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Abstract
Sexual reproduction is essential for many organisms to propagate themselves.
It requires the formation of haploid female and male gametes: oocytes and
sperms. These specialized cells are generated through meiosis, a particular
type of cell division that produces cells with recombined genomes that differ
from their parental origin. In this review, we highlight the end process of female
meiosis, the divisions per se, and how they can give rise to a functional female
gamete preparing itself for the ensuing zygotic development. In particular, we
discuss why such an essential process in the propagation of species is so
poorly controlled, producing a strong percentage of abnormal female gametes
in the end. Eventually, we examine aspects related to the lack of centrosomes
in female oocytes, the asymmetry in size of the mammalian oocyte upon
division, and in mammals the direct consequences of these long-lived cells in
the ovary.
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Introduction: definitions
All oocytes undergo induced arrest at the dictyate stage of prophase I 
during meiosis in the ovary. This arrest takes place after chromo-
some pairing and crossing-over formation between parental chro-
mosomes. It can last months in mice and decades in humans. Upon 
hormonal surge, oocytes will exit the prophase I arrest and resume 
meiosis. All stages from meiosis resumption, starting with nuclear 
envelope breakdown (NEBD) until the next arrest where oocytes 
are fertilized, belong to the meiotic maturation process (Figure 1). 
This process terminates meiosis, allowing the gamete to go through 
two successive rounds of extremely asymmetric divisions in size. 
Between these divisions, there is no intervening DNA replication, 
truly rendering the gamete haploid after, at, or before the second 
meiotic arrest at fertilization. Indeed, depending on the species, 
this second arrest will take place at different cell cycle stages: 
coincident with meiosis resumption at NEBD in nematodes, in 
metaphase I in Drosophila, in metaphase II for most vertebrates, 
or after the end of the second meiotic division in starfish oocytes.

There are three essential features that we would like to highlight 
in this review: (1) meiotic divisions take place in the absence of 
centrosomes in most animals; (2) these divisions are highly 
asymmetric in size to produce large oocytes; and (3) in mammals, 
oocytes display an extreme longevity in the ovary.

We would like to propose that these three features, among other 
things, predispose oocytes to errors in chromosome segregation. 
In mammals, this aspect has been particularly well studied, espe-
cially in human oocytes, which present a basal rate of errors close 
to 20% in women younger than 35 years of age and which can be 
as high as 60% in older women1–3. Indeed, it remains puzzling that 
given the extreme parental investment in juvenile care in many spe-
cies, such little attention is being paid to oocyte ploidy, as if errors 
in chromosome segregation were part of a selection process for 
gamete fitness.

Acentriolar divisions
Centrosomes, consisting of a pair of centrioles surrounded by a 
cloud of pericentriolar material (PCM), are the major centers for 
microtubule assembly (microtubule-organizing center). Most 
oocytes lose their centrioles during oogenesis; if not, like in starfish, 
they are progressively eliminated and inactivated during meiotic 
divisions4–8. Even though centrosomes are not strictly required to 
segregate chromosomes (as shown in flies, planarians, or mice 9–12), 
they contribute to the coordination of spindle assembly and increase 
its robustness. The immediate consequence of centrosome loss 
is that meiotic spindles are devoid of astral microtubules and so 
lack the main connector between the spindle poles and the cell 
cortex (Figure 2). Hence, spindle positioning cannot rely on astral 

Figure 1. Meiotic maturation and first stages of embryo development in mammals. Meiotic maturation starts with nuclear envelope 
breakdown (NEBD) and is followed by the first meiotic division where bivalents are separated, the first polar body is extruded and then, in 
vertebrates, arrest in metaphase of the second meiotic division (MII stage) occurs. The oocyte is ovulated at the MII stage. Sister chromatids 
will be segregated after fertilization. Zygotic development follows fertilization. Oocytes (in gray) are surrounded by a protective glycoprotein 
layer, the zona pellucida (beige). DNA is in pink, microtubules in green.

Figure 2. Oocytes assemble and position their spindle in the absence of centrosomes. Cells are in gray, and oocytes are surrounded 
by a protective glycoprotein layer, the zona pellucida (beige). DNA is in pink, microtubules in green, centrioles in black, and pericentriolar 
material (PCM) in yellow.
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microtubules as it happens in most somatic cells13–16. Furthermore, 
centrosome-nucleated microtubules cannot capture chromosomes14. 
In mitotic cells, duplicated centrosomes are positioned on opposite 
sides of the nucleus such that in prometaphase the spindle axis is 
already set17–20. On the contrary, meiotic spindle bipolarity is not 
predefined by the position of the two centrosomes. Instead, during 
meiosis I, spindle bipolarity is progressively established and this 
can take about 40 minutes in Drosophila, 3 hours in mouse, and 
up to 6.5 hours in human oocytes21–25. Not only is meiotic spindle 
bipolarity an extremely slow process in meiosis I but it appears that 
assembly of K fibers (microtubule bundles that connect the kineto-
chores of chromosomes) is quite long: 50 minutes in Drosophila,  
6 to 7 hours in mice, and about 16 hours in humans26–28. The 
biological significance of such a progressive K fiber assembly dur-
ing oocyte meiosis I remains unknown, but it is clear that in both 
Drosophila and mice precocious stabilization of K fibers is deleteri-
ous for bivalent alignment, orientation, and segregation28,29.

Oocytes use an inside/outside mode of spindle assembly, first pro-
moting the assembly of microtubules around chromatin and then 
defining the spindle poles25,30–33. As a result, meiotic spindle poles 
in oocytes appear less robust, not being anchored into unique 
and well-defined centrosomes. In some species, like Drosophila, 
nematodes, Xenopus, and even human oocytes, microtubule minus 
ends at spindle poles are not even connected or anchored to dis-
crete PCM foci25,34–38, unlike in rodents25,34–38. The lack of anchoring 
raises issues not only on spindle pole organization and maintenance 
but also on the nature of the force integration that allows all chromo-
somes to end up midway in between both poles, on the metaphase 
plate. As a consequence of having poles formed by more than one 
entity, pole integrity can be compromised and splitting of poles 
may occur, as in cancer cells with extra-centrosomes presenting 
unbalanced poles composed of multiple centrosomes23,31,39. It may 
not be so surprising that the rate of chromosome mis-segregation 
in oocytes is very high compared with most somatic cells in the 
presence of non-equilibrated spindle poles, which favor mero-
telic attachments not detected by the spindle assembly checkpoint 
(SAC)40 as shown in cells with extra-centrosomes41,42.

In addition to lacking robust spindle poles, many oocytes use actin-
based propulsion forces to position their chromosomes43–50. In 
starfish oocytes, an actin fishnet is transiently formed at meiosis 
resumption, prior to the microtubule capture, to maintain all chro-
mosomes spatially confined, avoiding their dispersal in the huge 
volume of the nucleus, beyond the reach of microtubules51–53. In 
mitotic cells, even though astral microtubules dictate the orientation 
of the spindle apparatus, they are also connected to F-actin, which 
helps transmit forces exerted by the cell environing tissue54–57. In 
mitosis, microfilaments cooperate in spindle assembly: they help 
separate the two centrosomes in prometaphase, hence promoting 
spindle bipolarization58, and they modulate spindle orientation and 
favor spindle assembly through mitotic cell rounding59. However, in 
mammalian oocytes, where spindle bipolarization in meiosis I can 
take hours, it seems important that microfilaments do not interfere 
with spindle assembly and are thus nucleated around the micro-
tubule spindle only once the latter is robust enough60. It was very 
recently shown that the centrosome can also be a major filament-
organizing center (it could be named an FTOC)61. The centrosome 

thus acts as a coordinator of microtubule and microfilament net-
works inside the cytoplasm. In oocytes, this coordination is missing. 
Therefore, it is conceivable that other mechanisms have emerged to 
avoid premature interference between the two meshes and also to 
modulate their interaction.

Extremely asymmetric divisions in size
Oocytes undergo extremely asymmetric divisions, leading to the for-
mation of a large cell, the oocyte, and two minuscule polar bodies. 
This size asymmetry is essential to maintain the maternal reserves 
accumulated during oogenesis in order to sustain embryo develop-
ment. For this, they rely on very asymmetric spindle positioning. In 
the case of the Xenopus oocyte, 1 mm wide (Figure 3), the asym-
metry is clearly extreme where one spindle pole is anchored at the 
cortex while the other pole cannot reach the opposite cortex (the 
spindle being approximately 30 μm long). The asymmetric anchor-
ing of the meiotic spindle to the cortex generates a strong imbal-
ance of the forces experienced by each spindle pole, converted into 
asymmetric forces exerted on the chromosomes. How do oocytes 
achieve the equilibrium of tension on both sides of each bivalent 
(meiosis I) or univalent (meiosis II)? Moreover, when somatic cells 
enter mitosis, they round up and their cortical tension increases and 
this helps to equilibrate forces coming from each spindle poles to 
the chromosomes54,62–64. Unexpectedly, mouse oocytes experience a 
drop in cortical tension during meiosis and this is absolutely nec-
essary for spindle positioning as well as for the asymmetry of the 
division65–67. One can easily understand that a soft and deformable 

Figure 3. Spindle assembly checkpoint strength in different 
cells. Cells are in gray and oocytes are surrounded by a protective 
glycoprotein layer, the zona pellucida (beige). DNA is in pink, 
kinetochores in dark pink, microtubules in green, centrioles in 
black, and pericentriolar material (PCM) in yellow.
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cortex favors the extrusion of polar bodies tailored to the chromatin 
mass better than a stiff cortex, as in mitosis. However, it is difficult 
to conceive how spindle microtubules can transmit and propagate 
the tension to chromosomes when their poles are not symmetrically 
anchored and when one pole is actually anchored on a soft material. 
One has to imagine that pushing or pulling forces might be trans-
mitted more locally or maybe via yet-to-be-discovered structures/
mechanisms inside the meiotic spindle. In worm oocytes, a solution 
has emerged with extensive meiotic spindle pole depolymerization 
at anaphase I and with most microtubule forces required to separate 
bivalent chromosomes coming from local microtubule assembly at 
the chiasmata, allowing the chromosomes to be pushed apart68.

Another feature which characterizes oocytes is the poor sensitiv-
ity of the SAC to errors in chromosome alignment or to a global 
drop in tension exerted on bivalents69–73. In nematodes and Xenopus 
oocytes, there is no SAC response, and no cell cycle arrest is 
observed in Caenorhabditis elegans mutants with severe meiotic 
spindle defects or after complete microtubule depolymerization 
in the frog74–77. Similarly, mutations in multiple SAC genes do not 
affect cyclin B levels or chromosome segregation in Drosophila 
oocytes78. In contrast, SAC-deficient Drosophila neuroblasts, genet-
ically modified to lack centrosomes, present a higher incidence of 
chromosome segregation errors than acentrosomal neuroblasts 
with a functional SAC. This shows that, in Drosophila mitosis, a 
functional SAC is required, in the absence of centrosomes, con-
trary to what is observed in oocytes79. Interestingly, all three of the 
above species assemble meiotic spindles without discrete PCM foci 
at their poles and this might contribute to the absence of a SAC 
response (Figure 3).

As suggested by pioneering work from Xenopus early development, 
the origin of the poor SAC response in oocytes might come from 
their large size (Figure 3)80. The SAC signal, which inhibits the 
activation of the anaphase-promoting complex/cyclosome (APC/C) 
and thus the degradation of two key substrates, cyclin B and securin 
that trigger the metaphase-to-anaphase transition, is produced by 
unattached kinetochores and might be diluted in the large cytoplas-
mic volume. It will be very interesting to reduce oocyte size and see 
whether this restores a mitotic-like SAC response. Alternatively, it 
may not be strictly the oocyte size per se, but rather its size with 
respect to the dimensions of the adult female (Figure 3). This ratio 
might relate better to the amount of energy invested by the spe-
cies in its reproductive capacity. It could explain why, in nematodes 
and Drosophila, organisms a thousand times smaller than a mouse 
but producing eggs of comparable size as mammals, there is no 
SAC response during oocyte meiosis, as in Xenopus oocytes that 
lay eggs 12.5 times larger than mouse eggs for a comparable adult 
body size.

Exacerbated longevity of mammalian oocytes
Thanks to a renewable population of germ cells that supports game-
togenesis in their ovaries, nematodes, Drosophila, and amphibian 
females produce oocytes during their whole life. On the contrary, 
eutherian mammals possess a finite reserve of germ cells that are 
formed and stored during embryogenesis. The different reproduc-
tive strategies used by these model organisms might also explain 
the differences in SAC sensitivity (Figure 3). Rapidly spawning a 
lot of eggs at the right season might have been selected to allow 

frog dissemination at the expense of gamete quality production. In 
contrast to species that lay eggs or embryos in the external milieu, 
in mammals, the longevity of oocytes from birth to ovulation can 
reach decades. This raises issues about chromatin architecture 
maintenance to sustain such a long-lived metabolism, in particular 
for the turnover of key elements involved in chromosome segre-
gation. Meiotic spindle morphology is altered, with poor chromo-
some alignment and split poles in aging human oocytes obtained 
from normal naturally cycling women81. Also, it has been clearly 
established that the amount of maternal mRNA encoding for genes 
involved in the SAC response, spindle integrity, and spindle posi-
tioning decreases in aged mouse oocytes82,83. More importantly, 
the number of proteins maintaining chromosome pairing reaches a 
critical low level in aged mouse and human oocytes, which impedes 
the integrity of chiasmata84–86. Furthermore, artificially abolish-
ing one key meiotic cohesin, SMC1β, by gene targeting already 
has profound effects on the integrity of bivalents, and aged oocytes 
deficient for SMC1β display evidence of chiasma terminalization87. 
The reduction in cohesin levels can be attributed to their lack of 
turnover. Indeed, genetic studies aimed at assessing the turnover of 
key cohesin subunits, such as the meiotic cohesin Rec8 or SMC1β, 
have demonstrated that these cohesins are not replenished after 
birth in the growing follicles of the mouse88,89. The progressive dete-
rioration of cohesion could potentially be a leading cause for the 
increase in errors in chromosome segregation (in particular, errors 
in meiosis I) observed with age1,3,90. Nonetheless, in Drosophila 
oocytes, evidence for cohesin rejuvenation during oogenesis has 
been shown91. Whether this aspect is specific to Drosophila or can 
be extended to mammals is currently unknown.

The effect of cohesin deterioration can be further amplified by 
the poor sensitivity of the SAC, at least in mice, to a reduction in 
tension on bivalents71. Recently, direct observations made on human 
oocytes have shown that sister kinetochores tend to split prema-
turely during meiosis I and that this effect increases with age92,93. 
Premature splitting potentially favors precocious bivalent dissocia-
tion into univalent, contributing to aneuploidy.

Conclusions
Amazing progress has been made since the pioneering review that 
put into the limelight the fact that human oocytes are error prone 
and that the rate of errors increases with the age of the mother1. 
This review challenged scientists in the field to try to understand a 
major societal issue of our modern societies where women postpone 
childbearing and to which female scientists were maybe already 
particularly exposed. Advance has come from studies on diverse 
model systems presenting both similarities and differences with 
human oocyte meiosis. Importantly, observations made in human 
oocytes have been challenged by hypotheses tested in model sys-
tems where genetics or biochemistry can be performed. Obviously, 
it is a combination of factors that seem to predispose oocytes to 
aneuploidy: their confounding fragile mode of spindle assem-
bly and positioning, coupled to the pressure to preserve maternal 
stores in a gigantic cell via extreme asymmetry in size of their divi-
sions as well as their longevity. Of course, many other factors not 
highlighted here, such as the distribution as well as the rate of 
recombination between homologues, which have a direct influence 
on chromosome segregation, can also predispose for aneuploidy in 
oocytes3. The major discovery of PRDM9, a key factor controlling 
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the distribution of hot spots for recombination in some species 
but not others, will certainly help us to understand the impact of 
recombination on aneuploidy in oocytes94–96. Indeed, meiotic 
maturation is embedded in a continuous process that started in the 
embryo and that resumes later in the life of an animal. Meiotic 
maturation also prepares the gamete for fertilization and early devel-
opment; hence, gamete quality does greatly influence the chances 
of a successful pregnancy.
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