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1  |  INTRODUC TION

T cells are key in our defense against infections. Their capacity to 
differentiate into various effector cell types allows T cells to respond 
to a plethora of pathogens. T cells also differentiate into a variety of 
memory T cells, which can rapidly respond to recurring infections.1 
To sustain the memory T cell pool long- term, memory T cells un-
dergo homeostatic proliferation. These differentiation processes, 
combined with the capacity of T cells to respond to pathogenic in-
sults, require that both the transcriptome and the proteome can un-
dergo profound and rapid remodeling.2,3 To achieve this remodeling, 
substantial switches occur at several layers of regulation, such as the 

metabolome, the transcription rate, the control of mRNA, and the 
translation efficiency.4

A second layer of the intricate regulation of the proteome can 
be found on the RNA level. This includes different RNA splicing 
events and RNA modifications. Furthermore, it defines the subcel-
lular localization of RNA, the RNA stability, and the level of trans-
lation into protein. These post- transcriptional events are critical 
for the fine- tuning of gene expression during T cell activation and 
T cell differentiation.5,6 As much as 50% of the alterations in the 
transcriptome of activated T cells occurs independently of de novo 
transcription, highlighting the potential of post- transcriptional reg-
ulation in T cells.7
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Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the con-
stant fine- tuning of gene expression. To alter the T cell state, substantial remodeling 
of the proteome is required. This remodeling depends on the intricate interplay of reg-
ulatory mechanisms, including post- transcriptional gene regulation. In this review, we 
discuss how the sequence of a transcript influences these post- transcriptional events. 
In particular, we review how sequence determinants such as sequence conservation, 
GC content, and chemical modifications define the levels of the mRNA and the pro-
tein in a T cell. We describe the effect of different forms of alternative splicing on 
mRNA expression and protein production, and their effect on subcellular localization. 
In addition, we discuss the role of sequences and structures as binding hubs for miR-
NAs and RNA- binding proteins in T cells. The review thus highlights how the intimate 
interplay of post- transcriptional mechanisms dictate cellular fate decisions in T cells.
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Post- transcriptional regulation (PTR) is executed at many differ-
ent levels (Figure 1). Factors such as microRNAs (miRNAs) and RNA- 
binding proteins (RBPs) define the fate of the transcript and the 
protein output. To interact with the target transcript, sequence and 
structure of the RNA are key. However, sequence and structure are 
not only required as hubs for the RNA- binding factors, but also other 
features of the sequence, such as GC content, sequence motifs, and 
codon usage, can contribute to the level of gene expression. In fact, 
the mRNA— defined as the coding sequence and the two untrans-
lated regions (UTRs)— contains ample information in its sequence 
and determines its fate. In this review, we will discuss how the se-
quence itself— in concert with the RNA- binding factors— contributes 
to gene and protein expression in T cells.

2  |  INTRINSIC SEQUENCE 
CHAR AC TERISTIC S A S POST- 
TR ANSCRIPTIONAL REGUL ATOR

Here, we discuss how the inherent characteristics of the sequence 
of a gene can define RNA stability and the translation efficiency in 
the context of T cells, and how these intrinsic sequence characteris-
tics modulate gene expression.

2.1  |  Sequence conservation

The sequence of our genome is under continuous pressure of evo-
lution. This results in the removal and the addition of regulatory 
elements that define the mRNA and protein expression levels.8,9 
Intriguingly, highly conserved genes generally display higher gene 
expression levels. This also holds true for the gene expression in 
human CD8+ T cells.10 We observe that highly conserved genes 
have generally higher mRNA and protein expression levels than 
genes with intermediate or low conservation levels.10 Furthermore, 
integration of the mRNA and protein abundance reveals that 
genes with a high sequence conservation have on average a higher 
protein- to- mRNA ratio than genes with low sequence conserva-
tion.10 This finding implies that translation, and possibly also other 
post- transcriptional events, is influenced by sequence conservation. 
This complements the known effect of sequence conservation on 
promoter regions and other transcription regulation mechanisms.8,10 
It also indicates that the sequence of the gene product itself con-
tributes to the gene expression levels. Furthermore, it suggests that 
post- transcriptional gene regulation is associated with sequence 
conservation. Investigating the gain and loss of regulatory elements 
through sequence conservation in the context of PTR could thus 
help reveal the key regulators in human T cells.

F I G U R E  1  General principles of post- transcriptional regulation. Schematic representation of post- transcriptional regulatory events in 
human cells. In the nucleus, pre- miRNA is spliced (1) and polyadenylated (2). Constitutive splicing results in the inclusion of all exons, while 
alternative splicing results in the exclusion of exons (1). Intron retention leads to the inclusion of intronic sequences in the mature mRNA 
molecule (1). Spliced mRNA molecules are polyadenylated at one of the two polyadenylation sites (PAS) present in the 3′UTR in exon 3 (2). 
Canonical polyadenylation makes use of the PAS most proximal to the 3′ end of exon 3, alternative polyadenylation makes use of a more 
distal PAS site (2). In the cytoplasm, miRISC complexes bind to complementary mRNA sequences, and RBPs bind to linear or structural 
sequences to regulate mRNA stability and/or translation (3, 4). Sequence characteristics located in the CDS and sequence elements found in 
the 3′UTR also mediate the localization of mRNAs to different cellular locations, including P- bodies, stress granules, and TIS granules (5)
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The he evolutionary pressure on sequences in the gene body is 
also detectable when measuring the length of untranslated regions. 
For example, whereas the median length of 5′UTRs in zebrafish is 
only 131nt, the median length of mouse 5′UTRs is 175nt, and me-
dian length of human 5′UTRs is 218nt.11 Similarly, also the median 
length of 3′UTRs is substantially longer in humans with 804nt com-
pared to zebrafish, where 3′UTRs only reach a mere median length 
of 402nt, or mouse 3′UTRs that have a median length of 704nt.12 
The correlation of gene expression and the 5′UTR or 3′UTR length 
also holds true when one compares the UTR length with the gene 
expression levels (Figure 2A). Genes with the 25% longest 5′UTRs 
(> 200nt) in human CD8+ T cells have significantly lower protein ex-
pression levels than those with the 25% shortest 5′UTR (<50nt10;). 
This correlation of the UTR length with gene expression is even more 
pronounced for the 3′UTR: both the mRNA and protein expression 
levels significantly decrease as the length of the 3′UTR increases.10 
Furthermore, the length of both the 5′UTR and the 3′UTR influences 
the protein- to- mRNA ratio,10 implying that the UTRs also influence 
the translational output of mRNAs. Of note, the length of 3′UTRs 
may not per se be the prime factor influencing the mRNA expression 
levels and/or the protein output. Rather, a longer 5′UTR or 3′UTR 
increases the likelihood of containing regulatory elements, such as 
binding hubs for miRNA or RNA- binding proteins (RBPs). In addition, 
the number of a well- studied RBP hub, the Adenine- Uridine rich el-
ements (AREs; as defined by the motif AUUUA), increases with the 
3′UTR length in drosophila12 and in humans (Figure 2B). Of note, 
the occurrence of AUUUA motifs is higher than that of GUUUG and 
CUUUC motifs (Figure 2B), suggesting that the increased occur-
rence of AREs may not be solely present by chance in longer 3′UTRs. 
Hence, the sequence conservation of genes and the length of the 
UTRs are directly linked to gene expression, both at the mRNA and 
at the protein level.

2.2  |  G- rich regions and the GC content

Evolutionary sequence conservation can also result in an altered 
guanine- cytosine (GC) content in gene sequences. These alterations 
in GC content can occur both in the UTRs and in the coding region. 
In the context of CD8+ T cells, a high GC content per gene is a good 
predictor of high mRNA and protein levels, as well as the protein- to- 
mRNA ratio.10 Intriguingly, the location of high GC content defines 
the effect on gene expression (Figure 3A). Sequences with a high 
GC content can create tighter tertiary structures, which should in 
principle hamper translation. However, when these regions are pre-
sent in the coding sequence, the opposite occurs. A high GC content 
in the mRNA coding region leads to increased mRNA levels, higher 
translation efficiency, and thus to more protein output.13- 16 For 
example, increasing the GC content of the IL- 6 and IL- 2 coding se-
quence, without changing the amino- acid sequence, results in higher 
mRNA stability, ribosome occupancy, and protein output.17,18 In line 
with this finding, coding sequence (CDS) parameters such as the 
GC content are predictive of mRNA and protein expression levels 

in human medulloblastoma cells.15 Of note, altering the GC content 
of the coding region can also result in changes of the codon usage, 
as defined by the GC content at the third position of an amino acid 
codon, the so- called GC3. This can also influence the translation rate 
of an mRNA, as discussed below.

A high GC content and the presence of G- rich regions in 5′UTRs 
can in turn substantially affect gene expression levels (Figure 3A). 
G- rich regions are found in 8% of all human 5′UTRs and form 
highly stable G- quadruplex tertiary mRNA structures.19 They can 
effectively repress mRNA translation, because unwinding of the 
G- quadruplex structure is required for translation initiation.19- 21 For 
example, the oncogene NRAS contains a G- quadruplex in its 5′UTR, 
which is conserved in mammals, and which strongly represses its 
protein expression.20 In the 3′UTR, a high GC content correlates with 
shorter mRNA half- life, and with overall lower mRNA levels in murine 
CD4+ T cells and Jurkat cells.22 Again, the higher GC content in the 
3′UTR results in increased tertiary structure formation.22 The mech-
anisms by which GC content leads to altered expression are not yet 
fully understood. Indeed, in addition to changes in the tertiary struc-
ture, sequences with high GC content could also possibly directly 
influence the affinity or capacity of RNA- binding proteins or miR-
NAs to interact with mRNA (see below), for instance by altering the 
sequence that are adjacent to the binding hub of these regulators. 
Altogether, GC content inherently affects many levels of the gene 
expression regulation, and it does so in a region- specific manner.

2.3  |  Codon usage

GC content and sequence conservation are intrinsically linked to 
codon usage in the mRNA. Codon usage dictates the choices of 
transfer- RNA (tRNAs) carrying the amino acid to the translating ribo-
some. Yet, due to the redundancy of codon usage for a given amino 
acid, several codons can encode for the same amino acid. In turn, 
tRNAs corresponding to the different codons encoding for the same 
amino acid can be expressed at varying concentrations. For example, 
Leucine, an essential amino acid, is encoded by 6 different codons, of 
which the respective tRNAs are found in unequal concentrations in 
CD4+ T cells.23 In fact, the use of a rare codon leads to an increased 
dwelling time of the ribosome while resolving the low abundance 
tRNA24 (Figure 3B). Optimal codon usage is thus key to ensure rapid 
and copious protein production by matching the tRNA abundance in 
the cells. For example, optimizing the codon usage of a transgenic 
TCR construct based on the average murine tRNA expression levels 
leads to improved TCR protein expression.25 Similar findings were 
obtained by optimizing the codon usage for the IL15 mRNA, when 
the protein production was measured in human T cells.26

In cell lines and in human tissues, the mRNA coding sequence is a 
key determinant of global protein expression levels.15,27 It could even 
override the 3′UTR- mediated regulation of expression of the p53 
mRNA.28 Surprisingly, codon usage and coding sequence parameters 
do not only affect the protein production but also appear to mod-
ulate the mRNA expression levels and the mRNA half- life.29,30 For 
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example, chemical inhibition of translation in activated murine CD4+ 
T cells substantially influences the mRNA half- life.31 Intriguingly, this 
occurs in a transcript- specific manner.31 This study also reveals that 
the degradation of a subset of mRNAs is translation- dependent and 
again strongly correlates with codon usage.31 Thus, codon usage 
could possibly cause transcript- specific translation- dependent 
degradation. Interestingly, this study suggests that translation can 
directly affect the expression of mRNA. Yet more investigation is 
needed to fully understand the mechanisms.

Whereas the codon usage remains fixed in each mRNA, the 
tRNA abundance differs between cell types.32 The expression levels 
of individual tRNAs can also be dynamic.23,33 For instance, the tRNA 
abundance greatly altered throughout activation of murine CD4+ T 
cells.23 In addition to alterations in tRNA abundance, as a result of 
the remodeling of their metabolism, the availability of amino acids 
also alters upon T cell activation.23 It is therefore conceivable that 
some mRNAs are sub- optimally translated in resting T cells due to 
their codon usage, yet they may acquire a competitive advantage for 
translation in activated T cells due to the alterations in tRNA abun-
dance and amino acid availability.

Not only the tRNA abundance and the amino acid availability but 
also the transcript expression alters upon T cell activation.7,34 As a 
consequence, the composition of codons that are required for trans-
lation, termed the codon demand, also changes.35 In resting naive 
CD4+ T cells, the codon demand by the transcriptome is mostly in 
line with the abundance of tRNAs. Yet the AAG tRNA, carrying a 
lysine, is in over- abundance compared to the codon demand.23 As 
lysine is one of the most highly incorporated amino acid upon CD4+ 
T cell activation, the over- abundance of lysine tRNA could possibly 
facilitate the rapid translation rate that is observed during early T 
cell activation.3 Whereas this is an intriguing hypothesis, the full 

interplay between codon demand and tRNA abundance and its reg-
ulatory potential are yet to be uncovered. In conclusion, the intrinsic 
sequence characteristics of an mRNA are critical determinants of 
mRNA expression and of the protein output in T cells.

3  |  SEQUENCES AND STRUC TUR AL 
MOTIFS A S HUBS FOR POST- 
TR ANSCRIPTIONAL REGUL ATORS

The role of sequences in determining the fate of mRNA, and of 
translation into proteins also stems from their function as binding 
hubs for post- transcriptional regulators such as miRNAs and RNA- 
binding proteins (RBPs). Also, long non- coding RNA (lncRNA) was 
reported to modulate splicing, mRNA stability, and translation in 
a sequence- specific manner (reviewed elsewhere36). How and to 
which extend lncRNA participate to the PTR in T cells is to date not 
known. We therefore focus here on miRNAs and RBPs. These post- 
transcriptional regulators have different means to interact with the 
sequences, and exert different roles in T cell differentiation, which 
is discussed below.

3.1  |  miRNAs

miRNAs are short, 21- 24 nucleotide long non- coding RNAs that inter-
act with the target mRNA by pairing with the complementary “seed- 
match” site located within the target mRNA37 (Figure 4A). Through 
the so- called “seed” sequence of 7- 8 nucleotides in length that is 
located in the 5′ region of miRNAs, miRNAs engage with the target 
mRNA.38 Furthermore, additional pairing can occur with the 3′ end 

F I G U R E  2  Relation between the length 
of 3′UTR and sequence motif occurrences. 
(A) Schematic representation how the 
length of the 5′UTR and 3′UTR influences 
gene expression. (B) Comparison of the 
genome- wide 3′UTR length of human 
protein coding genes with the occurrence 
of sequence motifs AUUUA (left panel), 
CUUUC (middle panel), and GUUUG (right 
panel). The blue line represents the linear 
model fitted to the data. 3′UTR sequence 
for human gene annotated as protein 
coding were obtained from Ensembl 
release 104 using BioMart
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sequence of the miRNA.39,40 The vast majority (98%) of all RefSeq 
annotated genes are considered potential targets of miRNAs.41 miR-
NAs have been reported to interact with coding sequences (CDS), 
with 5′UTRs, intronic regions and 3′UTRs of their target mRNA.42,43 
miRNAs form a so- called miRNA- induced Silencing Complex 
(miRISC), with the Argonaut family proteins as core of this complex. 
When interacting with their target mRNA, the miRISC can interfere 
with translation and promote mRNA degradation.44 Recent findings 
suggest that miRNAs interacting with the CDS are more potent in in-
hibiting translation, while miRNAs that bind the 3′UTR of their target 
mRNA are more efficient in inducing mRNA degradation.45,46

miRNAs are important mediators in T cells for several key 
processes, including T cell differentiation, survival, proliferation, 

migration, and T cell effector function.41,47,48 The abundance of miR-
NAs is highly variable in T cells. For example, whereas the miRNAs 
miR- 16, miR- 142- 3p, miR- 150, miR- 142- 5p, miR- 15b, and let- 7f are 
abundantly expressed in naive CD8+ T cells, they become downregu-
lated upon T cell activation.49 In fact, this downregulation in expres-
sion upon T cell activation holds true for the majority of miRNAs.50 
One exception to this rule is the 7 miRNAs located in the miRNA 
cluster 17 ~ 92. Constitutive overexpression of this cluster in mice 
reveals that the miR- 17 ~ 92 cluster promotes T cell proliferation 
and T cell survival through direct targeting of the proliferation in-
hibitor PTEN and the pro- apoptotic molecule Bim, respectively.51 
The miR- 17 ~ 92 cluster also plays an important role in T cell activa-
tion by repressing negative regulators of T cell activation, including 

F I G U R E  3  Intrinsic sequence parameters as post- transcriptional regulation. (A- B) Schematic representation how intrinsic sequence 
parameters influence gene expression. (A) Effect of GC content in the 5′UTR (forming G- quadruplexes), coding region (CDS), and the 3′UTR 
(increasing the strength of mRNA structures) on gene expression. (B) Effect of codon usage on mRNA and protein levels. tRNAs recognizing 
individual codons for a given amino acid can be found at low and at high abundance. mRNAs that use codons for highly abundant tRNA 
(green) will translate faster than those with codons for low abundance tRNA (yellow), which in turn affects protein and mRNA levels
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Phlpp2, Cyld, and Rcan3, which results in increased calcineurin/NFAT 
signaling.52

The importance of miRNAs in T cell development and differ-
entiation is exemplified by the severely impaired development and 
differentiation of T cells in mice that are devoid of the miRNA pro-
cessing ribonuclease Dicer, which impairs the overall miRNA expres-
sion.53,54 Recent studies also highlight the role of individual miRNAs. 
For instance, genetic deletion of the miR- 17 ~ 92 cluster in mice re-
sults in the generation of fewer effector T cells, but an increase of 
the formation of memory CD8+ T cells upon lymphocytic choriome-
ningitis virus (LCMV) infection.55 Conversely, T cell– specific deletion 
of miRNA 15/16 family members restrains the memory formation of 
CD8+ T cells by targeting a number of potentially relevant targets, 
including Il7r and Pim1.56 Similarly, miR- 150 is involved in regulating 

CD8+ T cell differentiation by directly repressing the expression of 
Foxo1, which promotes the expression of the T cell memory inducing 
transcription factor TCF1.57 Loss of miR- 150 therefore skews CD8+ 
T cell differentiation toward memory formation.58

The effector function of CD8+ T cells relies on the expression of a 
set of key proteins, including the inflammatory cytokines TNF- α and 
IFN- γ, and the cytotoxic molecules perforin and granzymes. miRNAs 
are important regulators of inflammatory cytokine production. In 
fact, Dicer- deficient T cells produce twice as much IFN- γ as their WT 
counterparts.53 One of the known miRNAs that regulate the gene 
expression of IFN- γ in T cells is the miR- 29 family.59,60 Regulation of 
IFN- γ has been proposed to occur either through direct interactions 
to the 3′UTR of Ifng mRNA, or indirectly through regulation of the T- 
box transcription factors.59,60 Likewise, the expression of cytotoxic 

F I G U R E  4  Sequences and structural 
motifs as hubs for post- transcriptional 
regulators. (A) Schematic representation 
of miRNAs binding to complementary 
mRNA sequences. Left panels: canonical 
miRNA binding with a perfect match 
between the seed sequence and the 
seed- match sequence. Right panels: 
non- canonical miRNA binding with an 
imperfect match between the seed 
sequence and the seed- match sequence. 
miRNAs can also employ 3′ sequence to 
enhance sequence specificity (bottom 
panels). (B) Schematic representation of 
the 3′UTR of IFNG mRNA. Deletion of 
the AU- rich elements (AREs) substantially 
increases the IFN- γ protein production 
(C). Linear and structural elements in 
the 3′UTR of mRNAs as binding hubs 
for RBPs. Whereas TTP family members 
(TTP, ZFP36L1, and ZFP36L2) recognize 
linear AREs, Regnase- 1 and Arid5a bind 
to stem loops. (D) Competition between 
Regnase- 1 and Arid5a for the binding of 
stem loops present in the 3′UTR of IL- 6 
mRNA. Whereas Regnase- 1 destabilizes 
IL- 6 mRNA, Arid5a increases the stability 
of the IL- 6 mRNA
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molecules, that is, Perforin, and multiple granzymes (Gzmb, Gzmc, 
Gzmd, Gzme, and Gzmg) is controlled by miR- 31, as revealed by T 
cell– specific deletion of this miRNA.61

Continuous antigen exposure during chronic infections or in tu-
mors causes a gradual loss of T cell effector function.62,63 T cells 
differentiate into so- called dysfunctional T cells, which is character-
ized by the expression of inhibitory receptors, such as PD- 1, LAG- 3, 
and TIM- 3. Recently, miRNAs have also been implicated in this pro-
cess. For example, during chronic LCMV infection, miR- 31- deficient 
T cells are superior in controlling the infection compared to their WT 
counterparts, which is concomitant with reduced expression levels 
of PD- 1.61 Conversely, miR- 155 expression in T cells is required to 
sustain long- term CD8+ T cell responses during a chronic LCMV 
infection.64 Lastly, TGF- β induced expression of miR- 23a in tumor- 
infiltrating CD8+ T cells has detrimental effects on T cell effector 
function.65 miR- 23a represses the expression of the transcription 
factor BLIMP- 1, which in turn promotes effector cell differentiation 
and the expression of cytotoxic molecules like Granzyme B.65

Although the functional role of miRNAs is widely studied in T cells, 
their exact binding characteristics are yet to be determined. Early 
reports indicated that seed pairing in itself may not be a reliable pre-
dictor of miRNA- mRNA target interactions.66 In fact, miRNA- mRNA 
interactome studies have revealed that 60% of the miRNA binding 
could not be explained by a perfect match between the seed and 
seed- match sequence.67,68 Indeed, multiple non- canonical miRNA- 
binding sites have been identified, with the majority of these sites 
sharing extensive complementary sequences with the mRNA with a 
mismatched or bulged nucleotide69- 71 (Figure 4A). Accumulating ev-
idence suggests that these non- canonical miRNA- binding sites are 
functionally relevant.69,72 Furthermore, a recent study performing 
an individual- nucleotide resolution cross- linking immunoprecip-
itation (iCLIP) with the miRNA interacting protein Argonaute in C 
elegans to identify miRNA binding genome wide reveals that seed 
pairing alone may not be sufficient for mRNA specificity.73 Rather, 
a subset of miRNAs may require additional pairing with the 3′ re-
gion of the miRNA73 (Figure 4A). This additional pairing may define 
the affinity of miRNAs to the target sequences, as recently reported 
in an elegant screen.74 Interestingly, miRNA- binding sites proximal 
to the poly(A) tail or the stop codon in the mRNA are more likely 
to induce miRNA- mediated repression of gene expression.75 Thus, 
whereas the role of miRNA in T cell differentiation and activation 
is established, the sequence specificity of miRNAs and their target 
identification requires further investigation.

3.2  |  RNA- binding proteins

RNA- binding proteins (RBPs) are also key regulators of the fate of 
RNA. RBPs define the process of RNA splicing, the transport of RNA 
to different subcellular locations, and they determine the stability 
of mRNA, among other features. RBPs also define the translational 
output of an mRNA.5,76,77 To exert their regulatory function, RBPs 
bind to RNA in a sequence- specific manner. These binding hubs can 

be linear sequences or stem- loop regions. A well- described linear 
RBP binding hub is the AREs. AREs are evolutionary conserved 
sequences that were identified 35 years ago in the 3′UTR of TNF 
and of other pro- inflammatory cytokines.78 The importance of ARE- 
mediated regulation was later evidenced by germ- line deletions of 
the AU- rich element- containing region in the Tnf and Ifng 3′UTR 
in mice, which resulted in hyper- production of these cytokines, 
and consequentially hyperinflammation and immunopathology79,80 
(Figure 4B). CRISPR- Cas9- mediated removal of AREs in primary 
human T cells also increased the production of IFN- γ.81 AREs are 
found in thousands of mRNAs, are highly conserved, and are local-
ized in the 3′UTRs of mRNAs.82 Interestingly, recent studies have 
also indicated a high prevalence of intronic AREs, which points to 
yet another layer of regulation of the mRNA levels and thus of the 
protein expression.83

Several RBPs can interact with AREs. ARE- binding proteins that 
interact with AREs through their tandem zinc fingers are the tris- 
tetrapolin family members TTP, ZFP36L1, and ZFP36L2.84 HuR/
ELAV1, TIA, TIAR, and AUF1 can also interact with AREs through the 
so- called RNA recognition motifs (RRMs), even though their affinity 
to U- rich sequences is generally considered higher.85,86 The critical 
contribution of RBPs in regulating the gene expression of immune 
cells was revealed in mice that lacked individual RBPs. Deficiency 
of TTP family members in thymocytes leads to hyperinflammation, 
and double deficiency for ZFP36L1/ZFP36L2 drives the develop-
ment of leukemia.87,88 The prime role of TTP family members has 
been attributed to RNA stability, yet more recent studies have also 
highlighted other mode of actions such as control of translation and 
of subcellular mRNA localization.89,90 Likewise, germ- line deficiency 
of HuR impairs the survival of progenitor cells in mice, including that 
of hematopoietic cells.91 T cell– specific deficiency of HuR in mice 
results in impaired thymocyte maturation.91 In mature mouse T cells, 
HuR stabilizes cytokine and transcription factor mRNA upon activa-
tion, among other genes.92- 94

Notably, the mode of action of RBPs can be cell- type specific. 
For instance, TTP is a key regulator of TNF production in macro-
phages.84 In T cells, we and others observed a critical role of its fam-
ily members ZFP36L1/ZFP36L2 in the production of TNF, and of 
IFN- γ.90,95,96 Intriguingly, even though the production of TNF in mac-
rophages is regulated through mRNA stability modulated through 
AREs,97 we failed to observe stabilization of Tnf mRNA in activated 
murine T cells.98 Not only the cell type but also the differentiation 
status defines which post- transcriptional event pre- dominantly hap-
pens through sequence recognition of AREs. Whereas in memory T 
cells the ready- to- deploy Ifng and Tnf mRNA is blocked for transla-
tion by ZFP36L2 in the absence of reactivation,90 in activated T cells 
AREs primarily govern Ifng RNA stability and translation efficiency.99

RBPs not only interact with linear sequences but also with struc-
tural motifs for RNA binding (Figure 4C). A recent study that mapped 
RBP interactions with RNA in a cell- free RBP- RNA interaction sys-
tem found that 70% of the 950 tested RBPs interacted with linear 
sequences, and that the remaining 30% bound to RNA structures.100 
Examples of RBPs that interact with stem loops and that modulate 
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gene expression in T cells are the Roquin, Regnase, and ARID5a pro-
teins. Roquin was first identified through genetic screens in mice, 
where a point mutation in the RNA- binding motif in T cells resulted 
in autoimmunity in mice.101 Its importance in controlling inflamma-
tion was later confirmed in human.102 Roquin 1 and 2 deficient mouse 
models revealed that Roquin blocks the expression of costimulatory 
molecules in CD4+ T cells and thereby regulates T- helper cell differ-
entiation.103,104 Roquin interacts for instance with constitutive decay 
element (CDE) motifs present in the 3′UTR of TNF- α, in addition to 
U- rich hexaloop motifs that are present in the 3′UTR of the costimu-
latory molecule OX- 40.105,106 Of note, Roquin not only drives mRNA 
degradation, but it can also block the translation of its target genes.107

Also, the CCCH- type zinc finger protein Regnase 1 (ZC3H12A) 
interacts with target mRNA by binding to stem loops in the 3′UTR 
of for instance IL- 6, IL- 17 receptor and the transcription factor 
NFkBIZ.108,109 Recent structural analysis has revealed that the 
Regnase family utilizes unique features in the CCCH domain to inter-
act with RNA,110 which induces degradation through its ribonuclease 
activity,111,112 in addition to translational silencing.113 Intriguingly, 
Regnase 1 and Roquin act non- redundantly, as double deficiency re-
sults in synergistic effects in Th1 differentiation in mice, indicating 
sequence specificity of these two RBPs.114 Regnase 1 is implicated 
in the differentiation of CD8+ T cells, and deletion thereof results 
in higher efficiency of Chimeric Antigen Receptor T cells (CAR- T 
cells) in a murine acute lymphoblastic leukemia (ALL) model.115,116 
Regnase 4 (ZC3H12D) modulates cytokine production in human T 
cells, also by dampening cytokine mRNA levels.117

The RBP Arid5a, originally described as a transcription fac-
tor, translocates to the cytoplasm in Lipopolysaccharide- activated 
RAW264.7 macrophage cells.118 Arid5a interacts with its tar-
get mRNAs with helix- turn- helix Arid motif, which binds to stem 
loops.118 The interaction of Arid5a with mRNA results in stabili-
zation and thus an increased protein output of the target mRNAs, 
such as IL6 mRNA in macrophages, and Stat3 mRNA in T cells.119,120 
Interestingly, Arid5a competes with Regnase 1 for interacting with 
the stem loops (Figure 4D). Thus, Arid5a and Regnase 1 counterbal-
ance each other's activity on their shared target mRNAs.119

In the past years, great efforts have been undertaken to create 
transcriptome- wide RBP interaction maps. Approaching this from a 
sequence- centric point of view, comprehensive maps of RBP bind-
ing motifs have been provided for linear sequences and for stem 
loops.100,121- 124 Intriguingly, recent screens for RBP interaction with 
target sequences reveal a limited repertoire of recognition motifs 
for RBPs. Of the 78 human RBPs tested in in vitro binding essays, 
high overlap of sequence specificity is reported.124 Surprisingly, 
this overlap is independent of the RNA- binding domain present in 
the RBPs.124 It is important to note that RBPs bind to only a sub-
set of cognate motifs in expressed transcripts, and the additional 
requirements for target interaction are yet to be determined.125 For 
instance, RBP affinity to sequences and structures may differ due 
to mRNA chemical modifications or due to structural changes of the 
mRNA as discussed above, or by post- translational modifications 
of the RBP itself in response to external stimuli. Another layer of 

complexity of identifying sequences for RNA- RBP interactions is 
that RBPs can contain several RNA- binding domains (RBD) and thus 
interact with several motifs. In addition, promiscuous interactions 
with several motifs have been observed for RBPs that express only 
one RBD.100 RBP interaction with target mRNA may thus at least in 
part be determined by contextual features, such as structure and 
additional motifs.124

From the RBP- centric view, an RBP interaction map in Jurkat 
cells was generated with enhanced RNA interactome capture (eRIC), 
and recently also in CD4+ T cells with the orthogonal organic phase 
separation (OOPS).126,127 These data sets revealed the identity of 
proteins that act as RBP in T cells. Yet, it does not reveal the se-
quence specificity of RBPs. To identify sequence specificities for 
individual RBPs, iCLIP and eCLIP strategies in addition to others 
have been developed.128,129 Recently, a comprehensive compilation 
of 150 RBP interaction maps were generated with eCLIP and were 
added to the Encode project.127,130 These large- scale efforts form 
the basis of our understanding of RBP interactions with target RNA. 
Nevertheless, because the eCLIP studies have been performed in 
cell lines, they may not directly translate into the binding landscape 
of RBPs in primary immune cells. They may in particular deviate in 
their binding (and thus their mode of action) when T cells undergo 
dynamic changes, such as upon differentiation or activation.

Because RBP activity depends on the cellular context, we have 
recently mapped the overall RBP expression from RNAseq and MS 
data sets throughout human B cell and T cell differentiation.131 
Integrating this data set with the eCLIP data, the eRIC/OOPS data 
together with the RBP motif maps should further substantiate the 
RBP expression and sequence binding specificity, in particular when 
integrated with data sets from different activation statuses. In con-
clusion, not only the interaction with target RNAs but also the role 
of RBPs appears highly context dependent.

4  |  SUBCELLUL AR LOC ALIZ ATION 
OF mRNA A S REGUL ATOR OF GENE 
E XPRESSION

Appropriate cellular function requires well- organized spatial organi-
zation within cells. The distribution of most proteins within cells is 
in fact not uniform, but rather compartmentalized and/or enriched 
in specific structures.132,133 To achieve this spatial distribution, some 
proteins are for instance marked by a signal peptide that is located 
at the N- terminus and that directs the protein to the intracellular 
protein transport machinery.134 In addition to the protein sequence- 
mediated localization, the mRNA itself contains information for the 
target compartment and defines the ultimate protein localization. 
For example, Nanos and Oskar mRNA localization ensures localized 
protein production which defines the proper anteroposterior pattern 
in the Drosophila embryo.135 Likewise, in Xenopus laevis, Vg1 mRNA 
localization in the vegetal pole is key for the oocyte polarization.136 
Subcellular mRNA localization also dictates the cell motility in primary 
chicken embryo fibroblasts.137 In neurons, where the cellular body 
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can span over 1 meter in length, the presorting of mRNA to the den-
drites allows neurons to rapidly produce and release neurotransmit-
ters in response to external stimuli at a specific location.138,139

To date, the mechanisms that define the subcellular localiza-
tion of mRNA are not well understood. The development of single- 
molecule FISH (smFISH) was a critical step forward to visualize 
the localization of mRNA within cells.140,141 Other recent studies 
have mapped the subcellular localization of RNA genome wide in 
HEK293T cells with APEX- seq, that is, proximity labeling and subse-
quent subcellular fractionation and sequencing.142 In addition, ma-
chine learning methods allowed to decipher a part of the ZIP- code 
system responsible the subcellular localization of mRNAs in human 
HEK293T cells.143

In immune cells, the subcellular mRNA localization is not well 
understood. It may nonetheless be critical in several regulatory pro-
cesses. For instance, the preformed cytokine mRNA in memory T cells 
that allows for rapid recall responses is blocked from translation to 
prevent unwanted production.90,98 The block of translation may be in 
part imposed by subcellular localization and/or membrane- less struc-
tures such as stress granules (SGs), processing bodies (P- bodies), or 
the recently described TIS granules (named after the RBP TIS11B/
ZFP36L189). Such membrane- less structures can be induced as part of 
the stress response. Upon activation, lymphocytes undergo a complex 
transcriptional and translational program that is sensed as physiologi-
cal stress. As a result, the integrated stress response (ISR) is triggered 
to regulate mRNA translation and to preserve the encoded mRNA 
from degradation.144 ISR induces the localization of specific mRNAs 
in RNA- protein aggregates in SGs.145,146 In activated human T cells, 
PDCD1 transcripts encoding PD- 1 and other immune checkpoint- 
related genes such as CTLA4, LAG3, TIM3, TIGIT, and BTLA transcripts 
accumulate in SGs (Figure 5A), which limits the production of these 
immune- inhibitory receptors.147 In primary murine B lymphocytes, 
activation triggers the localization of transcripts of the pro- apoptotic 
gene p53 to SGs to induce translation silencing148 (Figure 5A).

mRNAs can also be localized in P- bodies, where they are de-
graded or stored.149 Of note, the localization to these membrane- 
less organelles is not mutually exclusive, as observed for instance 
for the mRNA encoding for the costimulatory molecule ICOS, which 
resides not only in SGs but also in PBs in mouse CD4+ T cells.104 
Another type of membrane- less structures coined TIS granules were 
recently described in HEK293T cells.89 TIS granules involve the RBP 
ZFP36L1, which form RBP- RNA complexes with ARE- containing 
transcripts, and the association of TIS granules with the endoplas-
mic reticulum facilitates the process of translation.89 This selected 
translation is for instance observed for the mRNAs encoding the 
“don't eat me” signal CD47, and the immune checkpoint molecule 
Programmed Death Ligand 1 (PD- L1).89 Whether TIS granules are 
also formed in lymphocytes, and whether a similar selection of 
mRNAs to these granules occurs in T cells is yet to be determined.

Not all segments of the transcript contribute equally in the 
choice of subcellular localization.89 In fact, the coding sequence and 
the 3′UTR appear to play a more important role in defining the tran-
script localization than the 5′UTR.143 For instance, in HEK293T cells, 

the CDS has been predicted to be a key feature for the transcript 
localization on the outer mitochondrial membrane (OMM), together 
with 3′UTR.142 Proteins involved in mitochondrial function are en-
coded in the nucleus and further transported to the mitochondria. 
However, the transcript itself could translocated to the OMM where 
translation occurs.150 Especially, CDS carrying G/U- rich 6- mer se-
quences appear to have a pivotal role for the transcript localization 
to the OMM. Also, the splicing and GC content of the coding se-
quence affects the subcellular localization. In Hela cells, unspliced 
transcripts with a high GC content are enriched in the cytoplas-
mic fraction compared to the nuclear fraction, suggesting that a 
high GC content increases the localization to the cytoplasm.151,152 
Furthermore, transcripts with high GC content are enriched in P- 
bodies of human cell lines.153

Even more studies elucidate the importance of the 3′UTR in the 
localization of an mRNA. For instance, to associate with TIS granules, 
the mRNA requires ARE sequences in its 3′UTR.89 Intriguingly, for 
the CD47 transcript, the localization to TIS granules depends on the 
3′UTR isoform. CD47 mRNA comes in two isoforms, of which one 
contains a long- 3′UTR with 19 ARE motifs and the other one a short 
3′UTR with only 4 ARE motifs.154 Although the short CD47 mRNA is 
randomly distributed in the ER, the long isoform localizes specifically 
in TIS granules89 (Figure 5B). Notably, this different usage of 3′UTR 
isoforms also leads to a different protein localization: Protein trans-
lated from the long- 3′UTR isoform localizes to the cell membrane, 
whereas the protein translated from the short- 3′UTR isoform local-
izes to the endoplasmic reticulum.89

Several studies have already pointed out that longer 3′UTRs are 
associated with transcript accumulation in SGs.155 Indeed, PDCD1 
transcripts (encoding the immunosuppressive protein PD- 1) contain 
a 3′UTR of 1,177 nucleotides, which is 1.5 times the size of the me-
dian 3′UTR length in the human genome. The length of the 3′UTR 
appears to be a common feature between transcripts required for 
SG localization during human T cell activation.147

The 3′UTR also contains motifs that function as a ZIP- code for 
the correct mRNA localization143(Figure 5C). The 3′UTRs of cytokine 
transcripts carry ARE motifs, which determine their cytoplasmic lo-
calization. When a T cell becomes activated, the RBP HuR interacting 
with AREs then supports the shuttling of the mRNA from the nucleus 
to the cytosol.156 Similarly, U- rich elements can define the localization 
of mRNAs through interaction with the RBP TIA1, as was described 
for the localization of the p53 transcript to SGs during B lymphocyte 
differentiation.148 Thus, subcellular localization is defined by the se-
quence and the RBPs interacting with the sequences. However, the 
full potency of the zip- code system for mRNA localization/sorting re-
mains to be revealed, in particular in the context of T cells.

5  |  SEQUENCE MODIFIC ATION A S POST- 
TR ANSCRIPTIONAL REGUL ATOR

Post- transcriptional events occur by the interplay of regula-
tors (miRNA, RBPs, etc) and sequence motifs, and the sequence 
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F I G U R E  5  mRNA sequence regulates its subcellular localization. (A) The production of p53 and PD- 1 is regulated in two ways: under 
steady- state conditions, the mRNA is blocked from nuclear export. In activated B cells, p53 mRNA translocates from the nucleus to stress 
granules (SGs), which results in translational silencing. In activated T cells, PDCD1 mRNA (encoding PD- 1 protein) interacts with G3BP1 
proteins via its 3′UTR inducing formation of SGs, where translation is repressed. (B) The CD47 mRNA containing the short 3′UTR (CD47- 
SU) produces CD47 protein that is localized on the endoplasmic reticulum (ER). Conversely, the CD47 mRNA containing the long 3′UTR 
(CD47- LU) results in RNA localization within TIS granules, and in efficient protein assembly on the cell surface. (C) Sequences in the 3′UTR 
(ZIP Code) are the prime sequences to drive transcript localization to eight subcellular compartments between mitochondria, cytoplasm, and 
nucleus
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characteristics. Yet another mode of regulating the fate of mRNA is 
by altering the mRNA sequence and properties. The mRNA sequence 
can be chemically modified. It can also undergo alternative splicing 
to include or exclude specific sequences. These modifications sub-
stantially influence the actions of post- transcriptional events. In this 
part, we discuss the effect of the sequence modifications and the 
underlying regulatory mechanisms in the context of T cells.

5.1  |  Nucleotide modifications in RNA

To influence the fate of mRNA, nucleotides can be edited and chemi-
cally modified. For example, a small number of mRNAs can be edited 
by the ADAR family enzymes, which replace adenosine with inosine (A- 
to- I editing)157 (Figure 6A). Inosine, a nucleotide interpreted as guanine 
by the translation machinery, then leads to alterations in the protein 
coding sequence. Even though the underlying effects of this A- to- I ed-
iting in T cells remain to be elucidated, the importance thereof has been 
demonstrated by genetic deletion of ADAR1 gene in T cells, which 
leads to autoimmunity and loss of thymic self- tolerance in mice.158

In addition to nucleotide editing, the fate of an mRNA can be 
altered by chemical modification of the nucleotides. The most abun-
dant mRNA modification is the 7- methylguanosine (m7G) at the 5′ 
end of an mRNA, forming the so- called “5′cap”. The 5′cap is co- 
transcriptionally added to the pre- mRNA and protects it from deg-
radation (Figure 6B). The 5′cap then serves as a binding hub for the 
translation initiation factors and thereby governs translation initia-
tion (reviewed in159).

RNA modifications have also been found throughout the mRNA 
sequence. Several hundreds of RNA modifications have been re-
ported, yet most are observed at very low levels on mRNA.160,161 
Therefore, the full extent to which the mRNA modifications modify 
the fate of RNA is not yet known. The most common RNA modifi-
cations include N6- methyladenosine (m6A), pseudo- uridine (Ψ), and 
5- methylcytosine (m5C).162- 164 These three modifications can affect 
almost all stages of the life of an mRNA161 (Figure 6B). Each modi-
fication is conferred to the nucleotide by a set of specific “writer” 
proteins.164 In the case of m6A and m5C, specific “reader” proteins 
confer the effect on the mRNA.164,165 In addition, m6A modifica-
tions can be removed by a set of “eraser” proteins.164 The intricate 
interplay between these so- called readers, writers, and erasers 
makes this reversible modification of nucleotides a suitable tool for 
dynamically regulating the mRNA fate, and its translation efficiency.

m6A is the most abundant modification within the mRNA se-
quence and is thought to be added to the mRNA in the nucleus. 
Genetic studies have shown that deletion of members of all three gene 
classes, that is, readers, writers, and erasers can be detrimental. For in-
stance, the lack of the m6A reader YTHDF2 renders mice infertile and 
disturbs the cellular differentiation.166 If the m6A methyltransferase 
Mettl3 is deleted from CD4+ T cells, both homeostatic proliferation 
and T cell differentiation are impaired.167,168 Likewise, deletion of the 
m6A demethylase AlkBH5 interferes with migration of CD4+ T cells 
and their capacity to induce neuroinflammation in mice.169

Importantly, m6A modifications may not only serve for recog-
nition of fate of RNA by the m6A readers alone. It may also sub-
stantially alter the affinity for interaction of other RNA- binding 
proteins. In fact, m6A methylation inhibits splicing events in C. ele-
gans by interfering with the binding of the splicing factor U2AF35.170 
Furthermore, the presence of the bulky m6A results in reduced hair-
pin formation, which can influence the binding of RBPs that recognize 
specific structures. Indeed, m6A methylation increased the binding 
of the splicing factor HNRNPC to its target sites in HeLa cells.171 It is 
therefore conceivable that the m6A modification could also modify 
the interaction of RBPs with their target mRNAs, and thus define 
the fate of RNA in T cells. Of note, m6A methylation can also influ-
ence translation. For instance, the m6A reader YTHDF1 dampens 
the cross- presentation of MHC class- I peptides in dendritic cells by 
promoting the translation of lysosomal cathepsins, which in turn de-
stroys the protein substrates for peptide generation.172 It was re-
cently shown that m6A methylation can also decrease the accuracy 
of translation by influencing the paring of tRNAs with the codon.173

Other RNA modifications also show clear effects on the life 
of mRNA. For example, specific uridines in an mRNA can be mod-
ified to its isomer pseudo- uridine, an almost certainly irreversible 
modification which alters the mRNA structure and the translation 
efficiency in cell- free translation systems, and which increases the 
mRNA half- life in HeLa cells.164,174,175 Whether and how these RNA 
modifications alter the mRNA expression and translation in T cells 
is to date not known, yet conceivable. In conclusion, sequence and 
structural recognition of RNAs can be substantially influenced by 
chemical modifications of transcripts.

5.2  |  Alternative splicing

RNA splicing does not only include the mere excision of all introns, 
with all exons remaining in the transcript to generate the mature 
mRNA. Rather, a great variation of transcripts— and thus of pro-
tein variants— is achieved by a process called alternative splicing. 
Alternative splicing events result in the use of different sets of exons 
by exon skipping or alternative exon usage, retention of intron in 
mRNA, and alternative polyadenylation site usage.176 Alternative 
splicing is a highly dynamic process. It can be regulated throughout 
the immune lineage maturation,177 and by extracellular signals a cell 
receives.178- 180 Interestingly, single- cell RNA- sequencing analyses 
revealed that alternative splicing is heterogenous in human tumor- 
infiltrating T cells (TILs), as revealed by investigating alternative 
splicing on a single- cell level.181,182 Intriguingly, the level of alterna-
tive splicing of the RBP WARS is associated with patient survival in 
lung adenocarcinoma.181

5.2.1  |  Alternative exon usage

Several examples for alternative splicing in the coding region can be 
observed during T cell differentiation. This includes for instance the 
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membrane protein CD45R (PTPRC gene). Whereas naive T cells ex-
press the protein isoform CD45RA, upon T cell activation this shifts 
to the alternatively spliced variant CD45RO, which is generated by 
the splicing factor HNRNPL- L.183 Another isoform of this protein 
is CD45RABC, also known as B220, which is expressed by B cells. 
Alternative splicing can also result in alterations in the signaling path-
ways. This is for instance the case for MAPKK7 (MKK7), a member 
of the MAP kinase pathway.179,184 Upon TCR engagement in human 
CD4+ T cells, MKK7 undergoes CELF2- mediated alternative splicing. 
This non- canonical MKK7 protein contains one additional binding 
site for the transcription factor JUNK, and this increased binding 
of JUNK strengthens the signal of the TCR signaling pathway.179,184 

Another protein that promotes T cell activation through alterna-
tive splicing and that links the TCR signal to downstream signaling 
pathways is MALT1.178 The inclusion of exon 7 in MALT1 upon TCR 
triggering, controlled by the splicing factor HNRNPU, results in the 
addition of 11 amino acids in the protein.178 This addition increases 
the scaffolding function of MALT1, and thereby promotes T cell 
activation.178

Transcription factors can also be subject to alternative splicing. 
For instance, the core regulatory T cell (Treg) transcription factor 
FOXP3 can undergo alternative splicing upon activation of the JAK- 
STAT pathway,185 resulting in isoforms that lack exon 2, or exons 2 
and 7.186 Loss of these two exons leads to loss of the DNA- binding 

F I G U R E  6  Sequence modification as post- transcriptional regulation. (A) Schematic representation of adenosine to inosine (A- to- I) RNA 
modifications by the ADAR enzyme family. Inosine is interpreted as guanine by the translation machinery, thereby A- to- I editing alters the 
coding sequence (re- coding event). (B) Schematic representation of the mRNA chemical modifications 7- Methylguanosine (m7G; mRNA 
5′cap modification), N6- methyladenosines (m6A), pseudo- uridine (Ψ), and 5- methylcytosine (m5C). (C- D) Alternative splicing event can 
modify the sequence of an mRNA by including or excluding stretches of sequence. This includes (C) alternative polyadenylation and (D) 
intron retention. (C) Alternative polyadenylation site (PAS) usage in a schematic representation of Stat5b pre- mRNA containing 2 PAS site, 
and the long (using the distal PAS) and short (using the proximal PAS) Stat5b mRNA. The short Stat5b mRNA isoform lacks the miRNA and 
RBP hub found in the longer isoform. (D) Schematic representation of the retention of intron 3 of CXCL2 gene into CXCL2 mRNA leading to 
decreased protein expression. Colored arrows indicate increase (blue) or decrease (red) in the indicated parameter
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domain and the suppressor region mediating transcriptional- 
repressor function of FOXP3, which abrogates the suppressive 
function of Tregs.185 Lastly, the membrane- bound form of the Fas re-
ceptor CD95/FAS is induced upon IL- 7 receptor triggering in human 
CD4+ T cells due to the inclusion of exon 6.180 In contrast to the 
soluble CD95 isoform which arises from exon skipping of exon 6, the 
membrane- bound CD95 protein could signal and synergize with IL- 7 
receptor signaling to promote survival.180

Intriguingly, alternative splicing not only occurs in the coding re-
gion. It can also result in non- canonical UTRs, leading to the loss 
or addition of regulatory sequences.176 For instance, alternative 
splicing in the 3′UTRs was shown to modulate the mRNA half- life, 
the protein output, and even subcellular localization, as exemplified 
by CD47 in various mammalian cell lines154 (Figure 5B). Alternative 
splicing of the 3′UTR can also reduce the miRNA- mediated regula-
tion. A bioinformatic study revealed that as much as 30% of genes 
can shed miRNA target sequences in their 3′UTR by alternative 
splicing, thereby escaping miRNA- mediated regulation.187

Alternative 3′UTRs can also alter the mRNA stability.188,189 For 
example, the key apoptotic regulator BCL2 comes in two isoforms, 
containing a long (BCL2α) and a short (BCL2β) alternatively spliced 
3′UTR. Yet, only BCL2α is sensitive to TRA2β RBP- mediated deg-
radation favoring the translation of the BCL2β isoform.188 While 
we start to understand the effect of alternative 3′UTR splicing 
in many cell types, its functional effects in T cells are yet to be 
unraveled.

5.2.2  |  Alternative polyadenylation

Alternative polyadenylation (APA) is a form of alternative splicing 
where the polyadenylation tail is transferred onto polyadenyla-
tion sites (typically AAUAAA). While APA is sequence- encoded, 
the usage of the polyadenylation sites is dynamically regulated by 
RBPs.190 The usage of the polyadenylation site depends on the state 
of the cell, that is, proliferation,191,192 activation,192- 194 or the infec-
tion status.195,196 APA can take place both in exonic and in intronic 
regions.190 While exonic APA alteration will modify the properties 
of the 3′UTR, intronic APA can lead to the truncation of proteins.197 
For example, APA- mediated protein truncation has been associated 
with aberrant tumor suppressor proteins in chronic lymphocytic leu-
kemia (CLL), thereby contributing to the disease development.197

APA is not only observed in disease but also occurs during B 
cell and T cell activation and differentiation.192,198 In activated 
T cells, APA leads to shorter 3′UTRs.192- 194 Whereas the 3′UTR 
shortening does not correlate with alterations in the overall protein 
levels of cells,193 it showed impacts on the expression of specific tar-
gets.192,194 For example, the APA- mediated 3′UTR shortening of the 
transcription factor STAT5B occurs upon activation, which increases 
the protein levels in Type- 1- helper (Th1) CD4+ T cells194 (Figure 6C). 
Similarly, 3′UTRs of the transcription factor NF- ATc and of the sur-
face glycoprotein CD5 are shortened upon T cell activation, which 
promotes their protein accumulation.199,200

It is conceivable that at the global level, APA- mediated 3′UTR 
shortening ablates not only the interaction of negative regulators 
of PTR but also that of positive regulators of RNA stability and/or 
translation efficiency. These more subtle effects of APA- mediated 
3′UTR shortening cannot be well captured when the data analysis 
is performed with linear models.193 Revealing such important but 
subtle differences may thus require more sophisticated data analy-
sis tools such as recently developed machine learning algorithms for 
clinical data.201

5.2.3  |  mRNA intron retention

Another consequence of alternative splicing is the retention of spe-
cific intronic sequences in the mature mRNA. This intron retention 
allows for the inclusion of additional sequences into the mRNA. 
Whereas the full scale of the functional consequences is yet to be 
determined, intron retention in an mRNA can lead to nuclear reten-
tion by preventing nuclear export, to non- sense mediated decay, 
to modulation of protein level, and to altered localization of the 
mRNA.202 In mouse granulocytes and human monocytic cell lines, 
intron retention results in altered protein expression levels.203,204 
For instance, intron retention of CXCL2 intron 3 leads to the nuclear 
retention of the CXCL2 mRNA, thus impairing the protein produc-
tion204 (Figure 6D). Another effect of intron retention can be the 
localization of proteins in primary rat neuron dendrites, as described 
for FRMP protein, an RBP that is critical for the cognitive develop-
ment.205 In B cells, intron retention correlates inversely with the 
proliferative state of B cells.206 The underlying mechanisms of this 
effect are, however, yet to be determined. Several studies also inves-
tigated the intron retention profile of human T cells.206- 208 As much 
as 15.4% of the RNA- sequencing reads map to retained introns in 
rested CD4+ T cells compared to 7.3% after 18h of activation, clearly 
demonstrating a reduction of intron retention upon T cell activa-
tion.207 The functional consequence of intron retention in T cells 
remains to date unexplored.

Recently, naive and memory T cells were found to keep “pre-
formed” mRNA pools that are translationally repressed, and which 
can be rapidly translated upon activation.2,90 Whether some tran-
scripts of this pool of preformed “ready- to- go” mRNA pool also make 
use of intron retention to prevent the translation of mRNA remains 
to be determined. First indications come from a macrophage cell line 
where activation results in the removal of introns in transcripts like 
CXCL2 and NFKBIZ RNAs, thereby allowing for their timely trans-
lation to occur.204 Likewise, in murine CD4+ T cells, the nuclear TNF 
pre- mRNA is cleaved upon T cell activation.209 It then migrates to 
the cytoplasm, allowing rapid TNF- α translation to occur prior to the 
onset of de novo transcription.209 Whether this is due to intron re-
tention or solely through splicing out inhibiting pseudoknots in the 
3′UTR210 is yet to be determined. It also remains unknown which 
splicing factor is responsible for this activation- induced intron re-
moval of pre- mRNAs. In summary, alternative splicing and intron 
retention allow for dramatically different regulation of mRNA and 
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protein expression. How these processes are regulated is still un-
known and still much is to learn.211

6  |  CONCLUDING REMARKS

In this review, we have summarized how sequence determinants de-
fine the gene expression in T cells. It is important to note that we are 
only at the beginning of our understanding of the role of sequence de-
terminants in PTR. The sequence determinant for a given interaction 
of RBPs or miRNA is context dependent and may have to be further 
validated. For instance, the surrounding sequences of a sequence de-
terminant can influence the RNA structure and thus the accessibility of 
a given motif. In addition, the combination of neighboring motifs within 
a gene body may dictate the affinity for a given RNA- binding factor, 
which either attracts or repels the interaction between the RNA and 
the binding factor. Lastly, the relative expression of the RNA binders 
may also be a determinant, which sequence determinant is dominant 
in defining the fate of mRNA. We and others showed that RBPs are ex-
pressed in a cell type– specific manner and are subject to changes upon 
differentiation and activation.5,131 Nonetheless, integrating mRNA and 
protein expression measurements with the interplay of sequence de-
terminant will help to further unravel the post- transcriptional control 
of gene expression. In addition, more precise determination of amino 
acid levels and tRNA abundance should help to improve our capacity 
to crack the code that fine- tunes protein expression.

One could even speculate that the integration of sequence de-
terminants into a complex mathematical model could help predict 
protein levels from sequence alone with little information on gene 
expression levels. Such a model could for instance be used to predict 
the actual protein make- up of cells from low input transcriptomic 
data of rare cell types. Another potential use of predicting gene ex-
pression with sequence determinants is the optimization of protein 
production. Codon usage has already been successfully employed to 
enhance protein production. Integrating also other features into al-
gorithms could possibly improve such gene expression level predic-
tions. This could not only be beneficial for large- scale in vitro protein 
production but also for the design of efficient DNA or RNA vaccines.
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