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A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical
system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond
laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted
cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the mono-
layer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than
threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with
femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering.
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1. INTRODUCTION

In recent years the effect of laser radiation on cells has be-
come the topic of much research. It has been shown that
laser radiation can be used for cellular microsurgery [1], dis-
ruption and inactivation of cellular organelles [2], to induce
photodamage in cells [3], and to induce changes in intracel-
lular calcium (Ca2+) levels [3–5]. It has also been demon-
strated that a focused period of femtosecond pulses can be
used for tissue dissection [6], cell microinjection [7, 8], and
cell transfection [9].

One of the areas in which stimulation of cells with fem-
tosecond laser radiation might find extended applications
is orthopaedic tissue engineering. Tissue engineering aims
to create biologically functional tissue substitutes. Gener-
ally this is done by seeding cells on a biocompatible scaf-
fold and cultivating within a bioreactor. The bioreactor pro-
vides the appropriate environment and stimuli to the cel-
lular construct so that tissue integrity is optimised prior
to implantation. It is widely recognised that successful tis-
sue engineering requires not only coordinate biochemical
stimulus of the cell, but also physical stimulus of the cell.

In particular, engineering of load-bearing tissues such as
bones requires mechanical stimulation of the constructs
in order to optimise the engineered scaffold’s mechanical
properties [10].

A variety of methods have been used to mechanically
stimulate bone cells in artificial tissue scaffolds. These meth-
ods include compression rigs [11] and shear flow cham-
bers [12]. Although these methods are extremely useful,
one of their limitations is that they apply a gross me-
chanical strain to the entire structure. Thus it is diffi-
cult to control the stimulation of single cells within spe-
cific regions of the construct. This kind of stimulation
is desirable as it allows for control of the engineered
tissue’s properties on a highly localised scale. Here we
present evidence that focused femtosecond (fs) laser ra-
diation can be used to stimulate single osteoblastic cells
in monolayer. Since laser radiation can be controlled with
high spatial and temporal resolution, the technology de-
scribed here would prove useful for bone tissue engineer-
ing. This technique has the potential to be incorporated
into a sophisticated bioreactor for the culturing of bone
tissue.



2 International Journal of Biomedical Imaging

PMT

PMT

Short pass filter

Sample

Shutter

Beam expander

DM

DM

Scanning mirrors

Ti: Saphire laser:
800 nm

Argon/Krypton
laser: 488 nm

Figure 1: Diagrammatic representation of the Olympus confocal microscope adapted for simultaneous imaging and fs pulse laser exposure.
This system allows for simultaneous imaging of cells being targeted with the femtosecond pulsed laser. DM = dichroic mirror. PMT =
photomultiplier tube.

2. METHODS

2.1. Cell culture

MC3T3-E1 (3T3) murine osteoblast-like cells were seeded
onto autoclaved round 40 mm diameter coverslips at a den-
sity of 100 000 cells per coverslip. The 3T3 cells were grown
in Dubecco’s modified eagle medium (DMEM) supple-
mented with HEPES (20 mM), 10% fetal bovine serum,
L-glutamine (200 mM), and penicillin-streptomycin (1%)
(SIGMA-ALDRICH, Castle Hill, NSW, Australia) for 24
hours prior to imaging.

Prior to laser stimulation and imaging, cells were incu-
bated with 1-2 µM fluo-3 AM (SAPPHIRE BIOSCIENCE,
Redfern, NSW, Australia) for 1 hour at room temperature
in DMEM and 20 mM HEPES without supplements for Ca2+

monitoring. Cells were kept out of the light for the duration
of fluo-3 incubation. After fluo-3 dye incubation, the cells
were washed and immersed in fresh DMEM (with no sup-
plements) ready for imaging.

2.2. Imaging

Imaging at 37◦C was performed with the assistance of a Focht
Chamber System (FCS2) (BIOPTECHS, Butler, Pa, USA).
This allowed cells to be imaged on the inverted microscope,
whilst simultaneously being perfused with media that is kept
at a constant 37◦C (±0.1◦C). Perfusion media consisted of
DMEM with HEPES (20 mM), but without any other sup-
plements. The media was continually bubbled with carbogen
gas to maintain a stable pH. Cells in regions of high cell con-
fluence were chosen as targets for laser irradiation.

Delivery of the femtosecond pulse laser to cells was car-
ried out using an adapted Olympus FV300 confocal micro-
scope (OLYMPUS AUSTRALIA, Mount Waverly, VIC, Aus-
tralia). The shutter-controlled femtosecond laser line was ex-
panded to exceed the diameter of the back aperture of an

Olympus 60 × 1.25 NA objective, and fed into the back port
of an Olympus IX70 inverted microscope, where a short
pass dichroic mirror was installed. This dichroic allowed
for simultaneous fluorescence excitation using the scanned
488 nm line of the krypton: argon ion laser of the FV300
confocal microscope whilst simultaneously allowing for the
femtosecond pulse laser to target the sample at a fixed point.

The source for the femtosecond beam was a Spectra
Physics MaiTai Titanium: sapphire femtosecond pulsed laser
which produces 80 fs pulses at a repetition rate of 80 MHz
and an average power of 950 mW (SPECTRA PHYSICS,
Mountain View, Calif, USA). The MaiTai has a tuneable
wavelength range from 730 nm to 870 nm, but for these ex-
periments the wavelength was set at 800 nm. The femtosec-
ond beam was passed through a Uniblitz LS6 mechanical
shutter (UNIBLITZ, USA). Shutter time was set to 500 ms
for the experiment. The beam passed through a neutral den-
sity filter wheel before it was expanded and directed by use
of lenses and mirrors through the rear of an Olympus IX71
microscope, where it is was then directed through an Olym-
pus 60× 1.25 oil objective into the sample. The power at the
back aperture of the objective was measured to be between
8 mW and 15 mW. In order to visualise the transmitted im-
age whilst laser exposure was occurring, a short pass filter was
placed in the transmission path of the confocal microscope.
Figure 1 shows a diagram of the system used for simultane-
ous imaging and femtosecond irradiation.

2.3. Strain and displacement mapping

Cellular strains and displacement were computed using dig-
ital image correlation (DIC), which is a pattern matching
technique that allows measurement of displacements with
subpixel resolution from sequences of images. This study
used an algorithm previously described [13–15]. The algo-
rithm was realized using MATLAB 7.0 (The MathWorks,
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Natick, Ma, USA), and was applied to the sequences of fluo-
rescent images associated with the fluo-3 fluorophore. Prior
to applying DIC, a Wiener adaptive noise reduction filter
with a kernel size of 10 × 10 pixels was applied to all im-
ages in a sequence. Next, approximately 700 regions of in-
terests (ROIs) of size 49 × 49 pixels were randomly placed
throughout the image. DIC was then applied to measure the
displacement of the centre of each ROI throughout the se-
quence of images. This was accomplished by comparing the
first image to all other images in the sequence. In order to cal-
culate the strain components from the displacement data, a
thin plate smooth spline was fitted to the measured displace-
ments. Then Delaunay triangulation was applied to draw the
smallest possible set of triangles to connect the centres of all
ROIs. The displacements of the vertices of these triangles as
measured from the thin plate spline defined a set of three lin-
ear equations for each triangle. These equations were solved
to yield the average deformation tensor within each triangle,

F =

⎡
⎢⎢⎢⎣

dx

dX

dx

dY

dy

dX

dy

dY

⎤
⎥⎥⎥⎦ . (1)

In (1) (X ,Y) denote coordinates in the reference image (first
image in the sequence), and (x, y) denote coordinates in the
deformed image. The average Lagrangian strain, E, within
each triangle was then calculated as

E = 0.5
(

FTF− I
)
, (2)

where FT is the transpose of F, and I is the unity tensor. Next,
the eigenvalues of the strain tensor were found to yield the
principal strains (E1, E2) within each triangle.

The principal strains were interpolated to yield an esti-
mate of the strain fields throughout the field of view. The
strain fields were smoothed with a moving average filter with
a kernel size of 20 × 20 pixels to filter noise. Visualization of
the distribution of strains throughout the field of view was
obtained by creating colour-maps depicting the spatial dis-
tribution of strains. These colour-maps were created so that
blue indicates compressive (negative) strains and red indi-
cates tensile (positive) strains.

3. RESULTS

In order to demonstrate that targeting cells with the fem-
tosecond pulsed laser was having a visible effect it was neces-
sary to load cells with a marker that could rapidly detect cel-
lular changes. One of the most effective methods in accom-
plishing this was to use calcium ion fluorophores that can
rapidly detect any alterations in local calcium levels caused by
the laser. Targeting of individual cells with fs pulse laser irra-
diation caused an instant transient rise in intracellular Ca2+

levels. In almost all cases it was possible to target cells with
the fs pulse laser multiple times to get a repeated increase in
intracellular Ca2+ (Figure 2). Ca2+ would normally return to
baseline levels approximately 2 min after point laser irradia-
tion.
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Figure 2: Graphical representation of the change in Ca2+ levels as
measured within a region of interest surrounding a typical target
cell. Repeated targeting of the cell induces repeated calcium spikes.
Arrows indicate the time-points of the exposure to 500 ms of fs
pulse laser radiation.

As the calcium load returned to resting levels a cellular
contraction was observed in nearly all cases (n = 11). The
displacements of the individual target cell then induced a ra-
dial displacement pattern from the surrounding cells in the
monolayer (Figure 3). These displacements were measured
using DIC. Calculation of the strain field from the measured
displacements was performed using the procedure described
in [13, 14]. The calculations revealed a heterogeneous strain
field within the monolayer. The principle strains around the
targeted cell were of the order of 20% (Figure 4). The mag-
nitude of the strains decreased with distance from the tar-
geted cell. However, even at a distance of about 5 cell lengths
(∼ 50 µm) significant strains with a magnitude of more than
5% were measured. This level of deformation is larger than
strain levels reported to stimulate bone mineralisation in
vitro [16].

4. DISCUSSION

This study shows that focused ultrafast laser radiation can
stimulate murine MC3T3-E1 (3T3) osteoblast-like cells.
Femtosecond irradiation of cells loaded with fluo-3 AM
causes a transient rise in intracellular Ca2+ levels, which is
accompanied by contraction of the irradiated cell. This con-
traction causes a heterogeneous strain field in the surround-
ing monolayer. The resulting strains are of the order of 20%
near the target cell, and gradually decrease with distance
from the cell. Cell strains of as little as 0.8%–1% have been
reported to upregulate bone mineralisation related transcrip-
tional activity [17]. Osteoblasts have also been shown to up-
regulate osteopontin production 2.8 fold after a tensile strain
application of up to just 10% [18]. Furthermore, it has been
shown that an increase in intracellular Ca2+ in osteoblasts
also has effects on bone cell stimulation [19]. Thus femtosec-
ond lasers might be useful for stimulating bone mineralisa-
tion in tissue constructs by artificially inducing increases in
intracellular Ca2+, as well as causing cellular deformation. In
the past continuous wave lasers have been used to enhance
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Figure 3: Images of 3T3 cells loaded with fluo-3 AM: (a) before fs pulse laser targeting (t = −150 s); (b) 20 s after fs pulse laser targeting
(t = 20); and 2 min after that (t = 140). Images (b) and (c) are overlaid with arrows which represent cell displacements brought about by the
target cell contracting. Arrows are 3 times larger than actual displacements. A clear rise in intracellular fluorescence due to increased Ca2+

can be seen in the targeted cell at t = 20 (b), which has subsided by t = 140 (c). Image scale: 160 µm × 160 µm.
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Figure 4: A comparison of the first and second principal strains comparing t = 20 and t = 140 using the same data as that of Figure 3.
The red colours indicate positive strains (tension), whilst the blue colours indicate negative strains (compression). Image scale: 160 µm ×
160 µm.

bone repair and bone stimulation [19, 20]. However using
femtosecond pulse lasers in the near infrared for manipulat-
ing cells might be preferable because of the increased pene-
tration depth, highly localized nonlinear photo-damage, and
limited heat transfer to samples.

This project utilised a novel system that allowed for si-
multaneous confocal imaging and femtosecond stimulation
of the cells with parallel beams. This is an improvement on a
previously described system, in which confocal imaging and
femtosecond stimulation were achieved using counterpropa-
gating beams [5]. The advantage of this system over the pre-
vious systems is that it allows for confocal imaging and fem-
tosecond stimulation whilst cells remain in an enclosed and
sterile environment such as a perfusion chamber or biore-
actor. It is more difficult to obtain the same level of sterility
with counterpropagating beams, as the system in this config-
uration requires access points for two objectives.

Cellular deformation in response to fs pulse laser irradi-
ation was quantified using digital image correlation (DIC),

a computational technique for analysing movement and dis-
tortion within pairs of images. DIC has previously been used
for measuring deformation in articular cartilage [21, 22] tra-
becular bone, [23], compressed chondrocytes [14], and in-
tracellular strains in mechanically stimulated smooth muscle
cells [16]. Thus DIC has become an established technique for
biomechanical measurements at the tissue and cellular levels.
The ability to measure displacements and strains on a highly
localised level can provide a quantitative measure for eval-
uating local mechanical properties in engineered tissue con-
structs. Thus this information could be used to locate regions
within the construct in which cellular stimulation is required
to modify the local construct properties.

In this study we monitored alterations in Ca2+ as a
result of laser stimulation. However calcium ions are not
the only intracellular messenger that can be monitored for
mechanotransduction processes using this system; upregu-
lation of nitric oxide can be monitored using commercial
fluorophores such as DAF-FM, and alterations in structural
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proteins as a result of laser-induced mechanotransduction
can be assessed using appropriate green fluorescent pro-
tein type targeted vectors. Using the femtosecond pulse
laser to target the extracellular matrix, individual micro-
tubules, or even microfilaments inside cells, thereby inducing
localised displacements, would help in the understanding of
the tensegrity [24] of cellular structure, and how this might
be affecting the mechanotransduction signals of cells.

In summary, a novel system for stimulating osteoblasts in
vitro has been presented. The system combines femtosecond
pulse laser point targeting with confocal microscopy. This
system has many potential applications in orthopaedic tissue
engineering related research.
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