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KLB dysregulation mediates disrupted muscle
development in intrauterine growth restriction
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Abstract Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and
mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR
lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we
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identified β-Klotho (KLB), a fibroblast growth factor 21 (FGF21) co-receptor, as a novel regulator of
muscle development in IUGR. Using the pig as a naturally-occurring disease model, we performed
transcriptome-wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal-weight
(NW) littermates. We found that, alongside large-scale transcriptional changes comprising multiple
developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle.
Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of
fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared
to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript
levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs
with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment
with FGF21 had opposite and dose-dependent effects in porcine and also in human fetal MPCs.
In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired
muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data
shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill-health in humans
and animals.
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Abstract figure legend In intrauterine growth restriction (IUGR) fetuses, reduced placental supply induces an adaptive
response characterized by preferential shunting of blood and therefore oxygen and nutrients to vital tissues, such as brain
and heart, at the expense of other tissues, including skeletal muscle. Using a pig model, we found skeletal muscle from
IUGR fetuses to display large-scale gene expression dysregulation, including developmental, tissue injury andmetabolic
genes. Among the up-regulated genes in IUGRmuscle was the fibroblast growth factor 21 (FGF21) co-receptor,β-Klotho
(KLB), whereas FGF21 levels were distinctly elevated in the circulation of IUGR fetuses. Subsequent studies with muscle
progenitor cells showed that signalling through FGF21 and KLB inhibits mechanistic target of rapamycin activation
and reduces differentiation and myotube formation by both pig and human cells. These results identify FGF21/KLB
signalling as a novel mediator of reduced muscle growth in IUGR fetuses.

Key points
� Intrauterine growth restriction (IUGR) is associated with large-scale transcriptional changes in
developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle.

� Levels of the fibroblast growth factor 21 (FGF21) co-receptor, β-Klotho (KLB) are increased in
IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma.

� KLB mediates a reduction in muscle development through inhibition of mechanistic target of
rapamycin signalling.

� These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of
this protein in the regulation of muscle development and function in mammals.

0 Yennifer Cortes Araya obtained her DVM from the University of Chile and her MSc in Animal Bioscience from the University
of Edinburgh. She recently completed her doctoral thesis on the effects of intrauterine growth restriction (IUGR) on porcine
muscle development under the guidance of Dr. Xavier Donadeu at the Division of Functional Genetic and Development of The
Roslin Institute, University of Edinburgh. During these years her research interest has been in the area of Stem Cell biology, early
life ‘programming’ and impacts upon foetal growth and development in large animals. She addresses these topics from a ‘One
Health’ perspective, focusing her research on using farm animals as research models to be used in translational medicine.
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Introduction

Intrauterine growth restriction (IUGR) affects ∼5−8%
of all human births worldwide and is a leading cause
of neonatal morbidity and mortality (Clark et al. 2020).
IUGR arises when placental nutrient supplies fail to satisfy
the requirements of the developing fetus. IUGR babies
typically present with low birth weight andmorphological
features from altered allometric organ growth, and are
prone to perinatal complications affecting multiple body
systems. Critically, IUGR individuals are also at increased
risk for a myriad of diseases later in life, including
metabolic, cardiovascular, renal, hepatic, ovarian and
neurological/cognitive disorders (Brown & Hay, 2016;
Sharma et al. 2016). Because harvesting human fetal
tissues is often impractical, most knowledge on IUGR
pathophysiology comes from studies in animal models,
particularly large animals such as sheep and pigs in which
the physiology most closely resembles that of humans
(Swanson & David, 2015). Being a litter-bearing species,
IUGR occurs naturally in the pig. As in most cases of
human IUGR, IUGR in the pig results from placental
insufficiency, which, in this particular species, arises as a
consequence of uterine crowding in highly prolific breeds
(Foxcroft et al. 2006). Thus, the pig provides a particularly
convenient model for investigating the developmental
pathophysiology of IUGR.

In IUGR fetuses, reduced placental supply induces an
adaptive response that preferentially shunts oxygen and
nutrients to vital tissues; namely, the brain and heart.
As a consequence, available resources for muscle growth
are significantly reduced, resulting in a reduction in
the number of muscle fibres at birth. This phenotype
cannot be fully compensated for by postnatal growth, thus
resulting in a permanent reduction in total muscle. This is
associated with life-long impairment in muscle function
and a predisposition to diseases such as sarcopenia,
obesity and diabetes (Brown, 2014).Moreover, in livestock
species such as pigs, IUGR is associated with a significant
reduction in meat production and quality, as well as being
an important financial and animal welfare problem for
that key livestock industry (Bérard et al. 2008). Thus,
elucidating the basic mechanisms underlying impaired
skeletal muscle development is important for under-
standing how IUGR contributes to long-term health
and disease, and may provide strategies to improve
productivity in livestock.

Profound adaptive changes in skeletal muscle
metabolism occur in response to reduced nutrient
availability in IUGR. The results of numerous studies
in sheep and rodents (Brown & Hay, 2016; Chen et al.
2017a; Stremming et al. 2020) indicate that, amongst
other changes, fetal muscle adapts to IUGR by reducing
mitochondrial oxidative phosphorylation capacity and
glucose oxidation, at the same time as increasing fatty acid

and amino acid oxidation as sources of fuel. Furthermore,
amino acid uptake and protein accretion rates in hind
limbs of IUGR sheep fetuses were reduced (Rozance et al.
2018; Stremming et al. 2020), whereas both a reduction
in protein accretion (Chen et al. 2017a) and an increase
in protein degradation (Wang et al. 2008) were reported
in the muscle of IUGR piglets. Increased adrenergic
activity triggered by hypoxemia and reduced nutrient
availability appears to mediate metabolic adaptations in
IUGR fetuses. This involves a catecholamine-induced
reduction in pancreatic insulin production and impaired
insulin signalling impacting on Akt-mechanistic target of
rapamycin (mTOR) activity inmuscle cells (Brown&Hay,
2016; Limesand & Rozance, 2017). Associated with these
effects is an increase in insulin-like growth factor binding
protein 1 secretion and activity, which leads to decreased
insulin-like growth factor 1 availability (Damerill et al.
2016), in turn resulting in reduced skeletal muscle growth.
As a result, nutrient requirements for skeletal muscle
development decrease in the IUGR fetus. Accordingly,
myoblasts from offspring of nutrient-restricted ewes
(Yates et al. 2014a; Soto et al. 2017) or low birth weight
piglets (Nissen & Oksbjerg, 2009) displayed a reduced
capacity to proliferate and/or form myotubes in vitro.
These findings suggest developmental programming
of muscle progenitor cells by IUGR, although the
mechanisms involved have not been elucidated.
An adequate understanding of the mechanisms driving

impaired myogenesis in IUGR is required for developing
effective strategies to ameliorate its detrimental effects
on life-long health in humans and animals. To that end,
elucidation at the genome-wide level of the response of
skeletal muscle to IUGR in the developing fetus will be
highly valuable. To our knowledge, only one study to date
has undertaken large scale gene profiling of fetal IUGR
muscle (Soto et al. 2017). In that study, muscle samples
from a sheep model of temperature-induced placental
insufficiency were analysed using a bovine microarray
platform, focusing mainly on differentially expressed cell
cycle genes. In the present study, we undertook an
unbiased genome-wide approach using RNA sequencing
to identify global gene expression signatures in fetal
skeletal muscle from pigs, increasingly recognized as a
high value animal model of IUGR (Che et al. 2010;
Ebner et al. 2014; Boubred et al. 2017; Bæk et al. 2019;
Gao et al. 2020). In addition to numerous anatomic,
metabolic and genetic similarities with humans, a distinct
advantage of the pig is that comparisons between IUGR
and normal weight littermates can be made, thus avoiding
confounding effects of genetic background or maternal
factors. Using this model, we found gene expression
in IUGR muscle to be widely dysregulated, including
numerous developmental, tissue injury and metabolic
gene pathways. Following these analyses, we tested the
hypothesis thatβ-Klotho (KLB), a fibroblast growth factor
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21 (FGF21) co-receptor that is up-regulated in IUGR
littermates,mediates at least some of the deleterious effects
of IUGR on muscle development.

Methods

Ethical approval

All animal procedureswere performedwith approval from
The Roslin Institute (University of Edinburgh) Animal
Welfare and Ethical Review Board and following the UK
Animals (Scientific Procedures) Act, 1986.
For human samples, writtenmaternal informed consent

in compliance with the the Declaration of Helsinki was
obtained, and the study was approved by the Lothian
Research Ethics Committee in Scotland (ref 08/S1101/1).
All methods were performed following the relevant
guidelines and regulations of this approval.

Sample collection

Ten Large White × Landrace gilts aged 11−14 months
were held at the University of Edinburgh’s Dryden
Farm Large Animal Unit under a commercial cob-based
diet formulation and free access to water. Gilts were
inseminated with semen from three Large White sires
and killed using sodium pentobarbitone (Henry Schein
Animal Health, Dumfries, UK; 20% w/v, 0.4 mL kg–1
by i.v. injection via a cannula inserted in the ear vein)
on day 90 of pregnancy (pregnancy length, ∼115 days);
this corresponds to a stage when hyperplasic muscle fibre
development (primary and secondary fibres) has just been
completed (Wigmore & Stickland, 1983). After death,
the uterus was quickly dissected, and all fetuses were
removed, weighed and visually sexed. IUGR fetuses were
defined as having a weight >2 SD below the average
litter weight. From those litters containing an IUGRmale,
the IUGR and two normal weight (NW) male littermates
were selected. The two NW fetuses from each litter were
chosen among non-IUGR littermates with body weights
above and below, respectively, the litter NW average.
The two fetuses were respectively assigned to NW sets
1 and 2. Set 1 was used for the majority of subsequent
analyses, whereas set 2 was used only as an additional
control for quantitative real-time PCR (qPCR) validation
of the sequencing results, as described below. Immediately
after uterine dissection, body and organ measurements
were taken from each fetus. Samples of semi-tendinosus
muscle were also taken and snap-frozen in liquid nitrogen,
embedded inOCTand snap-frozen or, alternatively, trans-
ported to the laboratory in ice and digested for cell culture,
as described below. Blood samples were also collected by
cardiac puncture. Plasma was harvested by centrifugation
and stored at −20°C. In addition, five male piglets (NW,

from separate litters) were killed at birth, and blood and
muscle samples were collected as described above.
Human fetal hind limb muscle (n = 3, 10−20

weeks of gestation) was obtained following medical
termination of pregnancy at the Simpson Centre for
Reproductive Health, Royal Infirmary of Edinburgh,
UK, and gestational ages were determined as described
previously (Hartanti et al. 2020). Pregnancies were all
terminated for social reasons, and all fetuses appeared
morphologically normal.

RNA sequencing and data analysis

Muscle samples (30 mg) from porcine fetal pairs (IUGR
and NW, n = 4 litters) were homogenized in RNABee
(AMS Biotechnology, Abingdon, UK) in Lysing Matrix D
tubes (MP Biomedicals, Illkirch, France) and extracted
in accordance with the manufacturer’s instructions,
followed by transfer to a RNeasy Mini Spin column and
treatment with RNase-free DNase (Qiagen, Manchester,
UK). RNA concentration and quality, as defined by
the RNA Integrity Number equivalent (RINe), were
determined by Tapestation 2200 (Agilent Technologies,
Edinburgh, UK). All samples used for sequencing had
RINe values >8.5. RNA libraries were prepared by
Exiqon A/S (Vedbæk, Denmark) using an Illumina
TruSeq Stranded mRNA Library Prep Kit (Illumina,
San Diego, CA, USA) and sent to 50 bp/30 M read,
single-end sequencing using the Illumina HiSeq2500
platform. After intensity correction and base calling,
FASTQ files were generated using bcl2fastq software
(Illumina), including quality scoring of each individual
base. Genes were identified by alignment to the reference
transcriptome. Briefly, the raw RNA sequencing
data was trimmed using Trimmomatic, v0.39.0
(SLIDINGWINDOW:5:20 MINLEN:30) (Bolger et al.
2014) and aligned using Kallisto, v0.43.0 (Bray et al. 2016)
to the cDNA level transcriptome assembly of Sscroffa11.1
(ftp://ftp.ensembl.org/pub/release-100/fasta/sus_scrofa/
cdna/Sus_scrofa.Sscrofa11.1.cdna.all.fa.gz). TPM (trans-
cript per kilo base million) counts were used for down-
stream analysis in R (tximport v1.18.0 and DESeq2
v1.30.0; apeglm shrinkage model) (Love et al. 2014)
and differentially expressed genes were identified
between IUGR and NW littermates accounting for
effects of litter. Differentially expressed genes were
analysed using Ingenuity Pathway Analysis software
(Qiagen) to identify (from the Qiagen Knowledge Base)
significantly over-represented biological pathways using
right-tailed Fisher’s exact tests (P < 0.01). Because, after
false discovery rate (FDR) adjustment, a relatively low
number of genes remained differentially expressed
between NW and IUGR littermates, to maximize
gene representation, all genes differentially expressed
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(P < 0.05) before adjustment were included in the
Ingenuity Pathway Analysis analyses. Raw sequencing
data files (FASTQ) were deposited in NCBI BioProject
database (https://www.ncbi.nlm.nih.gov/bioproject)
under accession number PRJNA678714.

qPCR

Total RNA (1μg) from muscle tissue or cells was
reverse transcribed using Superscript III (Thermo Fisher
Scientific,Waltham,MA,USA) and aWhatman-Biometra
Thermocycler (Biometra, Göttingen, Germany). RNAwas
mixed with 1μL of Random Primers (Promega, Madison,
WI, USA), 1 μL of dNTP mix (Invitrogen, Carlasbad,
CA, USA) and nuclease-free water up to 13 μL in a
200 μL nuclease-free microcentrifuge tube. Samples were
heated to 65°C for 5 min and then placed at 4°C for
5 min. Tubes were then centrifuged briefly, and 4 μL
of 5X First-Strand Buffer, 1 μL of 0.1 DTT, 1 μL of
RNasin Plus Rnase Inhibitor (#N2611; Promega) and 1μL
of SuperScript III were added and mixed by pipetting.
The samples were then heated to 25°C for 5 min, 50°C
for 1 h and 70°C for 15 min, after which they were
used immediately for qPCR or were frozen at −20°C.
qPCR was performed as described previously (Weatherall
et al. 2020), using Sensi-FAST SYBR Lo-ROX (Bioline,
London, UK) and validated species-specific primers
(see Supporting information, Table S1) in an MX3005P
system (Stratagene, La Jolla, CA, USA) and data were
analysed with MxPro (Agilent Technologies). Primers
were validated by confirming amplification efficiencies of
90−110% using a standard curve (using sequential 1:4
dilutions of a 1:8 cDNA dilution) prepared using skeletal
muscle or pooled cell samples, as well as by the presence
of a single peak in the reaction’s dissociation curve. For
each specific transcript analysed, a sample dilution was
subsequently used that yielded Ct values in the middle of
the linear portion of the standard curve. Expression levels
for each transcript were determined relative to the above
standard curve, and normalized to levels of the stable
genes: 18S, TOP2B, RPL4 and HPRT1.

Immunochemistry

Tissue cryosections (10 μm) were stained with primary
antibody (see Supporting information, Table S2) at 4°C
overnight, washed with phosphate-buffered saline (PBS),
and incubated with the respective secondary antibody
(see Supporting information, Table S2) for 1 h at room
temperature. Slides were then washed and mounted
in Fluoroshield with 4′,6-diamidino-2-phenylindole
(DAPI) (Sigma-Aldrich, St Louis, MO, USA). Three
images from each of two tissue sample sections were
taken using a DMLB fluorescence microscope (Leica,

Wetzlar, Germany). In total, ∼100 muscle fibres were
analysed from each fetus. Intensities from secondary
antibody-stained control sections were used for back-
ground normalization in each case.
Cells were fixed and permeabilized in ice-cold

methanol: acetone (50:50) for 10 min at room
temperature, followed by washing with PBS for 5 min
and incubation with protein block solution (Springbio,
Farnborough, UK) for 1 h at room temperature. Cells
were stained with primary antibody at 4°C overnight,
washed with PBS and then incubated with the respective
secondary antibody for 1 h at room temperature in the
dark, before being washed and mounted in Fluoroshield
with DAPI (Sigma-Aldrich), sealed with a coverslip and
examined using an Axiovert 25 (Zeiss, Oberkochen,
Germany) inverted fluorescence microscope. Three
images were taken from duplicate wells using an Axiocam
503 high-resolution colour camera/Zen software (Zeiss).
Fusion index (i.e. the ratio between the number of nuclei
within myotubes and the total number of nuclei per
field) was determined from myosin heavy chain (MYHC)
stained pictures using ImageJ (NIH, Bethesda,MD, USA).
In all cases, intensities from secondary antibody-stained
control wells were used for background normalization.

Plasma FGF21 and FGF19 quantification

FGF21 and FGF19 concentrations were determined
in duplicate plasma samples using an enzyme-linked
immunosorbent assay kits, EP0057 (FineTest Biotech,
Wuhan, China) and ab273220 (Abcam, Cambridge,
UK), respectively, in accordance with the manufacturer’s
instructions. Intra-assay coefficient of variation and assay
sensitivity were 3.8% and 18.75 pg mL–1 for FGF21, and
8.0% and 10.0 pg mL–1 for FGF19.

Primary muscle progenitor cell (MPC) isolation,
culture and differentiation

Progenitor-enriched cell populations were isolated from
muscle samples as described previously (Vaughan &
Lamia, 2019), and cultured on Matrigel (BD Biosciences,
Franklin Lake, NJ, USA) at 39°C in Dulbecco’s modified
Eagle’s medium (DMEM) high glucose with 1% P/S,
supplemented with 20% fetal bovine serum (FBS) (Life
Technologies, Carlsbad, CA, USA) and 5 ng mL–1 basic
FGF (PeproTech, London, UK). Cells were trypsinized
and passaged every 2−3 days. MPCs were differentiated
using a protocol adapted fromHausman & Poulos (2005).
In short, MPCs were plated on rh-Laminin 521 (Life
Technologies)-coated wells (1000 cells mm–2) and, when
they reached 70% confluency, media was changed to
DMEM high glucose with antibiotics supplemented with
10% FBS and 80 nm dexamethasone (Sigma-Aldrich).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 1. Body and organ measurements (mean ± SD) from NW and IUGR littermates used for analyses

Variable NW NW∗ IUGR

Fetal weight (g) 761.94 ± 79.55a 682.09 ± 130.36a 446.22 ± 102.68b

Crown–rump length (mm) 245.67 ± 30.92 257.00 ± 28.86∗ 216.80 ± 31.45
Brain weight (g) 19.19 ± 3.69 17.44 ± 1.02 17.84 ± 1.16
Liver weight (g) 14.70 ± 4.83 14.06 ± 1.55 12.05 ± 2.27
Brain (% body weight) 2.34 ± 0.16a 2.59 ± 0.45a 4.01 ± 0.83b

Brain to liver weight ratio 1.36 ± 0.32 1.26 ± 0.19∗ 1.52 ± 0.32

Values for each of two different sets of NW littermates, NW (used for sequencing, n= 3 litters) and NW∗ (used as an additional control
for PCR validation of sequencing data, n = 5 litters), as well as IUGR littermates (n = 5 litters), are shown separately (values do not
include data from the outlier litter). Mean ± SD litter size = 14.0 ± 2.2 fetuses, mean ± SD fetal weight = 705 ± 95.9 g (n = 5 litters).
Means with different superscript letters within an end-point are different (P < 0.05). An asterisk indicates a significant difference
(P < 0.05) between NW∗ and IUGR littermates only.

Forty-eight hours later or when cells reached full
confluence (day 0), media was changed to DMEM high
glucose with antibiotics supplemented with 2% FBS, 1%
of insulin-transferrin-selenium (Life Technologies) and,
in some experiments, human FGF21 (1−100 ng mL–1;
#100-42; PeproTech), and maintained for up to 7 days.
All experiments with cells were performed using triplicate
wells.

RNA interference

On day − 1 (i.e. when cells had typically reached
50−60% confluency), MPCs were transfected with
two small interfering RNAs (siRNAs) targeting porcine
KLB (5′-GAACCAAACAGAUCAGAAAUU-3′ and
5′-CGUUGGAACUGGAGCAUUUUU-3′, 25 nm each;
Dharmacon, Cambridge, UK) or a scrambled RNA
sequence (control siRNA; 50 nm) using Hiperfect
reagent (Qiagen), in accordance with the manufacturer’s
instructions.

Western blotting

Total protein was extracted from fully confluent 12-well
plates by adding RIPA lysis buffer with Halt Protease
phosphatase inhibitor (#78440; Invitrogen). Protein
(50 μg) was diluted in 2× Laemmli sample buffer
(dilution 1:1; #161-0737; Bio-Rad, Hercules, CA, USA)
and 2-mercaptoethanol (355 mm; #161-0710; Bio-Rad)
and heated for 5 min at 95°C, then electrophoresed
in 4−20% Mini-PROTEAN TGX Precast Protein gels
(Bio-Rad) in a Mini Trans-Blot Cell (Bio-Rad) at 150 V
for 90 min. Gels were transferred to PVDF membrane
iBlot Transfer Stacks (#IB24001; ThermoFisher Scientific)
using programme three of an iBlot Transfer (#IB21001;
Thermo Fisher Scientific). After blocking with Intercept
(TBS) Blocking buffer (#927-60001; LI-COR Biosciences,

Lincoln, NE, USA) for 1 h at room temperature,
membranes were incubated with primary antibody
(see Supporting information, Table S2) overnight at 4°C,
followed by washing and incubation with a secondary
680RD antibody for 1 h and visualization with a LI-COR
Odyssey IR imaging scanner. Signal intensities were
quantified using Image Studio Lite 5.0 (LI-COR).

Statistical analysis

All statistical analyses were performed using Mini-
tab, version 18 (Minitab Inc., State College, PA,
USA). Data were assessed for normality using
the Kolmogorov–Smirnoff test (P > 0.01) and
log-transformed before analyses if needed. Outlier data
points identified using Grubb’s test were excluded. Data
were then analysed using one- or two-way ANOVA with
litter as covariate followed by a post hoc Tukey’s test or, if
only two means were compared, Student’s t tests. P< 0.05
was considered statistically significant.

Results

Fetal IUGR muscle displays wide transcriptional
dysregulation, including numerous pathways
involved in development, tissue injury and
metabolism

Out of the 10 pig litters used in the present study, seven
contained a single IUGR fetus (five male and two female)
and one contained two IUGR fetuses (male and female),
as defined by a weight >2SD below the average litter
weight. Thus, for the experimental analyses described
below, we used male NW and IUGR littermates (selected
as described in the Methods in ‘Sample collection’) from
the six litters containing an IUGR male. Fetuses classed
as IUGR had a higher mean brain weight as a percentage

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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of body weight than NW littermates (Table 1), confirming
their growth-restricted status. Moreover, IUGR muscle
contained thinner fibres and higher fibre densities than
NW muscle (Fig. 1), consistent with previous findings
(Wigmore & Stickland, 1983; Felicioni et al. 2020; Stange
et al. 2020).

To identify transcriptome-wide signatures in IUGR
skeletal muscle, we performed RNA sequencing on paired
samples from IUGR and NW fetuses from four different
litters. RNA sequencing produced high-quality data from
all samples, as determined by Q scores >30 for both read
quality and base quality. A mean ± SD of 54.2 ± 1.6
million reads was obtained per sample, 79.9 ± 0.28% of
which mapped to a total of 17,600 ± 29.4 genes in the
reference porcine genome (see Supporting information,
Table S3). Principal component analysis on the 500 genes
with the largest coefficient of variation identified the
IUGR sample from one litter to be an outlier (litter 4)
(Fig. 2A). Incidentally, this litter was distinct in that it was
the only one that contained two IUGR fetuses, one of each
sex, of which the female was the lightest. This litter was
removed from all subsequent analyses.

In total, 1031 differentially expressed genes were
identified (P < 0.05) between IUGR and NW fetuses
(Fig. 2B; see also Supporting information, Tables
S4 and S5). After FDR adjustment (FDR < 0.1), 38
and 43 genes were up-regulated and down-regulated,
respectively, in IUGR relative to NW fetuses. Gene
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Figure 1. Histological features of skeletal muscle from porcine
fetal NW and IUGR littermates
A, representative images of sections of semi-tendinosus muscle from
NW and IUGR littermates that were immunostained for laminin
(green) and counterstained with nuclear marker, DAPI (blue). B,
diameter and density of muscle fibres (mean ± SD together with
individual data points) in the two groups. Scale bars = 100 μm.
[Colour figure can be viewed at wileyonlinelibrary.com]

Ontology (http://geneontology.org) analysis of all
differentially expressed genes revealed significant
enrichment (P < 0.01) for terms broadly related to
Development, Tissue Injury and Metabolism (Fig. 3; see
also Supporting information, Table S6). ‘Development’
included pathways involved in skeletal muscle and
neural development, with IUGR muscle displaying
down-regulated levels of several related genes, including
MYOG (a myogenic transcription factor), NKX62 (a
gene involved in somatic motor neuron development)
(Pattyn et al. 2003), RET and ACTN3 (Fig. 4; see also
Supporting information, Table S5). In that regard,
dysregulated neurodevelopment is a well described
feature of IUGR (Wixey et al. 2019; Mallard et al. 2000),
although this has not been reported in the context of
skeletal muscle. Tissue injury pathways could be classified
into those associated with Inflammation, Coagulation
and Anti-oxidation/Detoxification. Numerous trans-
cripts corresponding to those categories were highly
up-regulated in IUGR fetal muscle (Fig. 4; see also
Supporting information, Table S4), particularly those
related not only to coagulation (e.g. PLG, SERPINA5, F5,
F9, ITIH2, FGG), but also to inflammation (e.g. AMBP,
CCL16) and detoxification (e.g. ABCC6). The largest
functional category was Metabolism. It included several
signalling pathways and transcripts broadly involved in
the regulation of metabolism (Fig. 3), many of which
were up-regulated in IUGR muscle such as IGBP1,
AHSG and KLB. It also included specific metabolic
pathways, from which multiple transcripts were highly
up-regulated in IUGR muscle (Fig. 4; see also Supporting
information, Table S4), including glucose metabolism
(ALDOB), lipid biosynthesis and transport (APOC2,
APOB, CIDEB, PNPL) and amino acid degradation
(TAT, TDO2, PRODH2). Finally, several entities under
the ontology category, Disease, were also enriched
and corresponded to later life metabolic and other
diseases often associated with IUGR, including endocrine
(diabetes), as well as hepatic and vascular disorders (see
Supporting information, Table S6).
The results of RNA sequencing were validated by

qPCR for a selected group of genes (see Supporting
information, Tables S4 and S5) using an extended group
of samples, including an additional set of NW littermates
as described in the Methods for ‘Sample selection’. Genes
for validation were chosen that (1) represented the
three functional categories above, (2) had well-defined
biological function(s) and (3) were detectable by qPCR in
a majority of the samples analysed. As shown in Fig. 4,
differences in expression levels detected between IUGR
and NW fetuses were highly consistent between the two
analytical methods compared, as well as between the two
sets of NW littermates when compared with IUGR fetuses
from the same litters (indicated by PCR and PCR∗ in
Fig. 4).
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Reduced muscle development in IUGR littermates is
associated with increased KLB levels compared to NW
littermates

As indicated above, KLB was among the up-regulated
transcripts in IUGR littermates. KLB is an obligatory

co-receptor of the metabolic hormone, FGF21. Given
the proposed role, through binding to FGF21, as a
master regulator of the starvation response (Inagaki et al.
2007; Tyynismaa et al. 2010), we focused our subsequent
attention on KLB. The role of KLB in regulation of energy
metabolism in adipose tissue and liver has been reported
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Figure 2. Results of RNA sequencing of muscle samples from porcine NW and IUGR littermates
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on normalized read counts. Each circle represents a sample. B, scatter plot representation of all mapped genes
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size) corresponds to the number of genes that map to a specific pathway divided by the total number of genes
in the pathway. The statistic ‘z score’ (represented by column colour) is used to infer the likely activation state
of each pathway within the specific biological context under consideration based on comparison with a model
assigning random regulation directions. A z score >2 or <–2 is considered as a strong indicator that a pathway
is up-regulated or down-regulated, respectively. NaN, undetermined. –Log (P values) are represented by the grey
dotted line.

previously (Kurosu et al. 2007), although little is known
about its effects on muscle function and how it mediates
tissue responses to starvation in the developing fetus. To
confirm the results of RNA analyses, we first performed
immunofluorescence and showed that KLB is indeed pre-
sent in porcine fetal muscle (Fig. 5A), in agreement with

results obtained in other species (Benoit et al. 2017).
Moreover, we found that the mean levels of KLB protein
were around three times higher in IUGR thanNW fetuses,
consistent with the results of qPCR (Fig. 5B).
We then aimed to determine whether differences in

myogenic capacity could be detected in cultured cells.
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Figure 4. Validation of RNA sequencing results by qPCR
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from three pig litters. Additional qPCR validation was performed (indicated as PCR∗) using a different set of NW
samples (and litter-matched IUGR samples) from a total of five litters. In all cases, signficant gene expression
up-regulation or down-regulation in IUGR relative to NW littermates is indicated by an asterisk (∗) (P < 0.05) or
an ampersand (&) (P < 0.01), whereas differences approaching signficance (P < 0.1) are indicated by a hash (#)
symbol. Mean ± SD values are shown together with individual data points.
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We found that MPCs from IUGR fetuses had reduced
myogenic capacity in culture compared to cells from
NW littermates (Fig. 6A), consistent with previous results
obtained using muscle cells from sheep or pig IUGR
offspring (Yates et al. 2014b; Chen et al. 2017b). This
was confirmed by differences in fusion indices (Fig. 6B),
as well as in transcript levels of both the developmental
myosin, MYH3, and the transcriptional factor involved
in terminal myoblast differentiation, MYOG (Fig. 6C).
We then examined mTORC1 activity, a primary driver of
muscle growth (Ge & Chen, 2012), and found that mean
phosphorylation levels of both mTOR at Ser2448, and its
effector, S6K1, at Thr389, were lower in IUGR myotubes,
although these differences did not reach significance
(P > 0.05) (Fig. 6D). Finally, in line with the data
from muscle tissues (Fig. 5), in vitro derived myotubes
expressed KLB. Moreover, KLB protein and mRNA were
expressed at higher levels in IUGR-derived compared to
NW-derived muscle cells (Fig. 6E and F).

KLB knockdown promotes myogenesis and mTOR
activation in MPCs

To investigate whether the increased levels of KLB
may indeed result in attenuated muscle development in
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Figure 5. Relative KLB abundance in skeletal muscle from
porcine NW and IUGR fetuses
A, representative cross-sectional images of NW and IUGR
semi-tendinosus muscle immunostained for KLB (red). Laminin and
DAPI counterstains are shown in green and blue, respectively. Scale
bars = 100 μm. B, relative levels of KLB protein (intensity of KLB
immunostain) and KLB transcript in NW and IUGR littermates. Mean
± SD values are shown together with individual data points. [Colour
figure can be viewed at wileyonlinelibrary.com]

IUGR pigs, we first aimed to determine the effects of
KLB activation with FGF21 or down-regulation with
siRNAs on the myogenic capacity of muscle cells using
NW-derived MPCs. To this end, MPCs were first
transfected with KLB siRNAs 24 h before inducing
myogenesis (Fig. 7A–C). KLB down-regulation was
associated with an increase in myogenesis (Fig. 7D),
with siRNA-treated cells displaying higher fusion indices
(Fig. 7E) and higher levels of myogenic markers (Fig. 7F)
than control cells upon induced differentiation.Moreover,
phosphorylation of S6K1 increased in siRNA-treated cells
(Fig. 7G), suggesting that the effects of KLB onmyogenesis
occur, at least in part, through inhibition of mTORC1
signalling.

Treatment with the KLB ligand, FGF21, inhibits
myogenesis and mTOR activation in MPCs

Biologically, KLB acts as a co-receptor for both FGF21 and
FGF19. Notably, we found that levels of FGF21, but not
FGF19, were significantly higher in plasma from IUGR
thanNW fetal littermates (Fig. 8A), suggesting that FGF21
may activate KLB to affect muscle development in IUGR
fetuses. To investigate this further, MPCs were induced
to differentiate in the presence of FGF21. Increasing
levels of FGF21 progressively decreased their ability to
differentiate into myotubes (Fig. 8B–D), an effect that was
associated with a mean decrease in S6K1 phosphorylation
(Fig. 8E). These results are consistent with the observed
positive effects of KLB down-regulation onmyogenesis by
MPCs. Finally, FGF21 induced a dose-dependent but not
significant (P> 0.05) increase in mean KLB expression in
MPCs (Fig. 8F).

FGF21 also reduces the myogenic capacity
of human MPCs

We next determined whether FGF21 has the same effects
in human and pig MPCs. To do this, we differentiated
human fetal MPCs in the presence of increasing
concentrations of FGF21. As was the case for pig cells,
human cells displayed a decreased ability to undergo
myogenesis in the presence of increasing levels of FGF21
(Fig. 9A–C). Moreover, although, on average, mTOR
phosphorylation was not affected by FGF21, reduced
myogenesis in the presence of FGF21 was associated with
a marked decrease in S6K1 phosphorylation (Fig. 8D),
indicating that, as in pig cells, FGF21 inhibits mTORC1
signalling in human fetal muscle cells. Finally, FGF21
robustly and dose-dependently stimulated the expression
of KLB during myogenic differentiation of human MPCs
(Fig. 8E), again highlighting the similarities in responses
to FGF21 by human and porcine muscle cells.
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Figure 6. Effects of IUGR on myogenic differentiation of porcine MPCs
A, representative bright-field (top) and immunofluorescence (bottom) images (scale bars = 100 μm) of MPCs from
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Figure 8. Effects of stimulation with the KLB agonist, FGF21, on differentiation of porcine MPCs
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are shown together with individual data points. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

The present study provides a detailed characterization of
genome-wide transcriptional changes in skeletalmuscle of
the pig IUGR fetus.Widespread activation of tissue injury,
in addition to developmental and metabolic pathways, is
consistent with reports in tissues from different IUGR
models (Vaiman et al. 2011; Kelly et al. 2017; Rashid et al.
2018), and highlights the variety of responses elicited by
fetal muscle aimed to protect the developing tissue against
hypoxic and other environmental insults. Associated with
these were widespread changes in metabolic gene profiles,
which were indicative of a switch from glucose to lipids
as a source of energy (Limesand et al. 2007; Yates et al.
2012) and, especially, of increased amino acid catabolism
in fetal muscle. In line with the latter observation, pre-
vious studies in sheep indicated an increased utilization of
muscle protein as a source of body energy to compensate
for reduced fetoplacental transport and availability of
amino acids (Brown et al. 2012; Rozance et al. 2018;
Stremming et al. 2020), an effect that significantly impacts
on protein accretion rates and muscle growth in the
IUGR fetus. Taken together, the observed changes in
metabolic gene profiles in the present study are consistent
with the concept that, in response to an imposed deficit
of carbohydrates, amino acids (and possibly fatty acids)
become a prime source of energy in the IUGR pig
fetus, thus contributing to net negative muscle growth. In
relation to fatty acids, evidence showing an increase in
fatty oxidation in IUGRmuscle should be obtained before
their role as a primary source of energy in fetal pig IUGR
muscle can be definitively established.
A prominent physiological response elicited by a

deficiency of amino acids during nutrient restriction is
a systemic increase in FGF21 (Solon-Biet et al. 2016).
FGF21 acts as a master mediator of body-wide responses
to starvation, including restricted body growth, aimed
at reducing energy expenditure (the so-called ‘thrifty
phenotype’). In that regard, an increase in the levels of
KLB in muscle, together with higher levels of FGF21 in
plasma, suggests a key role of this receptor in globally
mediating skeletal muscle responses to reduced resource
availability in IUGR littermates. Yet, to our knowledge,
although FGF21 has been quantified in human term cord
blood (Mericq et al. 2014), the roles of KLB or FGF21 in
developing fetuses with differing growth trajectories have
not been reported before. Notably, unlike KLB, our RNA
sequencing data did not showdifferences in the expression
of FGFR1 in muscle between IUGR and NW fetuses. KLB
pairing with FGFR1 is assumed to account for most of the
effects of FGF21 in vivo (Kurosu et al. 2007); thus, these
results indicate that, in the developing fetus, KLB likely
acts as the primary regulator of muscle responsiveness to
FGF21, consistent with reports in other tissues (Kurosu
et al. 2007).

To investigate how KLB may mediate the effects of
IUGR on skeletal muscle development, we used MPC
cultures from both pig and human to validate the
significance of our results using the pig as a valuable
experimental model for the human. As already indicated,
stunted growth, as evidenced by a reduction in the
total number and size of myofibres, is the most obvious
feature of the IUGR phenotype in skeletal muscle.
Using both siRNA-mediated down-regulation of KLB and
agonist activation with FGF21 in MPCs, we revealed
a causal role of KLB signalling, through inhibition of
mTOR, in reduced muscle fibre formation in vitro.
Studies in genetically-modified mice models showed
that muscle-derived FGF21 induced by fasting decreased
protein synthesis and increased autophagy, thus reducing
totalmusclemass (Oost et al. 2019). FGF21 is also induced
in muscle in response to mitochondrial dysfunction
associated with muscle disease or ageing, where a causal
link between high FGF21 and muscle mass loss has been
established (Tezze et al. 2017). Of note, although reduced
mitochondrial function is a feature of IUGR (Pendleton
et al. 2020), we did not detect differences in FGF21
expression in muscle between IUGR and NW littermates,
indicating that systemic (presumably derived, at least in
part, from fetal liver) rather than local levels of FGF21
may account for its effects in IUGR fetal muscle, at
least in the pig. In this context, an effect of FGF21, by
mediation of KLB, in restricting muscle growth in IUGR
fetuses is consistent with its well-established role with
respect to reducing overall body growth as an adaptive
energy-saving measure during starvation (Kubicky et al.
2012; Wei et al. 2012).
KLB is a natural co-receptor of both FGF21 and

FGF19, raising the question of whether some of
the effects of KLB in fetal muscle may be mediated
through binding to FGF19, another endocrine FGF with
metabolism-regulatory effects. Indeed, administration
of FGF19 induced skeletal muscle hypertrophy and
ameliorated muscle wasting in mice (Benoit et al. 2017),
a finding that is contrary to our conclusion that KLB
mediates the inhibitory effects of FGF21 on fetal muscle
development. Together with our observation that, unlike
FGF21, FGF19 levels in plasma were not different in
IUGR and normal fetal littermates and, moreover, were
extremely low compared to levels in new-born pigs, this
strongly suggests that the observed effects of KLB on
IUGR fetal muscle in the present study were mediated by
FGF21 rather than FGF19.
Our data indicate that the effects of KLB on fetal

IUGR muscle growth are mediated by mTOR. Within
mTOR complex 1 (mTORC1), mTOR critically drives
muscle growth by stimulating myoblast fusion and
protein accretion through phosphorylation of, amongst
other targets, S6K1 (Ge & Chen, 2012). Thus, impaired
phosphorylation of mTOR and S6K1 was associated
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with stunted muscle development in nutrient-restricted
cattle and pig fetuses (Zhu et al. 2004; Du et al. 2005);
however, the precise mechanisms involved have not been
clarified. Our novel findings provide a valuable step
forward towards understanding themechanisms bywhich
nutritional and metabolic cues affect fetal muscle growth
as a result of identifying FGF21-activated KLB as a
putative inhibitor of mTORC1 leading to reduced myo-
blast fusion and muscle fibre growth. Moreover, our
findings support the notion that a decrease in mTOR
signalling in response to reduced resource availability acts
to adjust fetal growth to the capacity of the mother to
support fetal needs (Damerill et al. 2016; Gupta & Jansson,
2019).

We conclude that adaptation of skeletal muscle
to adverse uterine conditions in the porcine
growth-restricted fetus involves extensive changes in the
activity of cellular pathways involved in tissue growth and
development, response to tissue injury, and metabolism.
Moreover, results using myogenic cells from pig and
human indicate that stimulation of muscle KLB by
circulating FGF21 may play a key role in mediating at
least some of the adaptive changes to IUGR, most notably
a reduction in muscle growth, and that the effects of
KLB in muscle cells occur through inhibition of mTOR
signalling. Importantly, our results suggest that these
effects are conserved in pigs and humans. It must be
noted that our conclusions using human fetal cells are
based on a relatively small number of biological replicates,
and so further studies are warranted to confirm these
findings and provide additional mechanistic insight on
the effects of IUGR on early human muscle development.
The translation of our findings in pigs to humans also
needs to take into account that not all cases of IUGR
in humans are primarily associated with placental
insufficiency (a common feature of IUGR in the pig)
and that alternative or additional mechanisms may be
involved in disease pathogenesis in those cases. Overall,
our results bring new light to the understanding of IUGR
pathogenesis in muscle, a developmental adaptation that
carries significant risks for life-long health in affected
individuals.
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