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A B S T R A C T

Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding
their versatile properties to interact with various biological targets. Quantitative structure-activity relationship
(QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38
sulfur-containing derivatives (Types I–VI) were evaluated for their in vitro anticancer activities against 6 cancer
cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell
line (IC50 ¼ 14.47 μM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e.,
HepG2, A549, and MDA-MB-231: IC50 range ¼ 1.50–16.67 μM). Compound 10 showed the best activity for
MOLT-3 (IC50 ¼ 1.20 μM) whereas compound 22 was noted for T47D (IC50 ¼ 7.10 μM). Subsequently, six QSAR
models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided
reliable predictive performance (training sets: Rtr range ¼ 0.8301–0.9636 and RMSEtr ¼ 0.0666–0.2680; leave-
one-out cross validation sets: RCV range ¼ 0.7628–0.9290 and RMSECV ¼ 0.0926–0.3188). From QSAR
modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-
water partition coefficient, as well as frequency/presence of C–N, F–F, and N–N bonds in the molecule are
essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-
thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anti-
cancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advan-
tageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with
improved bioactivities and properties.
1. Introduction

Cancer is one of common leading causes of death worldwide. It is also
well-recognized as chronic disease which affecting human well-being.
New cancer cases and mortality rate have been continuously reported
and are predicted to be topped up for approximately 50% in the next two
decades [1]. Many clinically available anticancer drugs are
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problematically concerned for their adverse side effects and drug resis-
tance [2]. Development of novel anticancer agents with desirable effec-
tiveness and minimized toxicities is, therefore, considered to be one of
research area to serve the needs for global health [3, 4, 5].

In the field of medicinal chemistry, sulfur containing molecules can
be found in many pharmaceuticals and natural products [6, 7]. Among
these, thiourea (–NHCSNH–) and sulfonamide (–SO2NH–) have been
(V. Prachayasittikul).
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noted as important motifs with anticancer activity and others (i.e.,
antimicrobial, antimalarial, and antiviral activities). These pharmaco-
logically attractive characters were noted to be due to their structural
characteristics, which are capable of participating in various biomole-
cular targets and eliciting multiple interactions [7, 8, 9, 10, 11, 12, 13,
14]. Furthermore, thiourea and sulfonamide derivatives are generally
stable and are well-recognized for their synthetic feasibilities. Sulfon-
amide derivatives are also well-known for their preferable bioavailability
(i.e., good oral absorption) and safety (low side effects) [13].

In an area of anticancer drug discovery, thiourea and sulfonamide
derivatives were reported to exhibit their anticancer actions via inhibit-
ing diverse molecular targets such as tubulin [14, 15], carbonic anhy-
drase [16, 17], topoisomerase II [18], aromatase [19, 20],
cyclin-dependent kinase (CDK) [21], epidermal growth factor receptor
(EGFR) [22, 23], sirtuin [24], nucleotide pyrophosphatase/phospho-
diesterase [25], v-Raf murine sarcoma viral oncogene homolog B1
(BRAF) [26], and others. These suggested the potentials of these scaffolds
to be promising pharmacophores for discovery of novel anticancer
therapeutics.

One of current problems in drug development is the failures that
occur in the late stage of development. Accordingly, many computational
tools have been included as supportive tools for increasing success rate
and time-saving issue. Success story using in silico tools in anticancer drug
discovery have been reported [27, 28]. One of which, quantitative
structure-activity relationship (QSAR) modeling is well-known as a silico
tool used to gain informative knowledge regarding the key physi-
ochemical features which are required for good potency of the bioactive
molecules. Accordingly, QSAR modeling is widely used for guiding
design and structural modification of compounds to give new derivatives
with improved bioactivity as well as desirable pharmacokinetic proper-
ties [28, 29, 30, 31].

In this work, a series of in-house synthesized thiourea and sulfon-
amide derivatives (Figure 1) were evaluated for their in vitro anticancer
activities against 6 cancer cell lines to suggest a set of for potential
development. Additionally, the experimentally obtained bioactivity
values along with the chemical structures of compounds were used as
input data sets for QSAR model construction using multiple linear
regression (MLR) algorithm to give six predictive models revealing key
chemical features, as key predictors, for potent anticancer effects of the
compounds which would be of benefit for future successful discovery of
novel sulfur-based compounds as anticancer agents.

2. Results and discussion

2.1. Compounds

Anticancer investigations were performed towards a total library of
38 in-house synthesized sulfur-containing compounds. The studied
compounds were categorized into 6 types according to their core scaf-
folds (Figure 1). These thioureas/sulfonamides were substituted with R
groups (i.e., phenyl bearing F, Cl, Br, CN, NO2, CF3, CH3, OCH3, NH2,
including naphthalenyl). Three types of thiourea derivatives (Types I–III,
compounds 1–23) were synthesized by treatment of benzylamine ormeta
(m)- or para (p)-xylylenediamine with the corresponding isothiocyanates
[19, 32, 33] while another three sets of bis-sulfonamide derivatives
(Types IV–VI, compounds 24–38) were prepared by reaction of m- or
p-xylylenediamine or m-phenylenediamine with the corresponding ben-
zenesulfonyl chlorides [20]. The detailed synthesis of these compounds
1–38 was provided in the literature [19, 20, 32, 33].

2.2. Cytotoxic activity

Thioureaand sulfonamidederivatives (1–38)were investigated for their
cytotoxic effects against 6 human cancer cell lines; cholangiocarcinoma
(HuCCA-1), hepatocellular carcinoma (HepG2), lung carcinoma (A549)
lymphoblastic leukemia (MOLT-3), hormone-independent breast cancer
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(MDA-MB-231), and hormone-dependent breast cancer (T47D) as sum-
marized in Table 1. Etoposide, and/or doxorubicin were used as reference
drugs. Cytotoxicity against normal cell lines (i.e.,MRC-5andVero cell lines)
of the investigated compounds have been reported [20, 32] and their
selectivity index (SI) values are summarized in Table S1 in the supple-
mentary file.

For mono-thiourea derivatives (Type I, 1–7), most of the tested
thioureas (3–7) exerted a wide range of anticancer activities against all
tested cell lines (IC50 ¼ 5.07–119.51 μM), except for compounds 1 (R ¼
4-OCH3Ph) and 2 (R¼ 4-FPh) which showed low activities against only 2
cell lines (i.e., HepG2 and MOLT-3). Thiourea 6 containing 3,5-diCF3Ph
was the most potent compound of the set. It displayed highly potent
cytotoxic effect against MOLT-3 cell line with IC50 value of 5.07 μM.
Additionally, it exhibited better activity toward HepG2 cell line (IC50 ¼
16.28 μM) when compared with the reference etoposide (IC50 ¼ 26.05
μM).

Formeta-bis-thiourea derivatives (Type II, 8–15), it was found that all
the tested compounds displayed cytotoxicity toward MOLT-3 cell line
(IC50 ¼ 1.20–32.32 μM). Notably, the substitution with strong electron
withdrawing groups leading to thioureas 10 (with 4-F), 13 (with 4-CF3),
14 (with 3,5-diCF3), and 15 (with 4-NO2) which elicited high cytotoxic
effects against a broad range of tested cancer cells. Apparently, analog 10
bearing 4-fluoro phenyl group showed the most potent cytotoxic effect
against MOLT-3 cells (IC50 ¼ 1.20 μM). Interestingly, derivatives 10, 11,
and 13–15 exhibited more potent activities against HepG2 cells than the
etoposide. Among these, thiourea 14 with 3,5-diCF3 substituents was the
most potent cytotoxic agent (IC50 ¼ 1.50 μM against HepG2) performing
17.4-fold higher activity than the etoposide, but with 2.6-fold weaker
than the doxorubicin.

For p-bis-thiourea derivatives (Type III, 16–23), the p-derivatives
seem to be less active against all the tested cells than the corresponding
m-counterparts. This was observed for compounds 10> 18 (with 4-F), 11
> 19 (with 4-Cl), 13 > 21 (with 4-CF3), and 15 > 23 (with 4-NO2).
Remarkably, thiourea 22 with 3,5-diCF3 moieties displayed a diverse
range of anticancer activities toward all the tested cells (IC50 value range
of 2.49–30.95 μM). Notably, the compounds 16, 21 and 22 showed more
potent activity against HepG2 cell (IC50 ¼ 8.81–21.67) when compared
with the etoposide.

Considering the potent activities of thioureas 13 (IC50 ¼ 17.33 μM),
14 (IC50 ¼ 21.12 μM), 15 (IC50 ¼ 27.59 μM), and 22 (IC50 ¼ 7.10 μM)
against T47D hormone-dependent breast cancer cell line, their potent
cytotoxic effects observed herein might be due to their abilities to act as
aromatase inhibitors and inhibit estrogen production, as previously re-
ported by our group [19].

For the bis-sulfonamide derivatives (Type IV–VI, 24–38), 2,3,5,6-tet-
ramethylphenyl derivative 25 as well as 4-chlorophenyl compounds 28
and 38 displayed a broad array of cytotoxic activities toward all the
tested cells. Along the line, the 4-chloro derivative 28 was shown to be
the most potent cytotoxic compound against HuCCA-1 (IC50 ¼ 34.51
μM), A549 (IC50 ¼ 39.14 μM), and MOLT-3 (IC50 ¼ 16.52 μM) cells. The
2,3,5,6-tetramethylphenyl compound 25, 2-naphthalenyl compound 26,
and 4-trifluoromethylphenyl derivative 29were noted as the most potent
compounds against T47D (IC50¼ 30.92 μM), MDA-MB-231 (IC50¼ 31.14
μM), and HepG2 (IC50 ¼ 16.38 μM) cell lines, respectively. In addition,
the meta-sulfonamide 29 exhibited greater anticancer activity against
HepG2 cell line (IC50 ¼ 16.38 μM) than the etoposide.

All of the studied bis-sulfonamide derivatives (24–38) have been
disclosed to act as aromatase inhibitors except for compound 35 [20].
Additionally, some of these meta-bis-sulfonamides (i.e., 24, 27, 29, and
31) have been reported to induce apoptosis in various cancer cell lines.
The mechanism underlying the apoptosis of these compounds was
anticipated to be induced by their abilities to act as artificial Cl� ion
transporters, which lead to the disruption of ionic homeostasis and
excessive production of harmful reactive oxygen species (ROS) [34].

In overview, Type II meta-bis-thiourea CF3 compounds (13 and 14)
were noted as promising cytotoxic compounds against most of the



Figure 1. Chemical structures of compounds 1–38.
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investigated cancer cell lines. Type III-p-bis-thiourea di-CF3 compound
22 was noted as the most potent anticancer agent against T47D whereas
type II meta-bis-thiourea fluoro derivative 10 showed the most potent
activity against MOLT-3 (Table 1). It should be noted that all these
promising compounds are fluoro-containing derivatives. Fluorine has
been noted as an attractive atom in medicinal chemistry and drug dis-
covery. Introduction of single fluoro (F) or trifluoromethyl groups (CF3)
have been noted to increase metabolic/chemical stability, improve
pharmacokinetic profile (i.e., membrane permeability and bioavail-
ability), as well as increase binding affinity of compounds to target
protein [35]. Many anticancer drugs are fluoro derivatives [35]. Addi-
tionally, approximately 40% of the marketed drugs recently approved by
FDA in the year 2019 are fluorine-containing drugs and insertion of
fluorine in bioactive molecules has been noted as one of strategies to
lower risk of failure [36].

It should be noted that most of the studied compounds exhibitedmore
potent activity against non-solid cancer MOLT-3 cell line with low IC50
values (<10 μM) whereas those of activities against other cell lines
showed higher IC50 values (>10 μM), except for compounds 14 against
HepG2 cell line, and compound 22 against T47D cell line. These highly
potent compounds against MOLT-3 cell line included compounds from
Type II (i.e., mono-halogenated compounds (10–12) and NO2-derivatives
(15)), Type I (i.e., di-CF3 derivative 6), and Type III (i.e., CF3 derivatives
21 and 22). This finding suggested the potential of these compounds to
be further developed for management of non-solid cancer, a cancer type
which mainly relies on chemotherapy. Additionally, compound 10
showed high selectivity index (SI¼ 57.49, Table S1 in the supplementary
file) which suggested its high selectivity against cancer cells with lower
side effects.

2.3. QSAR study

QSAR modeling is a computational method to find the relationship
between chemical structure of the compounds and their activities.
Conceptually, properties of every compound can be described as a set of
numerical values called descriptors. These descriptors can be obtained by
structural calculation and can be used as independent variables (X
3

variables or predictors) to predict biological activities (Y variable) of the
compounds. Prior to model construction, data preprocessing was per-
formed including i) the preparation of bioactivity values (Y variables) by
taking the �log10 to convert the IC50 values into pIC50 values and ii) the
selection of informative descriptors (X) from the whole set obtained by
calculation to give a final set of predictors. Bioactivity values of all
compounds expressed in pIC50, and selected descriptor values are pro-
vided in Tables S2 and S3 in the supplementary file, respectively.

Multiple linear regression (MLR) is one of the most commonly ma-
chine learning algorithm used in the field of drug discovery [37]. A set of
actual bioactivity values (experimental pIC50 values, Table S2 in the
supplementary file) along with selected descriptor values (Table S3 in the
supplementary file) were prepared as an input dataset for MLR QSAR
modeling, subsequently, the model is returned in a form of linear equa-
tion representing Y variable (bioactivity) as a function of multiple X
variables (descriptors). This interpretable characteristic makes the MLR
an attractive algorithm suitable for QSAR-driven rational design. Several
MLR QSARmodels for anticancer activity prediction and guiding rational
design of many classes of compounds have been reported by our group
[38, 39, 40, 41].

Herein, experimental cytotoxic activities (IC50 values) along with
chemical structures of the investigated compounds (1–38) were used as
input datasets for QSAR modeling. According to cytotoxic activities
against 6 cancer cell lines, 6 datasets were separately prepared. For each
dataset, inactive compounds were excluded and the remaining active
ones were included in the dataset. Chemical structures of compounds
(1–38) were generated, geometrically optimized, and calculated using
computer software to obtain a large set of 1,574 descriptor values. Sub-
sequently, correlation-based feature selection followed by multiple linear
regression (MLR) algorithm were performed to obtain a set of selected
informative descriptors as predictors for bioactivity prediction (i.e.,
HuCCA-1 model ¼ 2 descriptors, HepG2 ¼ 4 descriptors, A549 ¼ 3 de-
scriptors, MOLT-3 ¼ 3 descriptors, MDA-MB-231 ¼ 3 descriptors, and
T47D¼ 3 descriptors), in which their definitions and values are shown in
Table 2 and Table S3 in the supplementary file, respectively).

For each QSAR model, the dataset was randomly divided into two
main sets using the leave-one-out cross validation (LOOCV) sampling



Table 1. Cytotoxic activity (IC50, μM) of S-containing derivatives (1–38) against 6 cancer cell lines.

Compound Cancer cell linesa

HuCCA-1 HepG2 A549 MOLT-3 MDA-MB-231 T47D

1 NC 139.66 � 4.97 NC 128.72 � 1.74 NC NC

2 NC 141.40 � 2.51 NC 104.91 � 1.01 NC NC

3 80.79 � 1.74 84.51 � 2.34 77.50 � 0.97 31.43 � 0.62 105.43 � 4.81 80.97 � 1.68

4 98.59 � 1.57 71.72 � 0.95 101.61 � 1.54 24.41 � 0.97 99.05 � 6.47 69.42 � 0.30

5 72.34 � 2.87 102.11 � 2.84 68.63 � 0.64 14.66 � 0.20 115.45 � 2.61 62.45 � 4.85

6 67.51 � 0.83 16.28 � 0.67 61.69 � 2.35 5.07 � 0.21 20.35 � 0.25 52.86 � 2.24

7 99.29 � 2.21 22.80 � 0.19 59.16 � 1.67 11.07 � 0.62 119.51 � 4.42 70.44 � 1.58

8b NC NC NC 13.90 � 1.09 91.83 � 2.19 NC

9b NC NC NC 32.32 � 6.92 NC NC

10 39.11 � 2.88 14.94 � 0.29 52.99 � 2.40 1.20 ± 0.02 43.34 � 0.04 95.38 � 4.80

11b 30.22 � 1.25 13.29 � 1.05 NC 2.23 � 0.26 14.74 � 0.33 31.54 � 2.16

12b NC 41.30 � 0.03 NC 2.62 � 0.28 13.70 � 0.03 NC

13b 14.47 ± 1.38 8.40 � 0.43 17.97 � 2.96 1.55 � 0.17 9.68 � 0.84 17.33 � 1.77

14b 18.82 � 2.34 1.50 ± 0.23 16.67 ± 1.11 3.63 � 0.46 8.05 ± 0.68 21.12 � 0.08

15b 14.84 � 0.50 10.53 � 0.58 44.71 � 3.49 3.40 � 0.44 12.55 � 0.82 27.59 � 0.42

16b 82.83 � 8.48 21.67 � 2.24 NC NC 69.46 � 2.05 NC

17b NC NC NC NC 90.12 � 2.52 74.92 � 0.96

18 99.54 � 5.96 86.88 � 4.58 NC NC NC 106.45 � 3.67

19b NC NC NC NC NC 73.53 � 0.96

20b NC NC NC NC 60.81 � 4.62 83.48 � 3.67

21b NC 15.52 � 1.12 NC 6.06 � 0.79 NC 71.60 � 5.30

22b 30.95 � 4.58 8.81 � 0.71 26.16 � 0.35 2.49 � 0.19 12.70 � 0.40 7.10 ± 0.18

23b NC 61.02 � 2.56 NC 11.40 � 0.45 59.01 � 4.10 80.65 � 7.55

24c 43.23 � 3.20 58.28 � 1.62 NC 30.07 � 0.67 61.79 � 0.77 43.93 � 0.85

25c 77.73 � 2.06 46.94 � 3.37 78.30 � 3.45 31.85 � 14.34 42.21 � 2.32 30.92 � 0.71

26c NC 74.52 � 5.55 NC NC 31.14 � 0.57 NC

27c NC 72.08 � 1.30 NC 43.06 � 0.98 68.30 � 0.35 75.27 � 2.04

28c 34.51 � 1.13 49.69 � 1.56 39.14 � 1.17 16.52 � 0.62 54.33 � 0.64 37.47 � 2.15

29c 81.16 � 4.98 16.38 � 1.25 NC NC 57.48 � 5.48 75.38 � 5.29

30c NC NC NC 38.41 � 2.08 NC 69.28 � 3.55

31c 38.52 � 0.55 51.77 � 0.31 NC 16.92 � 0.38 54.39 � 1.77 39.29 � 2.02

32c NC NC NC 34.04 � 4.34 NC 75.36 � 2.15

33c NC NC NC 24.97 � 0.50 63.67 � 0.33 NC

34c NC NC NC 50.61 � 1.01 NC 90.61 � 0.95

35c NC 74.37 � 5.31 NC NC NC NC

36c 97.96 � 0.67 NC NC NC 95.32 � 2.56 NC

37c NC NC NC 48.00 � 1.31 NC NC

38c 97.08 � 2.38 62.03 � 1.70 97.96 � 3.20 35.33 � 0.55 58.97 � 0.79 87.22 � 4.39

Doxorubicind 0.42 � 0.02 0.57 � 0.05 0.37 � 0.02 - 1.97 � 0.30 0.88 � 0.02

Etoposided - 26.05 � 0.50 - 0.041 � 0.003 - -

NC: IC50 > 50 μg/mL denoted as non-cytotoxic. IC50 is a concentration of compound required to produce 50% of inhibitory effect.
The most potent compounds against each cell line displaying the lowest IC50 values were highlighted in bold.

a Cancer cell lines comprise the following: HuCCA-1 cholangiocarcinoma cancer cell line, HepG2 hepatocellular carcinoma cell line, A549 lung carcinoma cell line,
MOLT-3 lymphoblastic leukemia cell line, MDA-MB-231 hormone-independent breast cancer, and T47D hormone-dependent breast cancer.

b Cytotoxic activities against HuCCA-1, HepG2, A549 and MOLT-3 have been reported in [32, 33].
c Cytotoxic activity against T47D has been reported in [20].
d Doxorubicin and etoposide were used as reference drugs.
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method. LOOCV is a way to validate the model by excluding one sample
from the whole dataset (N) to be used as a LOOCV testing set while the
remaining samples (N-1) were used as a training dataset. The training
dataset, containing values of both descriptor (X) and pIC50 (Y) variables,
was used to train the MLR for finding the linear relationships between
these X and Y variable, and the result was returned as a predictive
equation. Subsequently, the built model (equation) was used for pre-
dicting the pIC50 (Y) value of the leaved out sample (as a LOOCV testing
set) by its available descriptor (X) values. The accuracy of the prediction
was assessed by considering the difference between predicted pIC50 and
actual pIC50 values obtained from the experiment in which the lower gap
4

between these two values indicated low error of the prediction (as shown
by nearness of the dots in the plots of Figure 2, low error values in
Tables S3 and S4 in the supplementary file). The same sampling process
was continued until all samples in the dataset were leaved out to be used
as a testing set. After the sampling is completed, the average values of
several rounds were calculated as correlation coefficient (R) and root
mean squared error (RMSE).

The constructed QSAR models are shown in Eqs. (1), (2), (3), (4), (5),
(6). All models provided preferable predictive performance as shown by
their statistical parameters (i.e., high correlation coefficient (Rtr:
0.8301–0.9636 and RCV ¼ 0.7628–0.9290) but low root mean squared



Table 2. Definitions of informative descriptors for QSAR modeling.

Descriptor Type Definition

QZZma Geometrical
descriptors

Quadrupole z-component value/weighted by mass

B08
[N–N]a

2D Atom Pairs Presence/absence of N–N at topological distance 8

Mor03mb 3D-MoRSE
descriptors

Signal 03/weighted by mass

Mor07ub 3D-MoRSE
descriptors

Signal 07/unweighted

Mor29vb 3D-MoRSE
descriptors

Signal 29/weighted by van der Waals volume

Mor07eb 3D-MoRSE
descriptors

Signal 07/weighted by Sanderson
electronegativity

IC2c Information indices Information Content index (neighborhood
symmetry of 2-order)

Mor11pc 3D-MoRSE
descriptors

Signal 11/weighted by polarizability

cRo5c Drug-like indices Complementary Lipinski Alert index

F01[C–N]d 2D Atom Pairs Frequency of C–N at topological distance 1

E2md WHIM descriptors 2nd component accessibility directional WHIM
index/weighted by mass

MLOGPd Molecular properties Moriguchi octanol-water partition coefficient
(logP)

ATS7me 2D autocorrelations Broto-Moreau autocorrelation of lag 7 (log
function) weighted by mass

RDF090me RDF descriptors Radial Distribution Function - 090/weighted by
mass

MLOGP2e Molecular properties Squared Moriguchi octanol-water partition
coefficient (logP̂2)

F06[F–F]f 2D Atom Pairs Frequency of F–F at topological distance 6

RDF095mf RDF descriptors Radial Distribution Function - 095/weighted by
mass

RDF150mf RDF descriptors Radial Distribution Function - 150/weighted by
mass

a Predictors of HuCCA-1 model (Eq. 1).
b Predictors of HepG2 model (Eq. 2).
c Predictors of A549 model (Eq. 3).
d Predictors of MOLT-3 model (Eq. 4).
e Predictors of MDA-MB-231 model (Eq. 5).
f Predictors of T47D model (Eq. 6).
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error (RMSEtr 0.0666–0.2680 and RMSECV ¼ 0.0926–0.3188), Table 3).
Plots between experimental and predicted pIC50 values of the 6 con-
structed QSAR models are shown in Figure 2, and values are given in
Tables S4 and S5.

2.3.1. HuCCA-1 model

pIC50 ¼ 0.0002 (QZZm) þ 0.3623 (B08[N–N]) � 2.0124 (1)

Descriptors presented in the QSARmodel indicated that the presence/
absence of N–N and mass are influencing properties for anticancer effect
against HuCCA-1 cell line. Positive regression coefficient values of both
descriptors indicated that high values of both descriptors are required for
potent activity of the compounds. B08[N–N] is a predictor with higher
influence on the prediction, as shown by its higher regression coefficient
when compared to that of QZZm.

Among 20 active compounds in all types, compounds in meta-bis-
thiourea derivatives Type II (11, 13, 14, and 15) were shown to be the
most potent class because they are the only class having B08[N–N] values
¼ 1, while those of others having B08[N–N] values ¼ 0 (Table S3 in the
supplementary file). This is suggested that position of the linked thio-
ureas on the central aromatic ring atmeta-position seems to be crucial for
potent activity against HuCCA-1 cell line. This was also observed for the
decreased activity of para-bis-thiourea di-CF3 and F derivatives when
compared with their meta-analogs (14 > 22 and 10 > 18). However, it
5

was observed that an addition of another thiourea group on the mole-
cules of Type I thiourea derivatives (3–6) improved activities of the ob-
tained bis-thiourea derivatives, both formeta-series Type II (11> 3, 13>

5, 14 > 6), and para-series Type III (22 > 6).
Replacement of thiourea groups on both sides of the central ring with

sulfonamides lead to decreased activities of the compounds via decreasing
the values of both descriptors (QZZm and B08[N–N]), as shown when
comparing activities of CF3, Cl and NO2 bis-sulfonamide derivatives with
their bis-thioureas (11 > 28, 13 > 29, and 15 > 31). This indicated that
thiourea functional group is required for potent activity.

Additionally, shorten the length of alkyl chain linker from 2C to 1C
affected values of mass QZZm descriptor and impaired activity of the
compound, 28> 38 (28: QZZm¼ 1133.55, pIC50¼�1.538, 38: QZZm¼
574.71, pIC50 ¼ �1.987, Tables S2 and S3).

2.3.2. HepG2 model

pIC50 ¼ -0.0597 (Mor03m) þ 0.0388 (Mor07u) þ 1.3986 (Mor29v) þ 0.0267
(Mor07e) � 2.6129 (2)

The QSARmodel indicated that van der Waal volume (Mor29v), mass
(Mor03m), and electronegativity (Mor07e) play role in cytotoxic activity
against HepG2 cell line.

Similar with the HuCCA-1 model, active compounds of Type II
exhibited the most potent activity than that of the others. It was noticed
that the most potent compound 14 exhibited a promising activity
approximately 5.25 folds higher than that of the second most potent
compound 13. This demonstrated that the presence of di-CF3 moieties on
two phenyl groups of the central aromatic rings can notably increase
activity of the compound. Especially, the Mor03m value of the meta-
bisthiourea 14 was increased for 1.66 folds when compared with that of
compound 13with mono-CF3 group (Table S3 in the supplementary file).
The significance of aromatic ring bearing di-CF3 groups was also noted
for the compound 22 of para-series. The compound 22, which displayed
the highest Mor29v (0.485) but the lowest Mor03m (�12.9) values
among other compounds in Type III series, exhibited the highest activity
among all compounds in Type III and was ranked as the three most potent
compounds among all the investigated compounds (Table 1).

Bis-thioureas (Type II and Type III) exhibited improved activities than
their parent thioureas (Type I). This effect was observed as results of
increasing values of three descriptors (i.e., Mor07u, Mor29v, and
Mor07e) for mono- and di-CF3 bis-thiourea derivatives of both series
(Type II meta-series: 13 > 5 and 14 > 6, Type III para-series 21 > 5 and
22 > 6). Values of three descriptors for the compared compounds are i)
Mor07u: 5¼ 5.449, 6¼ 5.461, 13¼ 8.26, 14¼ 8.373, 21¼ 8.283, 22¼
7.916, ii) Mor29v: 5 ¼ 0.228, 6 ¼ 0.22, 13 ¼ 0.512, 14 ¼ 0.474, 21 ¼
0.329, 22¼ 0.485, and iii) Mor07e: 5¼ 5.775, 6¼ 5.921, 13¼ 8.936, 14
¼ 9.455, 21¼ 9.005, 22¼ 9.042, Table S3 in the supplementary file. The
high values of van der Waals volume (Mor29v) could be due to the
molecular size of bis-thiourea compared with its parent thiourea. In
addition, the di-CF3 compound had higher electronegativity (Mor07e)
than its mono-CF3 as noted for i.e., compounds 6 > 5, 14 > 13, and 22 >

21. This is resulted from the electronegativity of F atom.

2.3.3. A549 model

pIC50 ¼ 0.5377 (IC2) þ 0.2234 (Mor11p) þ 0.3085 (cRo5) � 4.0243 (3)

The QSAR results showed that symmetry of the molecule (IC2),
polarizability (Mor11p), and drug-like related properties (cRo5) are
influencing characters for potent activity against A549 cell line. Although
the highest regression coefficient value was not obviously noted, the
drug-like descriptor cRo5 seems to be a highly influencing property. This
was observed for a set of three top ranked highly potent compounds 14,
13, and 22, which are the only three compounds whose cR05 value ¼ 1
while most of the rest are 0 (Table S3 in the supplementary file). More-
over, these three compounds are bis-thiourea derivatives bearing mono-



Figure 2. Plots of experimental VS predicted activities from 6 QSAR models (Eqs. (1), (2), (3), (4), (5), and (6)). Plots of training set are presented as circle symbols
and solid regression lines whereas those of testing set (leave-one-out cross validation) are presented as triangles and dashed regression lines. A: HuCCA-1 model, Eq.
(1) (N ¼ 20), B: HepG2 model, Eq. (2) (N ¼ 27), C: A549 model, Eq. (3) (N ¼ 13), D: MOLT-3 model, Eq. (4) (N ¼ 29), E: MDA-MB-231 model, Eq. (5) (N ¼ 27), F:
T47D model, Eq. (6) (N ¼ 27).
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(13) and di-CF3 (14 and 22) phenyl groups on the central aromatic ring.
This indicated that the CF3 moiety is essential for potent activity. How-
ever, it was found that meta-Type II di-CF3 bis-thiourea derivative 14
exhibited more potent activity than its para-Type III analog 22, which
suggested that the position of substituted bis-thiourea groups on the
central aromatic ring or the isomeric effect impacted the decreases of
both IC2 and Mor11p descriptor values (14: IC2 ¼ 3.809, Mor11p ¼
1.702 and 22: IC2 ¼ 3.757, Mor11p ¼ 1.535). This might be due to meta
isomeric form of bis-thiourea is an appropriate molecule for interacting
with the site of action compared with its para-isomer. Similar effect was
observed for chloro-bis-sulfonamide derivatives, in which the shortening
of the alkyl chain linker of compound 28 gave the less active compound
6

38 with lower descriptor values of IC2 and Mor11p (Table S3 in the
supplementary file).

2.3.4. MOLT3 model

pIC50 ¼ 0.0626 (F01[C–N]) þ 1.0473 (E2m) þ 0.1427 (MLOGP)
� 2.4164 (4)

The constructed model demonstrated that mass (E2m), octanol-water
partition property (MLOGP), and the frequency of C–N bonds presented
in the molecule (F01[C–N]) are influential factors for activity against
MOLT3 cell line. In overview, the compounds in Type II series were noted
as the most potent class, in which the most potent one (compound 10)



Table 3. Predictive performance of the constructed* QSAR models.

Cell line N Training1 LOOCV2

Rtr RMSEtr RCV RMSECV

HuCCA-1 20 0.8528 0.1449 0.8528 0.1646

HepG2 27 0.8520 0.2367 0.7628 0.2952

A549 13 0.9636 0.0666 0.9290 0.0926

MOLT-3 29 0.8690 0.2680 0.8114 0.3188

MDA-MB-231 27 0.8301 0.1958 0.7766 0.2217

T47D 27 0.8465 0.1424 0.7966 0.1618

Rtr: Correlation coefficient of the training set.
RMSEtr: Root mean square error of the training set.
RCV: Correlation coefficient of the leave-one-out cross validation set.
RMSECV: Root mean square error of the leave-one-out cross validation set.

1 Training set is a dataset used for construction of the model. The dataset in-
cludes a set of both descriptor values (X variables) and activities (Y variables).

2 LOOCV set is an excluded sample in which its activity (Y variable) was
predicted using the relationship model constructed by the training set.
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containing F atom displayed its pIC50 value approximately 0.42 folds
greater than that of the second most potent CF3 analog 13.

All of the compounds in meta-series (Type II) and para-series (Type
III) had the same value of F01[C–N] value ¼ 8, except for those of NO2
derivatives 15 and 23. It was observed that although these NO2 analogs
possessed higher frequency of C–N bonds (F01[C–N] value ¼ 10), but
they elicited lower activities than others due to their lower MLOGP and
E2m values (Type II 15: MLOGP ¼ 3.922, E2m ¼ 0.27/Type III 23:
MLOGP ¼ 3.922, E2m ¼ 0.419), Table S3 in the supplementary file.

For Type IV bis-sulfonamide compounds, it was found that the meta-/
ortho-/para-positions of NO2 attached to distal aromatic rings affected
activity of the compounds (activity: para > meta > ortho; 31 > 33 > 32)
by altering the value of mass descriptor (E2m; 31 ¼ 0.667, 33 ¼ 0.321,
32 ¼ 0.253, Table S3 in the supplementary file), in which the higher
descriptor value was observed for the higher activity.

2.3.5. MDA-MB-231 model

pIC50 ¼ 0.2508 (ATS7m) þ 0.0153 (RDF090m) þ 0.0151 (MLOGP2) �
3.0427 (5)

The QSAR equation indicated that mass and octanol-water partition
property are important properties contributing to the anticancer effect
against MDA-MB-231 cell line. The most potent compound 14 possessed
the highest ATS7m (4.732) value. The effect ofmeta-/para-position of the
attached bis-thiourea on the central ring was also observed. It was shown
that Type III para-bis-thiourea compounds exhibited lower activity than
its Type II meta-bis-thiourea analogs (meta > para: 14 > 22, 13 > 21, 12
> 20) due to their lower values of mass descriptors (i.e., ATS7m and
RDF090m, Table S3 in the supplementary file).

Considering the Type IV bis-sulfonamide analogs, naphthalene-
containing bis-sulfonamide 26, performed the best activity due to its
highest ATS7m value (ATS7m ¼ 3.981). Additionally, the compound
bearing para-NO2 on the distal aromatic rings provided better activity
than the meta-NO2 compound (31 > 33) because of its higher mass de-
scriptors values (i.e., ATS7m and RDF090m, Table S3 in the supple-
mentary file).

Type I thiourea compounds exhibited the poorest activity and ranked
last among all the studied compounds, except for di–CF3–derivative 6,
which possessed the highest values of two predictors (i.e., ATS7m and
MLOGP2) among all others in the same class, Table S3 in the supple-
mentary file).

2.3.6. T47D model

pIC50 ¼ 0.0168 (RDF095m) þ 0.0142 (F06[F–F]) þ 0.0292 (RDF150m) �
1.9864 (6)
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QSAR analysis revealed that cytotoxic activity of the investigated
compounds was influenced by mass (RDF150m and RDF095m) and dis-
tance between fluoro groups in the molecule (F06[F–F]). It was observed
that only two di-CF3 bis-thiourea compounds (meta-series 14 and para-
series 22) possessed high F06[F–F] value of 18, while those of others
were absence (F06[F–F] ¼ 0, Table S3 in the supplementary file). In
addition, mono-diCF3 derivative of Type I thiourea 6 with F06[F–F] ¼ 9
was noted. Unlike other cell lines that the most potent compounds were
members of the Type II series, the Type III para-compound 22 was noted
to be the most effective anticancer agent against the T47D cell line.
Compound 22 displayed the highest value of RDF150m ¼ 20.658, which
is 5.96 folds greater than its meta-analog 14. Although it had the lower
RDF095m value than that of the compound 14 (RDF095m: 14 ¼ 21.091
and 22¼ 14.504), but this descriptor had lower influence on the activity,
as shown by its lower regression coefficient value when compared with
that of RDF150m (Eq. 6). With an exception for the most potent com-
pound 22, most of the derivatives in meta-Type II series (i.e., F, Cl, CF3,
and NO2) provided better activities than their para-analogs in Type III
series (meta > para: 10 > 18, 11 > 19, 13 > 21, and 15 > 23).

In overview, QSAR analysis provided information for insight
structure-activity relationship analysis, which is summarized in Figure S1
and Table S6 in the supplementary file. Generally, an introduction of
another thiourea into the molecules provide bis-thioureas with improved
activities (Type II meta-bis-thiourea/Type III para-bis-thiourea > Type I
thiourea). However, it was found that the attachment of another thiourea
group should be via meta-position on the central aromatic ring to provide
potent activity. The replacement of thioureas with sulfonamides led to
decreased activity of the compounds (Type II > Type IV). Types of sub-
stitutions on the distal benzene ring influenced activities of the de-
rivatives, in which the di-CF3 group tend to be the most effective one for
potent activity. Additionally, appropriate length of alkyl chain linker
attached to the central aromatic ring affected activities of the com-
pounds. Shortening the linker chain, mostly, leads to compounds with
impaired activity.

3. Materials and methods

3.1. General procedure for the synthesis of thioureas (1–23) [19,32,33]

Benzylamine (4 mmol) and appropriate phenylisothiocyanate (4
mmol) were mixed and stirred at room temperature for 3–16 h (moni-
tored by TLC). The formed thiourea derivatives 1–7 as solid products
were filtered and recrystallized [19]. In case of bis-thioureas 8–23, they
were synthesized using xylylenediamine (2 mmol) and phenyl-
isothiocyanate (4 mmol) [32, 33].

Chemical structures of all thiourea derivatives 1–23 were confirmed
by 1H NMR, 13C NMR, HRMS and IR analysis. Their spectral data have
been reported in the literature [19, 32, 33].

3.2. General procedure for the synthesis of sulfonamides (24–36) [20]

Appropriate benzenesulfonyl chloride (5 mmol) and sodium car-
bonate (10 mmol) in dichloromethane (20 mL) were mixed and stirred.
A solution of xylylenediamine (2.5 mmol) in dichloromethane (50 mL)
was subsequently added in dropwise manner to the stirred mixture then
stirred at room temperature for 15–24 h (monitored by TLC). Distilled
water (20 mL) was added, organic phase was separated, and the
aqueous phase was extracted with dichloromethane (2 � 30 mL). Sub-
sequently, the organic extracts were combined and washed with 30 mL
of water. The organic layer then was dried over anhydrous sodium
sulfate, filtered, and evaporated under reduced pressure to give dry
crude product. The crude product then was purified by column chro-
matography on silica gel or recrystallization to give sulfonamide de-
rivatives (24–33, 35 and 36). In case of sulfonamide 34, it was
synthesized from the reduction of sulfonamide 33 using stannous
chloride in refluxing ethanol.
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3.3. General procedure for the synthesis of sulfonamides (37–38) [20]

A solution of meta-phenylenediamine (2.5 mmol) in pyridine (5 mL)
was prepared, then 5 mmol of benzenesulfonyl chloride was added and
stirred for 6 h under reflux. Then the mixture was concentrated under
reduced pressure and 20 mL of water was added. The extraction then was
performed with dichloromethane (3 � 20 mL). The organic layer was
dried over anhydrous sodium sulfate, filtered, and evaporated under
reduced pressure to give dry crude product. The purification of the crude
product was carried out by column chromatography on silica gel to
provide the sulfonamide derivatives.

Chemical structures of all sulfonamide derivatives 24–38 were
confirmed by 1H NMR, 13C NMR, HRMS and IR analysis. Spectral data of
the compounds have been reported in the literature [20].

4. Cytotoxic assay: cancer cell lines

Six types of commercially available human cancer cell lines were used
for cytotoxic investigations including i) cholangiocarcinoma (HuCCA-1,
Immunology laboratory Siriraj Hospital), ii) hepatocellular carcinoma
(HepG2, ATCC: HB-8065), iii) lung carcinoma (A549, ATCC: CCL-185),
iv) acute lymphoblastic leukemia (MOLT-3, ATTC: CRL-1552), v)
hormone-independent breast cancer (MDA-MB-231, ATCC: HTB-26), vi)
hormone-dependent breast cancer (T47D, ATCC: HTB-133).

Cells were suspended in the culture medium and then inoculated on
96-well microtiter plates (Corning Inc., NY, USA) at a density of
10,000–20,000 cells per well, then incubated at 37 �C in a humidified
atmosphere with 95% air and 5% CO2 for 24 h. Additional medium con-
taining serial dilutions of either the tested compounds, positive control
(etoposide and/or doxorubicin), or negative control (DMSO)were equally
added to achieve desired final concentrations and the preparedmicrotiter
plates were further incubated for 48 h. After the incubation complete, the
number of survived cells in each well were counted using MTT assay [42,
43] (for HuCCA-1, HepG2, A549, MDA-MB-231 and T47D cells) and XTT
assay [44] (forMOLT-3 cells). Then the IC50 valuewas calculated to define
a drug (or compound) concentration that required for 50% inhibition of
cell growth (relative tonegative control). The compounds exhibited IC50>

50 μg/mL were considered as non-cytotoxic.

5. QSAR study

The general workflow of the QSAR modeling is simply explained
herein. Only active compounds were included in the QSAR study. Data-
sets were initially prepared from a series of experimental bioactivity
values (IC50 values as dependent Y variables) and calculated parameters
of chemical structures (descriptor values as X variables). All chemical
structures were geometrically optimized to provide most stable confor-
mations for descriptor calculation. The optimized structures were
calculated to obtain a large set of descriptor variables. Feature selection
was performed to finally select a set of informative descriptor variables as
predictors for the QSAR modeling. QSAR models were constructed using
MLR algorithm to find the relationships between these set of predictors
(selected descriptors) and bioactivity potency (IC50). Reliability (pre-
dictive performance) of the built models was assessed using statistical
parameters. Details of each step are provided in following subsections.

5.1. Datasets

Datasets were prepared using experimental bioactivities (IC50 values)
and chemical structures of the tested compounds (1–38, Figure 1). Only
experimentally active compounds were included for QSAR analysis while
inactive ones were excluded from the datasets. Six datasets were sepa-
rately prepared according to anticancer activity against 6 cancer cell
lines. To normalize the data points, the bioactivity IC50 values were
converted to pIC50 values by taking the negative logarithm to the base of
10 (-log IC50), Table S2 in the supplementary file.
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5.2. Molecular structure optimization and descriptor calculation

Chemical structures of the tested compounds (1–38) were generated
using the GaussView software [45]. All drawn structures were geometri-
cally optimized to obtain low-energy conformers for subsequence
descriptor calculations. The optimization process was initially performed
using Gaussian 09 [46] at the semi-empirical Austin Model 1 (AM1) level
followed by density functional theory (DFT) calculation using the Becke’s
three-parameter hybrid method with the Lee-Yang-Parr correlation
functional (B3LYP) together with the 6–31g(d) level. The optimized
structures then were subjected to extraction of quantum chemical de-
scriptors and calculation of molecular descriptors.

In-house developed script was used to extract a set of 13 quantum
chemical descriptors. The in-house developed script is a python-based
coding written by our research group. The code was written to facilitate
the manipulation of quantum chemical descriptor calculation by allowing
the calculation andextractionof a set ofmultiple types of descriptor values
of several compounds within the same time. The optimized chemical
structures were used as input files for extraction running. All input files
were arranged to be located within a single assigned folder to allow the
commanding, running, and returning the results. Finally, a single text-type
file compiling calculated descriptor values of all input compounds was
obtained for further processing. A set of obtained quantum chemical de-
scriptors includedMulliken electronegativity (χ), electrophilic index (ωi),
electrophilicity (ω), mean absolute atomic charge (Qm), electron affinity
(EA), ionization potential (IP), total energy (Etotal), total dipole moment
(μ), hardness (η), softness (S), lowest unoccupiedmolecular orbital energy
(ELUMO), highest occupied molecular orbital energy (EHOMO), and energy
difference of HOMO and LUMO (HOMO-LUMOGap).

Calculation of molecular descriptor values of the optimized structures
were subsequently carried out using Dragon software (version 5.5) [47]
to obtain an additional set of 1,562 descriptor values. Total 22 classes of
dragon descriptors were included in this study such as 3D-MoRSE de-
scriptors, Walk and path counts, 2D autocorrelation, RDF descriptors, 2D
frequency fingerprints, 2D binary fingerprints, Topological descriptors,
Topological charge indices, Charge descriptors, Information indices,
Connectivity indices, Atom-centred fragments, WHIM descriptors,
Constitutional descriptors, Edge adjacency indices, GETAWAY de-
scriptors, Burden eigenvalues, Randic molecular profiles, Functional
group counts, Geometrical descriptors, Eigenvalue-based indices, and
Molecular properties. Finally, both calculated quantum chemical and
molecular descriptors were subjected to feature selection process.

5.3. Feature selection

All calculated descriptors were initially filtered to prioritize de-
scriptors (as predictors) which are highly correlated to bioactivity using
correlation-based feature selection method. Pearson’s pair-correlation
values (r) were calculated for each pair of descriptor and bioactivity
(pIC50 values). Cut-off value of 0.6 (|r| � 0.6) was used to select highly
correlated descriptor variables whose |r| � 0.6, while those with low
correlation (|r| < 0.6) were filtered out. The remaining highly correlated
descriptors (with (|r| � 0.6) were subjected to further processes of selec-
tion including stepwise MLR and/or attribute selection (CfsSubsetEval,
Best First) as implemented in Waikato Environment for Knowledge
Analysis (WEKA) version 3.4.5 [48]. After the feature selection process, a
set of informative descriptors was finally obtained for multivariate anal-
ysis (Table S3 in the supplementary file).

5.4. Multivariate analysis

MLR algorithm was selected as a machine learning algorithm for the
QSAR modeling in this study due to its interpretable characteristic. The
multivariate analysis was performed by WEKA version 3.4.5 [48] using
the MLR algorithm. Values of selected descriptors and pIC50 values were
prepared as final datasets for the model construction. Descriptor values
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were assigned as independent variables (X) while pIC50 values were
assigned as dependent variable (Y). The MLR model was constructed
according to the following equation:

Y ¼B0þ
X

BnXn (7)

where Y is the pIC50 values of compounds, B0 is the intercept and Bn are
the regression coefficient of descriptors Xn.
5.5. Data sampling

During the model construction, the dataset was randomly separated
using leave-one-out cross validation (LOO-CV) method to divide the
dataset into two sets (i.e., training set and testing LOO-CV set). The LOO-
CV is described as a method that one sample was removed from the
whole dataset (N) to be used as testing set (in which its bioactivity, as Y
value, was predicted by the equation built by the training set) and the
remaining samples (N-1) were used as training set (in which the algo-
rithm was learned to find relationship between predictors and dependent
variables to give predictive equation). This same sampling process was
repeated until every sample in the dataset was chosen as the testing set to
predict Y variable (activity).
5.6. Evaluating the performance of QSAR models

Reliability of the constructed models was assessed by statistical pa-
rameters calculated by average values of several rounds of the sampling.
Two aspects of the model performance were considered by calculated
correlation coefficient (R) and root mean square error (RMSE) values to
reflect the predictive performance and predictive errors of the built
models, respectively. Accordingly, the model with good reliability should
provide high R but low RMSE values.

6. Conclusions

Discovery of novel classes of anticancer agent is one of on-going
research areas. In this work, the cytotoxic effects of the S-containing
compounds (1–38) against 6 human cancer cell lines (i.e., HuCCA-1,
HepG2, A549, MOLT-3, MDA-MB-231, and T47D) were studied. In vitro
results indicated that fluorine-containing compounds in Type II meta-bis-
thioureas (10, 13, and 14) and Type III (para-bis-thiourea 22) are
promising lead compounds for further development. Interestingly, Type
II compounds (especially the most potent compound 10) exhibited the
most promising cytotoxic effect against MOLT-3 cell line among all the
tested cell lines displaying the lowest range of IC50 values. Additionally,
some of the studied compounds (3–7, 10, 13–15, 22, 25, 28 and 38)
showed broad-spectrum anticancer effects against multiple types of cell
lines, which indicated their wide range possibilities for further devel-
opment. Subsequently, experimental activity (IC50 values) and chemical
structures of the compounds were used as input datasets for in silicoQSAR
modeling. According to anticancer activities against six cancer cell lines,
six interpretable QSAR models were separately constructed using MLR
algorithm. The constructed QSAR models showed high correlation co-
efficient (R) but low RMSE values, which indicated their good predictive
performance. In-depth structure-activity relationships analysis was per-
formed by considering the values of key descriptors (predictors) pre-
sented in the QSAR equations, as a result, a set of key chemical properties
required for potent anticancer activities against each cell lines were
revealed. Collectively, the present study demonstrated the facilitating
role of in silico QSAR modeling for successful drug development by
providing insightful knowledge which would be useful for further related
research in terms of screening/filtering of potential compounds from
large library, guiding effective rational design, as well as facilitating
structural modifications to achieve new derivatives with improved
properties. However, additional studies to elucidate possible mechanisms
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of action, pharmacokinetic profiles, as well as supportive in vivo models
are required for further development as therapeutics.
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