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ABSTRACT: Climatic changes are major hindrances to crop productivity.
Likewise, water scarcity is the major obstacle during different physiological and
phenological stages, which ultimately reduces the wheat crop yield. So, there is a
dire need to adopt modern approaches such as soil amendments, i.e., using nano-
biochar (NBC) to boost soil health and wheat crop productivity. Therefore, a case
study was performed in the wire house of the Agronomy Department, Faculty of
Agriculture and Environmental Sciences, Islamia University of Bahawalpur. CRD
(completely randomized design) with four treatments of NBC, i.e., NBC0
(control), NBC1 (0.5%), NBC2 (1.00%), NBC3 (1.5%), and four drought levels
D0 = control, D1 = drought at tillering, D2 = drought at flowering, and D3 =
drought at grain filling was used. The hypothesis for the case study was to
investigate if the NBC increases crop productivity by boosting physiological and
chemical attributes under different drought conditions at different phenological
stages. Results showed that among NBC treatments, NBC2 (1.00%) showed 37.10% increase in peroxidase activity, 28.60% in
superoxide dismutase, 63.33% in catalase, 22.03% in ascorbate peroxidase, and 6.66% in plant height as compared to other NBC
treatments, whereas among drought treatments, D0 = control stood out in comparison to water deficit treatments at critical growth
and development stages, statistically analyzed data revealed that D0 was able to generate plant height 6.17 times more, 12.76% in the
number of grains per spike, 4.60% in osmotic potential, and 2.96% in stomatal conductance activities of wheat crop. D3 and NBC0
were identified as treatment levels with the statistically lowest growth and yield returns, respectively. It showed a decrease of 4.69%
in leaf relative water contents, 12.33% in water potential, and 23.64% in fertile tillers. It was recommended that drought is avoided at
any critical growth, particularly at the grain-filling stage. The use of organic substances (fertilizers) must be promoted as they possess
soil and crop health-promoting properties and also reduce different management expenses (fertilizer cost). Using NBC helps boost
crop growth in the presence of a limited water supply. However, extensive research is needed to find out the impact of these organic
substances (humic acid, farmyard manure, and NBC) on different crops, particularly on wheat, under stress conditions.

■ INTRODUCTION
A lot of challenges are there to the growth and productivity of
agriculture, like climate change, shortage of water, changes in
the pattern of rainfall, shrinking arable lands, fluctuating
temperature, population transfer from rural to urban areas, and
increasing prices of inputs. Hence, there is a dire need for the
adoption of modern agriculture tactics to increase per unit area
of crop production1,2 Food production should be doubled until
2050 as the world’s population is growing so fast.3 It was
suggested by4 that optimal production practices for increasing
wheat yield should be adopted rather than increasing the
production area. Water scarcity is a severe issue in this regard,
which substantially affects wheat production.5,6 Total area
affected by drought is 42% compared to area affected by heat

stress which makes 58%.7 In rain-fed areas, wheat ranked first
due to its high cultivation, and in irrigated areas, it ranked
second after rice. In rain-fed areas, wheat crop faced heat stress
and drought at the grain-filling stage, resulting in poor yields.8−
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This condition substantially challenges food security and
supply chain globally, especially in Asian countries, as half of
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wheat is cultivated in this region. Heat stress and drought
conditions are major components for lowering the yield in the
Indian peninsula, especially during the grain-filling stage.
Biochar can be used for soil amendment, for boosting the
efficiency of chemical fertilizers, and for enhancing the grain
yield of the crop. High rates of biochar are often applied, as
biochar may be lost by runoff, so this practice may be
impractical for optimizing the fertilizer strategy successfully.
However, some researchers investigated that this biochar can
be converted after some special treatments into nano-biochar
(NBC), which is extensively present in the atmosphere and
vegetation. Due to its surface and particle size, this NBC can
easily be coupled with other elements to become a high-
efficiency fertilizer.11−14

NBC application to sunflower crops enhanced crop yield
and growth,15 rapeseed and wheat16,17 along drought
conditions. It was proposed18 that NBC application as a soil
amendment can lower the soil erosion caused by rainfall, and
this application also positively affected the soil moisture in
plateau. It was reported to increase the grain yield by 10−20%
and reduce fertilizer usage to 30−50%.19 It was investigated
that NBC application hampers the negative impact of drought
stress by enhancing the protective enzymes activity and
electron transfer in crops.20 Drought conditions lead to the
closure of stomata, turgor loss, and reduction in water
contents, even sometimes it causes the death of plants by
disturbing plant metabolism.21

Biochar is the best alternative for coping with the stress
situations like drought in a sustainable agriculture system due
to its long-lasting availability as a carbon sink in the soil; cat
ion exchange capacity, soil porosity, and it also act as a shelter
for beneficial microbes.15,22,23 Soil application of biochar
brushes up the seed germination, soil water holding capacity,
seedling emergence, crop yield, and other chemical functions
of soil.19,24,25 So, this biochar application hampers the adverse
effect of drought on different critical situations of wheat.
Humic acids play several important roles, such as increasing

soil physical and biochemical activities by improving the
structure, texture, water holding capacity (WHC), and
microbial population;26 increasing soil nutrients availability,
especially micronutrients, by chelating and cotransporting
micronutrients to plants,27 reducing the transportation of toxic
heavy metals by precipitating them, thus reducing toxic heavy
metals intake by plants.28 Humic acids also increase crop
growth by increasing plant growth-promoting hormones such
as auxin and cytokinin, which aid in stress resistance, nutrient
metabolism, and photosynthesis.26,29,30 Some studies have
reported no effects on crop growth and soil health following
humic acid application.31−33

Although high humic acid doses are associated with
enhanced soil physical characteristics,34 their effects on soil
chemical characteristics and crops are still uncertain.35 Among
the factors analyzed in mostly greenhouse experiments, the
humic acid source significantly affected both root and shoot
growth, while the application rate only affected shoot growth
significantly. De Melo et al.,36 highlighted carboxylic (COOH)
and phenolic (OH) groups as predominant humic acid feature
largely responsible for their functions in the soil. Humic acid
chemical and molecular structures, sources, and application
rates are critical for determining their effects on crops and soil.
Importantly, humic acid application can have inconsistent
results on yield, possibly due to the different humic acid’s
biological origins.37

So, we hypothesize that NBC application hampers the
adverse effect of drought and boosts the plant physiologically
and phenologically.

■ MATERIALS AND METHODS
The experiment was conducted in an agronomic field area
(latitude: 29° 23′ 60.00″N, longitude: 71° 40′ 59.99″E),
faculty of Agriculture and Environmental Sciences, The Islamia
University of Bahawalpur. Significant drought levels and NBC
dose levels were tested in the field experiment. The experiment
was replicated three times under a completely randomized
design (CRD) with four treatments of NBC0 (control), NBC1
(0.5%), NBC2 (1.00%), and NBC3 (1.5%) and four drought
levels D0 = control, D1 = drought at tillering, D2 = drought at
flowering, and D3 = drought at grain filling.
Akbar 2019 variety of wheat was used for experimentation

purpose. Seeds were obtained from the RARI (Regional
Agricultural Research Institute). Seeds were planted in plastic
bags (26 × 29 cm) filled with biochar mixed soil.
Physiochemical analysis of the soil is given below in Table 1.

Wire house was covered with plastic sheets to avoid plants
from direct rain exposure. Pots were watered evenly until full
emergence, and four plants per pot were maintained by
uprooting the extra plants.

■ BIOCHAR APPLICATION AND IMPOSITION
Vertical kiln was used for pyrolyzing the wheat straw at 500 °C
as described by ref 38 with the following properties: particle
size of 3 mm, bulk density of 0.53 g cm−3, micropore surface
area of 73.6 m2 g−1, micropore volume of 0.024 cc g−1, cation
exchange capacity of 13.4−14.8 c mol kg−1, ash content of
20.7%, and pH 9.1.17

Every pot was watered evenly before drought initiation.
Then, 30% pot water holding capacity was maintained at
tillering, flowering, and grain filling stages. While 80% water
holding capacity was declared as the control condition.

■ RECORDED PARAMETERS
Growth and Yield Parameters. Growth and yield-related

parameters like plant height (cm), grain per spike, spike length
(cm), 1000 grain weight (g), biological yield/plant, and grain
yield/plant were recorded per standard procedure.
The following formula recorded harvest index

= ×HI
grain yield

bilogical yield
100

Table 1. Physiochemical Analysis of Soil

parameters soil profile

sand 56%
silt 33%
clay 11%
texture class sandy loam soil
pH 7.23
electric conductivity (dS m−1) 2.55
ammoniac N (mg g−1) 1.58
organic matter (%) 0.92%
available phosphorus (ppm) 6.75 ppm
available potassium (ppm) 112 ppm
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Determination of Physiological Parameters. Photo-
synthetic pigments like chlorophyll a and chlorophyll b were
extracted through a spectrophotometer process in 80% acetone
solution.39 A pulse amplitude modulation fluorometer was
used to detect the fluorescence of chlorophyll in leaves (Handy
PEA. Hansatech, Norfolk, UK). Leaves were adapted to
darkness for 30 min. Total 30 measurements were collected
from each treatment. The water use efficiency (WUE) was
calculated as described by ref 25.

=WUE grain yield/total water applied

Stomatal conductance was calculated using a poro-
meterMK-3, Delta-T Devices, Burwell, England.

Determination of Electrolyte Leakage and Hydrogen
Peroxide Concentration. Antioxidant enzyme activity and
oxidative stress were measured after 65 days of planting. For
correct determination of electrolyte leakage % (EL) in shoots
of plants, the samples were kept vertically in tubes. Heating
was done in distilled water for a period of 2 h and temperature
of 32 °C. The recorded reading was mentioned as EC1.
Another sample was given the same treatment but at a
temperature of (121 °C) and a period of 20 min and the
reading was mentioned as EC2. Finally, the EL (%) was
calculated by following formulas.

= ×EL
EC1
EC2

100

While for the calculation and estimation of H2O2, 3.0 mL
buffer solution of phosphate was added to 50 mg of sample,
and this solution was centrifuged for 30 min at a temperature
of 4 °C. Then, the supernatant was added with 1.0 mL of
titanium sulfate (0.1%), and this solution was centrifuged at
6000 rpm for 20 min at a temperature of 4 °C; then, the
absorbance of supernatant was determined. H2O2 determi-
nation and calculation were done by an extinction coefficient
of 0.28 mol−1 cm−1.

Estimation of Antioxidant Enzymes. The activity of
superoxide dismutase (SOD) was determined by the method
described by ref 40. 50 mM phosphate buffer (with pH of 7.8),
13 mM methionine, 0.1 μM EDTA, 0−100 μL of enzyme
extract, and 75 μM nitro blue tetrazolium in a 3 mL mixture
were added to 2 μM riboflavin. A 15 W fluorescent tube was
used to illuminate the test tubes, which were shaken
continuously.
The reaction was allowed to continue for 10 min, the

fluorescence tube was switched off, and an absorbance reading
was done at 560 nm. One unit of SOD was described as the
amount of enzyme required for 50% inhibition in the reduction
rate of nitroblue tetrazolium.
Hwang et al.,41 purposed a procedure for measuring the

CAT activity by determining the decomposition rate of H2O2
at 240 nm. POD activity was determined by the guaiacol
oxidation method as described by Maehly and Chance 1954
with minor modifications, i.e., 50 mM potassium phosphate

Figure 1. Effect of NBC treatments on wheat plant height under drought stress

Figure 2. Effect of NBC treatments on wheat plant NFT under drought stress.
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mixed with 0.4% H2O2, 1% guaiacol, and enzyme extracts were
mixed with 3 mL solution. The absorption rate increased as
guaiacol oxidation increased (E = 25.5 mM−1 cm−1) at 470 nm.

Statistical Analysis. STATISTIX 8.1 was used on raw data
to compute variance analysis (ANOVA) and least significant
difference (LSD) at 5% probability level for mean data
comparison.31 Then, the data were subjected to PCA
(principal component analysis), and biplot figures were

developed through origin pro 9.1 software to determine the
results.

■ RESULTS
Plant Height. Statistically analyzed data of plant height in

Figure 1 show that wheat plant height was significantly affected
by different drought treatments at critical growth stages and
changes with NBC treatments. Wheat maximum plant height

Figure 3. Effect of NBC treatments on wheat plant NGS under drought stress.

Figure 4. Effect of NBBC treatments on wheat plant spike length under drought stress.

Figure 5. Effect of NBC treatments on wheat plant 1000 GW under drought stress
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was reported under control treatment (61.67) and lowest in
drought at grain filling (53.94). Interaction relation was
statistically nonsignificant between drought and NBC treat-
ments

Number of Fertile Tillers. Statistically analyzed data of
no. of fertile tillers (NFT) presented in Figure 2 show that
fertile tillers were significantly affected by different drought
treatments at critical growth stages and NBC treatments.
Wheat plant with the highest population of productive tillers
was reported under control treatment (8.19) and lowest in
drought at grain filling (5.48). Interaction relation was
statistically nonsignificant between drought and NBC.

No. of Grains per Spike. The analytically arranged data of
the number of grain spike-1 in Figure 3 indicates that different
drought treatments at critical growth stages and multiple doses
of NBC had a significant impact on wheat grains per spike
(NGS). Wheat plant spikes with the highest grain population
were present in the control treatment (33.31), and statistically,
minimum wheat plant NGS (no. of grains per spike) were in
drought at grain filling (27.41). Interaction relation was
statistically nonsignificant between drought and NBC.

Spike Length (cm). Analytically arranged data of spike
length shown in Figure 4 indicate that different drought
treatments at critical growth stages and NBC treatments had a

significant impact on wheat spike length (SL). Wheat plant
spikes with the highest length were present in control
treatment (13.12), and a statistically minimum length of
wheat plant spikes was in drought at grain filling (10.87).
Interaction relation was statistically nonsignificant between
drought and NBC (nano biochar).

1000 Grain Weight (g). Statistically analyzed data
regarding 1000 grain weight represented by Figure 5 show
that different levels of drought significantly impacted the
weight of 1000 grains at crucial growth and development
stages and NBC treatments. Statistically maximum 1000 grain
weight of wheat plants were recorded in the control treatment
(29.10) and the lowest in drought at grain filling (23.54).
Interaction relation was statistically nonsignificant between
drought and NBC.

Grain Yield (g pot−1). Statistically analyzed data regarding
grain yield per pot represented by Figure 6 show that different
levels of drought significantly impacted grain yield at crucial
growth and development stages and NBC treatments.
Statistically maximum grain yield of wheat plants was recorded
in the control treatment (9.83) and the lowest in drought at
grain filling (7.60). Interaction relation was statistically non-
significant.

Figure 6. Effect of NBC treatments on wheat plant grain yield under drought stress.

Figure 7. Effect of NBC treatments on wheat plant biological yield under drought stress
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Biological Yield (g pot−1). Statistically analyzed data
regarding biological yield per pot represented by Figure 7 show
that grain yield has significantly fluctuated with different levels
of drought at significant growth and development stages and
NBC treatments. Statistically maximum biological yield of
wheat plants was recorded in the control treatment (15.72)
and the lowest in drought at grain filling (10.30).

Water Use Efficiency. Statistically analyzed data regarding
WUE represented by Figure 8 show that WUE fluctuated
significantly with different levels of drought at important wheat
crop stages and NBC treatments. Statistically maximum WUE
of wheat plants was recorded in the control treatment (54.62)

and the lowest in drought at grain filling (46.12). Statistically,
nonsignificant interaction was observed between drought and
NBC.

Stomatal Conductance. The wheat leaf’s stomatal
conductance (SC) activity is represented by Figure 9.
Emergence of drought stress at different critical intervals
during wheat crop life cycle and different treatment levels of
NBC significantly impacted the wheat crop’s SC activity.
Statistical analysis revealed that maximum values of SC were
found in the control treatment (424.48), and activity of wheat
crop leaf SC was reported to be lowest by D3 = drought at

Figure 8. Effect of NBC treatments on wheat plant WUE under drought stress.

Figure 9. Effect of NBC treatments on wheat plant SC under drought stress.

Figure 10. Effect of NBC treatments on wheat plant LRWC under drought stress.
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grain filling (401.73). Statistically, nonsignificant interaction
activity was observed between drought and NBC treatments.

Leaf Relative Water Content. Figure 10 represents the
relative water contents of wheat leaf. Prevalence of drought
stress at different sensitive stages during wheat crop life cycle
and different treatment levels of NBC significantly impacted
the leaf relative water contents of wheat crop. Statistical
analysis revealed that maximum readings of RWC were found
in the control treatment (79.85), and water contents of wheat
crop leaf were yielded lowest by D3 = drought at grain filling
(69.81). Statistically, nonsignificant interaction activity was
observed between drought and NBC treatments.

Leaf Water Potential. The water potential (WP) contents
of the wheat leaf are represented in Figure 11. The emergence
of drought stress at different critical intervals during the wheat
crop life cycle and different treatment levels of NBC
significantly impacted the leaf water potential (LWP) of the

wheat crop. Statistical analysis revealed that maximum values
of LWP were found in the control treatment (1.34), and the
water potential of wheat crop leaf was reported to be lowest by
D3 = drought at grain filling (1.13). Statistically nonsignificant
interaction activity was observed between drought and NBC
treatments.

Osmotic Potential. Osmotic potential (OP) in Figure 12
represents the contents of the wheat leaf. Emergence of
drought stress at different critical intervals during the wheat
crop life cycle and different treatment levels of NBC
significantly impacted OP of wheat crop. Statistical analysis
revealed that maximum values of OP (osmotic potential) were
found in the control treatment (1.24), and OP of wheat crop
leaf was reported lowest by D3 = drought at grain filling
(1.13). Statistically, nonsignificant interaction activity was
observed between drought and NBC treatments.

Figure 11. Effect of NBC treatments on wheat plant WP under drought stress.

Figure 12. Effect of NBC treatments on wheat plant LOP under drought stress.

Figure 13. Effect of NBC treatments on wheat plant TP under drought stress.
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Figure 14. Effect of NBC treatments on wheat plant APX under drought stress

Figure 15. Effect of NBC treatments on wheat plant CAT under drought stress.

Figure 16. Effect of NBC treatments on wheat plant POD under drought stress.
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Turgor Potential. Turgor potential (TP) contents of the
wheat leaf are represented in Figure 13. The emergence of
drought stress at different critical intervals during the wheat
crop life cycle and different treatment levels of NBC
significantly impacted the turgor potential (TP) of wheat
crop. Statistical analysis revealed that maximum values of TP
were found in the control treatment (0.29), and the TP of
wheat crop leaf was reported to be lowest by D3 = drought at
grain filling (0.22). Statistically, nonsignificant interaction
activity was observed between drought and NBC treatments.

Ascorbate Peroxidase. APX (Ascorbate peroxidase)
activity data are represented by Figure 14, which shows that
drought application at different critical stages and different
NBC treatments had a statistically significant effect on APX
activity of wheat crop. APX activity was higher (1.50) in plots
made up of control treatment; however, minimum activity of
APX was recorded in plots receiving drought at grain filling
(0.72). Statistically significant interaction activity was observed
between drought and treatments of NBC.

Catalase Activity. CAT (catalase) activity data are
represented by Figure 15, which shows that drought
application at different critical stages and different NBC
treatments had a statistically significant effect on CAT activity
of wheat crop. CAT activity was higher (5.01) in plots made
up of the control treatment; however, minimum activity of
catalase was recorded in plots receiving drought at grain filling
(1.57). Statistically, nonsignificant interaction activity was
observed between drought and NBC treatment.

Peroxidase Activity. POD (peroxidase) activity (PA) data
are represented by Figure 16, which shows that drought
application at different critical stages and different NBC
treatments had a statistically significant effect on PA of wheat
crop. PA was higher (3.40) in plots of the control treatment;
however, minimum activity of peroxidase was recorded in plots
receiving drought at grain filling (1.70). Statistically non-
significant interaction activity was observed between drought
and NBC treatments.

Superoxide Dismutase. SOD activity (SDA) data are
represented by Figure 17, which shows that drought
application at different critical stages and different NBC
treatments had statistically significant effects on SDA of wheat

crop. SDA was higher (176.28) in plots of the control
treatment; however, minimum activity of SOD was recorded in
plots receiving drought at grain filling (96.96). Statistically
significant interaction activity was observed between drought
and levels of NBC.

■ DISCUSSION
Crop growth and yield parameters play an important part in
determining various responses of plant attributes to different
field and environmental conditions, having a significant impact.
Plant height is also among those attributes that are important
in crop growth and development. An increase in soil moisture
and fertility increases plant height too. A similar record was
observed in a wire house experiment showing that normal
irrigation yielded a 6.17% increase in plant height, whereas
nutritional values of NBC also showed significant results in
increasing plant length. The application of NBC (1.00%)
yielded the highest height with a 6.66% increase. This study is
similar to Ahmad et al.,44 who reported that biochar had a
significant effect on wheat crop growth. Number of fertile
tillers contributes directly toward the final grain by producing
maximum number of tillers with the ability to produce spikes
with healthier and heavier seeds. Under normal conditions
with abundant irrigation levels, a maximum number of tillers
was produced, and an increase in fertile tillers by 23.64% was
reported under normal irrigation, whereas NBC (1.00%)
influenced the production of productive tillers by 17.63%.42

stated that NBC application had a positive impact on wheat
growth and yield.
Different yield contributing factors (spike length, number of

grains per spike, 1000 grain weight, grain yield, and biological
yield) are interlinked in such a way that any fluctuation in one
yields changes in all other dependent attributes. The absence
of proper moisture level at critical growth stages results in
smaller spikes, leading to lower grain yield. Under normal
irrigation and growth enhancing factor (NBC 1%), spike
length was enhanced by 12.17 and 1.74%. Grain count per
spike was also boosted by increasing the above-mentioned
yield-determining components as higher grains were produced
under enhanced growth due to the prevalence of desired
moisture and nutrient levels. Under normal irrigation, grain

Figure 17. Effect of NBC treatments on wheat plant SOD under drought stress.
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count per spike was increased by 12.76%, and providing soil
and crop promoting supplements, NBC (1.00%) produced
7.09 times more grains per spike than stress or non NBC
application.
A 1000 grain weight phenomenon is quite familiar with

these components as it also points out the crop response to
photosynthates produced as a result of the photosynthesis
process. Maximum utilization of these photosynthates is
facilitated under optimum moisture levels, and the presence
of extra nutritional sources also had a positive impact. Under
normal irrigation level, the 1000 grain weight was increased by
11.38%, and NBC treatment (1.00%) increased the 1000 grain
weight by 7.38%. All these findings regarding yield components
align with the studies of42,43 who reported that drought at any
stage decreases wheat crop growth and yield.
Crop management practices aim to attain maximum grain

yield by using all of the available resources. The absence of
water at any stage of crop growth directly affects the grain yield
as reduction in any growth stage ultimately results in reduced
grain production and lower grain mass as lighter and weaker
grains are produced. Maximum grain yield is obtained under
normal irrigation in combination with providing nutritional
support to crop. Under normal irrigation, grain yield showed
boost of 17.66% and NBC (1.00%) provided maximum
positivity toward crop grain yield by showing an increase of
11.03%. Biological yields comprise the total dry matter
consumed during the crop life cycle in a particular season.
Maximum activity of TDM accumulation was reported under
normal irrigation, with a 27.48% increase. NBC (1.00%) also
contributed effectively toward TDM accumulation, resulting in
enhanced biological yield by 11.88 times. All these findings
regarding yield components align with the studies of refs 43
and 44 who reported that drought at any stage decreases wheat
crop growth and yield.
Similar to yield components, physiological processes are also

linked with each other in different manners; different
physiological processes contribute individually and in combi-
nation toward crop growth and metabolic processes. WUE
points out economic production in terms of water units
consumed. Maximum activity of WUE was recorded under

normal irrigation, which showed a 9.29% increase, whereas
NBC treatments also produced a positive response from WUE
activity, but a maximum response with 7.16 times higher
activity of WUE was recorded under NBC (1.00%) treatment.
This result agrees with refs 17 and 44 who reported that
biochar application helped increase WUE. Leaf relative water
content and potential water activity also showed significant
activity variation under different drought treatments and NBC
doses levels. Availability of the maximum moisture level speeds
up the activity of these components, whereas under deficit
conduction, activities of these components slow down.
Maximum activity of LRWC with 4.69 increases and a
12.33% increase in water potential activity was recorded in
normal irrigation. NBC also extracted positive responses from
these physiological attributes having 6.22 and 3.21 times higher
RWC and WP activity, respectively. It has been reported that
biochar application helped increase physiological activities
(RWC and water potential).17

TP and OP recorded a similar response pattern due to
linkage with the above-discussed physiological (LRWC and
water potential) components. TP activity was increased by
17.51% under normal irrigational conditions, whereas OP was
increased by 4.60%. NBC treatments had an encouraging effect
on both physiological activities, generating an 11.11 and 4.60%
increase in turgor and osmotic potential, respectively. These
results are similar to the findings of ref 17 who reported that
biochar application helped increase WUE. SC relates to two
environments (outside plant body and internal plant activities).
Stomata conductivity is reduced whenever any stress condition
is developed, which protects the plant’s internal metabolic and
physiological structure. Under normal irrigation, SC enhanced
performance by 2.96 times, whereas NBC (1.00%) had a
positive influence of 1.90 times higher than other treatments. It
has been reported that biochar application reduced drought
impact on SC.45 The cocomposted biochar (CB) showed
beneficial effects for eggplants to induce drought stress
tolerance. Hence, CB might generate water stress tolerance
in vegetable crop plants.46 In addition, biochar may enhance
the crop productive capacity of soils under various biotic and
abiotic stresses, which may help to overcome the food shortage

Figure 18. Biplot description of experiment showing 92.20% data variability: for example, acute angles showed the positive and negative relations
among different parameters such as 1000 grain weight (1000GW), SC, grain yield per plant (GYP), LWP, grains per spike (GPS), spike length
(SL), NFT, APX, plant height (PH), SOD, catalase activity (CAT), leaf relative water contents (LRWC), POD, WUE, biochar levels BC0, BC1,
BC2, and BC3, and different drought levels, i.e., D0, D1, D2, and D3.
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worldwide.47 It has been reported that using acidified biochar
may also be a potential application for soil amendment for
improving the growth and productivity of fava bean plants
under drought conditions.48,49

Antioxidant enzymes are produced to reduce the effects of
reactive oxygen species generated under stress, thus reducing
the biochemical activity of crop plants. These antioxidant
enzymes, including POD, SOD, CAT, and APX perform
different complex activities and breakdown of macromolecules
into micro molecules, ultimately eliminating the negative
impact of ROS. NBC also had a positive influence on these
antioxidant enzymes, thus enhancing their activity. NBC
(1.00%) boosted POD performance by 37.10 times, SOD by
28.60 times, CAT by 63.33%, and APPX by 22.03 times.
Whereas under normal irrigation conditions, increases of
48.56, 24.69, 22.26, and 28.78% are seen in APX, CCAT,
POD, and SOD, respectively. The biochar application reduced
drought impact on antioxidant enzymes.35,45

■ CONCLUSIONS
Crop performs well under the availability of the optimum
moisture level. Drought stress affected wheat crop productivity,
but biochar application mitigated this effect. The whole
experiment is described briefly in biplot design, as shown
below in Figure 18.
The use of NBC positively impacted soil and crop health,

specifically under drought conditions. Different growth,
physiology, and biochemical attributes’ efficiency was
enhanced by NBC application under control conditions and
NBC level. To economically, environmentally friendly, and
maximize return from NBC application, it was recommended
to avoid water stress and use NBC at a rate of 1.00%.
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