
Published online 31 May 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W93–W98
doi: 10.1093/nar/gkz437

ORVAL: a novel platform for the prediction and
exploration of disease-causing oligogenic variant
combinations
Alexandre Renaux1,2,3, Sofia Papadimitriou1,2,3, Nassim Versbraegen1,2,
Charlotte Nachtegael1,2, Simon Boutry1,4, Ann Nowé1,3, Guillaume Smits1,5,6 and
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Received February 21, 2019; Revised May 01, 2019; Editorial Decision May 07, 2019; Accepted May 09, 2019

ABSTRACT

A tremendous amount of DNA sequencing data is
being produced around the world with the ambition
to capture in more detail the mechanisms underly-
ing human diseases. While numerous bioinformatics
tools exist that allow the discovery of causal variants
in Mendelian diseases, little to no support is provided
to do the same for variant combinations, an essen-
tial task for the discovery of the causes of oligogenic
diseases. ORVAL (the Oligogenic Resource for Vari-
ant AnaLysis), which is presented here, provides an
answer to this problem by focusing on generating
networks of candidate pathogenic variant combina-
tions in gene pairs, as opposed to isolated variants
in unique genes. This online platform integrates in-
novative machine learning methods for combinato-
rial variant pathogenicity prediction with visualiza-
tion techniques, offering several interactive and ex-
ploratory tools, such as pathogenic gene and protein
interaction networks, a ranking of pathogenic gene
pairs, as well as visual mappings of the cellular lo-
cation and pathway information. ORVAL is the first
web-based exploration platform dedicated to identi-
fying networks of candidate pathogenic variant com-
binations with the sole ambition to help in uncovering
oligogenic causes for patients that cannot rely on the
classical disease analysis tools. ORVAL is available
at https://orval.ibsquare.be.

INTRODUCTION

Massively parallel Next Generation Sequencing (NGS) has
revolutionized the field of medical genetics, allowing the
analysis of large cohorts and the identification of genomic
variants that cause disease or modulate the severity or re-
sponse to therapy (1,2). This vast amount of genetic data
allowed for the emergence of Genome Wide Association
Studies (GWAS) and linkage analyses methods, the cre-
ation of various variant-to-disease databases, as well as the
development of bioinformatics and machine-learning tools
for single variant pathogenicity prediction and prioritiza-
tion (3–5).

Even though the emergence of such resources has greatly
improved our understanding of Mendelian cases (i.e. the
traditional view of one-to-one variant-phenotype associa-
tion), many difficulties remain in identifying the causes of a
large amount of human diseases due to phenotypic variabil-
ity, disease heterogeneity and incomplete penetrance. These
difficulties indicate the presence of more intricate genetic
models that involve the interaction between several differ-
ent variants and genes (6). Databases, as well as predictive
and exploratory tools need to be improved to also deal with
genetic models ranging from digenic or oligogenic, where a
combination of causative variants is distributed among two
or a small amount of genes respectively (7,8), to the multi-
factorial or complex diseases, which are caused by a com-
bination of genetic and environmental factors (6,9). Exam-
ples for this spectrum consist, on one end, of diseases like
Bardet-Biedl syndrome (10,11) and cystic fibrosis (12) and,
on the other end, neurodevelopmental disorders like intel-
lectual disability and autism (13).
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At the molecular level it is generally hypothesized that
oligogenic diseases involve mutated proteins that are im-
plicated in the same biological pathways or protein com-
plexes (14). As a consequence, network-based approaches,
which allow for the modelling of complex relationships be-
tween variants, genes and proteins, and offer a way to study
diseases at a higher level of abstraction, quickly attracted
attention (15). Protein-protein interaction (PPI) networks
(13,16), disease networks (16,17) and gene expression net-
works (18) have all been used to assist in this direction. Yet,
all these approaches start from a monogenic base, which
may be incompatible for detecting oligogenic causes. More-
over, it was shown that such an approach may not perform
better than simply linking genes randomly in a network
(19). This problem may be overcome when predictive meth-
ods immediately identify the cross-gene pathogenic associ-
ations as opposed to first identifying single genes and then
trying to link them using alternative sources of information.

This step has become feasible as the number of digenic
or bi-locus cases reported in scientific literature reached a
sufficient amount, resulting in the creation of the Digenic
Diseases Database (DIDA) (20). All the pathogenic vari-
ant combinations in DIDA belong to one of three classes
of digenic effects (DE): the true digenic class that requires
the presence of variants in both genes to trigger the disease
phenotype, the modifier class that involves a variant on the
major gene that induces a disease phenotype and a variant
in a modifier gene that alters the severity of symptoms or age
of onset, and the dual molecular diagnosis class that involves
the independent segregation of disease-causing monogenic
variants in two different genes, leading independently to two
different clinical diagnoses. We use here the terms digenic
and bi-locus interchangeably, when referring to all the three
DE classes mentioned above.

This resource allowed for the development of VarCoPP,
an interpretable machine learning method able to pre-
dict candidate disease-causing bi-locus variant combina-
tions (21). Furthermore, a predictor that identifies the DE
class of a predicted digenic variant combination was also
created (22). This information can be particularly useful
in order to understand the effect of a variant combina-
tion when there is no pedigree genetic information available.
These innovative methods may provide an important aid in
identifying potential oligogenic disease signatures from pa-
tient data, which is exactly the purpose of the platform pre-
sented here.

ORVAL provides a novel user-friendly web platform that
allows clinicians and researchers to predict the potential
pathogenicity of an individual’s oligogenic variant combi-
nations and examine candidate oligogenic signatures in the
context of their pathways, PPIs and cellular locations. By
identifying and supporting with biological evidence com-
binations of variants, needing further validation, this tool
aims to become an important agent in exploring the relevant
molecular and biological patterns underlying oligogenic
diseases.

PROGRAM DESCRIPTION AND METHODS

The ORVAL web platform consists of a submission form,
where users can submit genetic variant data along with fil-

tering criteria, and a variant processing pipeline that first
generates variant combinations, annotates them with vari-
ant, gene and combination level information, and then pre-
dicts which variant combinations may potentially be asso-
ciated with the disease. The candidate digenic predictions
are then used to rank gene pairs and build an interactive
oligogenic network that can be further explored. All these
description levels are enhanced by known cross-references.
Figure 1 summarizes the workflow and the components of
ORVAL. The platform technologies are described in details
in Supplementary Information (Text S1).

Variant submission and processing

ORVAL manages its variant processing pipeline with a se-
cure asynchronous queuing system where jobs get assigned
an Universally Unique Identifier (UUID), for every submis-
sion. Users can access a job page to track the status of their
submissions and bookmark them for later use. It is also pos-
sible to provide an email address to be informed when a job
has been completed. The analysis results are provided via a
unique link and are accessible for 7 days starting from the
time of submission. No input data is stored.

The ORVAL platform accepts a list of variants from a
single individual as input. These variants can be entered
manually or provided in a Variant Calling File (VCF) (23)
(compressed or not). Users can also choose to apply filter-
ing options that discard variants based on a given thresh-
old of Minor Allele Frequency (MAF), obtained from the
ExAC database (24), their genomic and exonic positions or
their synonymous effect (Figure 1A). Applying these filters
is highly recommended to ensure that the remaining vari-
ants are in accordance with the variant types that were used
to train the predictive methods integrated in ORVAL. Users
can also provide a gene panel that will be used to restrict the
analysis to only the genes of interest.

The ORVAL pipeline follows the processing steps de-
scribed in Figure 1B. All variants are annotated based
on the Ensembl GRCh37/hg19 genome version database
(25) and external annotation sources necessary for the
pathogenicity predictions. These annotations are: the vari-
ant CADD score (3), the protein sequence from UniProt
(26), the gene recessiveness and haploinsufficiency proba-
bilities from the dbNSFP database (27), the Gene Damage
Index (GDI) that provides the susceptibility of a gene to
disease (28), and the Biological Distance that shows the bi-
ological relatedness between any two genes based on PPI
information (29).

After annotation, ORVAL creates all possible (i.e. bi-
allelic, tri-allelic and tetra-allelic) combinations of variants
occurring in gene pairs and applies the VarCoPP method
(21) to predict their pathogenicity scores. Each prediction
provides two predictive scores (i.e. a Support Score (SS)
and a Classification Score (CS)) whose previously defined
thresholds (21) determine whether a digenic combination is
predicted as potentially disease-causing or neutral. These
scores are also assigned confidence labels (i.e. 99% − con-
fidence and 95% − confidence), providing a clear signal to
identify the potentially most relevant pathogenic combina-
tions.
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Figure 1. ORVAL flowchart highlighting the major components of the platform. (A) Users can submit variants using a Variant Call Format (VCF) file or a
tab-delimited variant list. The variants can be filtered with some predefined criteria or by using a gene panel. (B) Once submitted, variants are processed by a
pipeline first applying the selected filters, then generating all di-,tri- and tetra-allelic variant combinations and annotating them using public bioinformatics
resource data, then predicting which variant combinations may be disease-causing candidates with the VarCoPP predictor. Finally, these candidate variant
combinations are aggregated at the gene level to build an oligogenic network. (C) By selecting a specific digenic variant combination, users can run a
predictor to know the DE probabilities and can get an interpretation of the VarCoPP prediction based on its features. (D) It is also possible to interact
with the oligogenic network to filter and explore specific oligogenic signatures. A dedicated page shows how the selected gene set maps with multiple
cross-references to give an insight into the biological context.

Digenic combination predictions

Once variants have been processed and the predictions are
available, the main Results page shows, in order, the oli-
gogenic network inferred from the predictions, summary
statistics of all available gene-pairs and, finally, a detailed
perspective on all predicted variant combinations that were
found in the patient’s data.

In the latter Digenic Predictions section (bottom Results
page), all digenic variant combination predictions are visu-
alized in the form of an interactive S-plot (Figure 2D) based
on the two pathogenicity scores provided by VarCoPP. Each
point in the curve is a digenic variant combination whose
colour represents its pathogenicity confidence (see legend
in Figure 2D). A dynamic summary table next to the S-plot
provides a complete list of all visualized combinations, or-
dered from high to low pathogenicity scores. Each combi-
nation is linked to additional detailed information.

By clicking on a digenic combination in the S-plot or the
summary table, the detailed information page opens, show-
ing the VarCoPP pathogenicity prediction, the DE predic-
tion (provided that the combination is predicted to poten-
tially be pathogenic) and other useful annotations specific
to the selected variant combination (Figure 1C).

The Pathogenicity Prediction Information (Figure 2E)
aims to explain the decision made by the predictor: it shows,
by using box plots, the preference of each feature used by
VarCoPP for either the positive (red colour) or the neu-
tral (blue colour) class (21). Details on the method inferring
these preferences from the predictor can be found in (30).

The DE prediction (see Figure 2F) identifies for a can-
didate variant combination the likelihood that it is a True
Digenic, Monogenic + Modifier or a Dual Molecular Diag-
nosis case. A radar plot visualises these three possibilities,
while a small table is also provided that shows the associated
probabilities.

Biological annotations associated with the digenic com-
bination are provided at the bottom of the detailed informa-
tion page with cross-references to other bioinformatics re-
sources. The users can get information at the gene level (e.g.
gene name, Ensembl gene ID, recessiveness and haploinsuf-
ficiency probability), variant level (e.g. zygosity, dbSNP ID,
allele frequency) and gene pair level (e.g. information on the
biological distance of the two genes).

Gene pair ranking

The Gene Pair Ranking panel (at the middle of the Re-
sults page) aggregates the information generated for each
variant combination at the level of the gene pair, provid-
ing an insight on the pathogenicity of the gene pairs in the
data. This information is displayed in a table that includes
summary statistics per gene pair, such as the percentage
and number of predicted candidate disease-causing variant
combinations, as well as the median pathogenicity scores.
The gene pairs are initially ranked according to their per-
centage of candidate combinations, followed by the median
pathogenicity scores.
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Figure 2. Examples of the main output figures of ORVAL. (A) An interactive oligogenic network built from all gene pairs having at least one predicted
candidate combination. The edge are coloured based on a pathogenicity score (highest Classification Score (CS) for a pair). The genes can be filtered
out manually or based on their centrality. The edges can be pruned based on the pathogenicity score. (B) A protein–protein interaction network where
the central nodes circled in purple represent the proteins from a selected oligogenic module and the external nodes are the first-level interactors. Direct
interactions (e.g. FNDC9-PROKR2) are coloured in purple. A pie chart showing the protein cellular locations is used to highlight the corresponding nodes
in the network (here, secretory-pathway. (C) A Tree-map representing the Reactome ontology sized proportionally to the number of mapped genes from
the oligogenic module and colour according to the level on the ontology hierarchy. On this example, the most represented pathways are part of the Signal
Transduction ontology. (D) An S-plot representing the classification of all digenic combinations as being neutral (in blue) or potentially disease-causing
(from orange to dark red) depending on the predicted VarCoPP CS and Support Score (SS). The table on the right shows the gene pair, variants and
prediction scores. (E) A boxplot chart, displayed for a specific digenic combination, showing the contribution of each predictive features into the disease-
causing class (in red) or neutral (in blue). (F) A spider plot, displayed for a specific digenic combination, showing the probabilities for each class of digenic
effect predicted by the DE Predictor, with a highest probability for True Digenic.

Oligogenic signatures exploration

As genes can occur in multiple gene pairs, a network can
be constructed that consists of all gene pairs that contain
at least one candidate variant combination (see Figure 2A).
We refer to this top level of aggregation as the Oligogenic
Network (see top of the Results page). The colour of an edge
varies depending on the highest Classification Score (CS)
for the gene pair. All genes in this network are also presented
in a table, along with precomputed centrality measures (31).
With this table, users can remove genes from the network
or they can use filters based on the centrality or the CS to
restrict the analysis to the most relevant gene pairs.

Users can interact with the network: selecting a
node/gene opens a side panel that shows information
about the gene and about the set of genes in the same con-
nected component, called an Oligogenic Module in ORVAL.
This side panel shows some module-relevant metrics, such
as the size, the graph density, the average pathogenicity
score, as well as a summarised pathway information for the
involved genes. This panel also links to a dedicated module
page that contains additional information, including the
associated PPIs, protein cellular locations and pathway
mappings of the involved genes (Figure 1D).

The PPI network is built from the set of proteins belong-
ing to the selected module, using the last version of the

ComPPI database (32). The resulting network is visualised
as an interactive circle-shaped network (Figure 2B) where
the proteins from the Oligogenic Module and external pro-
teins directly interacting with them are represented. To limit
the size of the network, these external proteins are repre-
sented only if they interact with at least two proteins of the
selected Oligogenic Module. The cellular location of every
protein in the network is represented as an interactive pie
chart that can be used to highlight the proteins from a spe-
cific location in the network. That PPI representation can
assist in studying epistatic effects that could be caused by
the direct and indirect interactions between proteins of the
Oligogenic Module (14).

The biological pathways that are most strongly associated
with the genes of the oligogenic module can be explored in
the Pathway Mappings panel. This view provides a graph-
ical pathway Tree-map (Figure 2C), i.e. a plot where boxes
represent nested pathways according to their hierarchical
level in the pathway ontology of Reactome (33) and whose
size is determined by the number of genes they contain. De-
tailed information about the genes involved in each pathway
level is shown in a dynamic table. This pathway mapping
gives an insight on the biological phenotypes that could be
affected by the genes of the selected oligogenic module, as
shown in the work of An et al. (13).
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Results availability

Every table can be downloaded in a tab-separated values
(TSV) format, while the oligogenic network (Figure 2A),
module network and PPI network (Figure 2 B) can be
downloaded in the GraphML format, so they can be easily
imported in network analysis programs. All objects can be
downloaded in the form they were originally obtained or af-
ter the application of any post-hoc filters (e.g. gene and edge
filters or custom search query). The S-plot figure is available
publication-ready in PNG format.

Documentation

ORVAL has a user-friendly interface that provides guid-
ance, at every step, on how to use the tool and interpret the
results. Help buttons with summarized guidance are present
in all panels of ORVAL, while warning messages provide in-
formation on how to tackle exceptional issues that may arise
during data submission or exploration of results. The Doc-
umentation page of ORVAL contains a standalone in-depth
guide discussing the data submission, filtering and annota-
tion process of the user’s data, as well as of the predictive
methods and the exploration of the results with case exam-
ples.

DISCUSSION

Examples of oligogenic support with ORVAL

To illustrate ORVAL’s relevance for geneticists and clini-
cians, we briefly discuss here the results for some recently
published cases that are associated with diseases having
high genetic and phenotypic heterogeneity and show indica-
tions of oligogenicity. These cases are completely unknown
to the integrated predictive methods.

ORVAL supports the suspicions of oligogenicity for a
patient with mild hypertrophic cardiomyopathy, carrying
three potentially causative variants in the genes: MYH6,
DSC2 and DSG2 (34). All variant combinations were pre-
dicted as candidates with high confidence, creating a tri-
genic oligogenic network. The integrated PPI network in-
formed about the physical connection between proteins
DSC2 and SSG2, while the pathway treemap illustrated the
involvement of the genes DSC2 and DSG2 in cell apopto-
sis, and of MYH6 in muscle contraction, further confirming
that they can contribute in different phenotypes that can be
blended in an individual: arrhythmogenic cardiomyopathy
and hypertrophic cardiomyopathy, respectively.

Moreover ORVAL supports the oligogenic hypothesis for
a patient with congenital long QT syndrome (LQTS), car-
rying variants in three LQTS-associated genes: KCNQ1,
KCNH2 and KCNE1 (35). These genes created, again, a tri-
genic oligogenic network in ORVAL. We could confirm with
high confidence the author suspicions for the pathogenic-
ity of the gene pair KCNQ1 and KCNH2, as it obtained
the highest median pathogenicity score. The specific com-
bination KCNH2:p.K897T and KCNE1:p.G38SK by itself
is neutral, confirming the modifier effect these two genetic
variants have on the phenotype. More information on the
two cases is available as Supplementary Information (Text
S2, Supplementary Figures S1–S8).

Limitations and future improvements

ORVAL offers a novel way to explore the oligogenic na-
ture of a patient’s phenotype. Nevertheless, the interpreta-
tion of the results remains a difficult task that still requires
further manual inspection. To improve interpretation, we
plan to integrate the possibility to use parent (trio) vari-
ant data, so that an assessment of the inheritance pattern
can also be made. Additional variant pre-filtering options
will also be evaluated. The integration of the patient’s phe-
notypic information and its relation with other phenotypes
could also offer more context to the results. We plan to ex-
plore other network-related resources, such as disease net-
works, as well as improve or integrate new predictive meth-
ods for oligogenic analysis. Patient cohort analyses are not
yet supported, something that can be resolved with a big
data pipeline that we are currently developing. Finally, the
predictive quality of the methods used in ORVAL is depen-
dent on the quality of the data in DIDA, which is noisy in
the sense that not every instance has the same quality, even
though they are all from peer-reviewed publications and a
curating efforts were made. To improve the DIDA quality
we aim to expand it but also introduce mechanisms for the
community rating of its content so that high-quality subsets
can be used for training and debated cases can be excluded
with clear motivations.

CONCLUSION

Research on oligogenic diseases is still at an exploratory
stage due to the lack of resources to analyse variants in
combinations across several loci. This task is even more dif-
ficult due to the phenotypic and genetic heterogeneity as-
sociated with cases. Nevertheless, it is essential to offer the
opportunity of a combinatorial variant combination anal-
ysis with an interactive exploration of the results to de-
rive a biological explanation for patients. ORVAL offers
such an innovative web-platform that integrates different
resources to predict potentially disease-causing oligogenic
variant combinations and visualizes the results within their
biological context. This tool provides a new essential step
towards helping clinicians and researchers to improve their
oligogenic investigations by formulating new hypotheses to
study more complex genetic diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Scott,E., Ciancanelli,M.J., Lafaille,F.G., Markle,J.G. et al. (2015) The
human gene damage index as a gene-level approach to prioritizing
exome variants. Proc. Natl. Acad. Sci. U.S.A., 112, 13615–13620.

29. Itan,Y., Mazel,M., Mazel,B., Abhyankar,A., Nitschke,P.,
Quintana-Murci,L., Boisson-Dupuis,S., Boisson,B., Abel,L.,
Zhang,S.-Y. et al. (2014) HGCS: an online tool for prioritizing
disease-causing gene variants by biological distance. BMC Genomics,
15, 256.

30. Palczewska,A., Palczewski,J., Robinson,R.M. and Neagu,D. (2013)
Interpreting random forest models using a feature contribution
method. In: Information Reuse and Integration, 2013 14th
International Conference on IEEE, pp. 112–119.

31. Barabasi,A.-L. and Oltvai,Z.N. (2004) Network biology:
understanding the cell’s functional organization. Nat. Rev. Genet., 5,
101–113.
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