. Note that 
in (27), the annotation of term t by the corpus is represented by set {N, M} and by the querying pair is by set {n, k}.

We define the enriched probability term p*(t) as the joint probability p (k, n, t) of k genes in a querying set of 
n genes, being annotated by term t as

= =⁎p t p k n t p k n t p t( ) ( , , ) ( , ) ( ) (28)

and enriched IC, = −⁎ ⁎IC t p t( ) log( ( )) is given by

https://gitlab.com/liuwt/EnrichFunSim
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= − | +⁎IC t p k n t IC t( ) log( ( , )) ( ) (29)

where IC (t) is computed from the prior knowledge by annotations of corpus or by the expert knowledge embed-
ded in the DAG. Note that by including {n, k} in the IC of term, IC* (t) accounts for the enrichment of the term 
by querying gene set.

From (27) and (29), for a querying gene pair (n = 2), when term t is partially annotated (k = 1):

= −





−
−






+⁎IC t M N M
N N

IC t( ) log 2 ( )
( 1)

( )
(30)

and when term t is fully annotated (k = 2):

= −





−
−






+⁎IC t M M
N N

IC t( ) log ( 1)
( 1)

( )
(31)

By substituting IC* (t) for IC (t) in the computation of FS measures of gene pairs, we obtain corresponding 
enriched FS* measures. The method is applicable to both corpus-based and structure-based methods evaluating 
IC. It also provides a means for incorporating information of querying gene pair and the annotating corpus in the 
structure-based methods of evaluating FS.

Figure 2.  The DAG representing the sets of GO terms annotating proteins: P01906 and P17693. Protein 
P01906 is annotated by terms GO:0006955, GO:0019882 and GO:0002504; and P17693 is annotated by terms 
GO:0006955, GO:0019882, GO:0002474 and GO:0006968. Blue terms denote terms annotating only protein 
P01906, green terms denote terms annotating only protein P17693, and red terms denote terms annotating both 
proteins.

Figure 3.  Venn diagram illustrating a GO term annotating the genes in the corpus (blue) and the querying set 
(yellow): M genes in the corpus of N genes and k genes in a querying set of n genes are annotated by the GO 
term.
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Software availability.  The software (python code) and all the benchmark datasets evaluation (R script) are 
available at https://gitlab.com/liuwt/EnrichFunSim.
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