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REGULATION OF GENE EXPRESSION IN THE GENOMIC CONTEXT
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Abstract: Metazoan life is dependent on the proper temporal and spatial control of gene expression within the many cells

—essentially all with the identical genome—that make up the organism. While much is understood about how individual gene

regulatory elements function, many questions remain about how they interact to maintain correct regulation globally throughout

the genome. In this review we summarize the basic features and functions of the crucial regulatory elements promoters, enhancers,

and insulators and discuss some of the ways in which proper interactions between these elements is realized. We focus in particular

on the role Of core prornoter sequences and PI‘OPOSC explanations for some Of the contradictory results seen in experirnents aimed at

understanding insulator function. We suggest that gene regulation depends on local genomic context and argue that more holistic

in vivo investigations that take into account multiple local features will be necessary to understand how genome-wide gene

regulation is maintained.

MINI REVIEW ARTICLE

Introduction

Maintaining proper control of gene expression is fundamental for
all organisms. Although much is known about how individual
metazoan genes are regulated, how correct patterns of gene activation
are maintained genome-wide is not well understood. Every gene lies
adjacent to another gene, and many genes have multiple differentially
regulated transcripts. Genes can be nested inside other genes or
overlap one another on opposite strands of the DNA. Within the
nucleus, chromatin is arranged in a three-dimensional fashion such
that genes that are far apart on the chromosome, or are on different
chromosomes, become closely juxtaposed. Given such complexity in
genomic organization, it is a wonder that gene expression can be
correctly sorted out: when regulatory elements are able to act over
large distances and ignore intervening elements, how is one regulatory
element able to target a specific gene while at the same time bypassing
other nearby promoters? We consider here some answers to this
question. Our focus is not on broad epigenetic mechanisms such as
heterochromatic silencing and Polycomb-mediated repression of large
chromatin domains (reviewed by [1]) but rather on local-scale events
such as the differential expression of several genes lying in an
apparently similar chromatin state or physical region (Fig. 1). We
begin with a brief review of the main regulatory elements that
influence gene expression and genomic organization—prornoters,
enhancers, and insulators—followed by a discussion of possible
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mechanisms for ensuring faithful gene regulation. We highlight the
often overlooked role of core promoter sequences in mediating
specific enhancer-promoter interactions and describe some of the
challenges of trying to understand genome-wide events using
approaches centered on single genes or regulatory elements. We
suggest that a more holistic view of regulation, taking into account the
full set of local genomic features, will be needed to fully understand
how gene expression throughout the genome is properly maintained.

Promotets

Required for the transcription of eukaryotic RNA polymerase II-
transcribed genes is the core promoter, typically defined as consisting
of the DNA approximately 35-40 bp upstream and downstream of
the transcription start site (TSS) [2]. This is at least in part a
functional definition in that this region is usually sufficient to mediate
gene expression ina reporter gene assay. The core promoter contains
sequence elements, referred to as “core promoter motifs,” which
interact with the basal transcription machinery, including RNA
polymerase II and the TFIID complex (reviewed by [3,4]). Although
a number of prevalent core promoter motifs have been defined, there
are no universal motifs common to all promoters, and the majority of
promoters do not contain any currently-identified motifs [5].
Arguably the best-known core promoter motif is the TATA box,
which may be present in from 5-20% of mammalian promoters [6,7]
and which binds the TFIID component TATA-box binding protein
(TBP). Additional motifs include the TFIIB recognition BRE
elements, the Inr motif, and the DPE (downstream promoter element)
motif. FitzGerald et al. [8] defined 15 core promoter motifs in
Drosophila and eight in human, with only TATA, Inr, and DPE
clearly present in both species. However, a similar study by
Gershenzon et al. [9] also observed commonality of BRE and DCE
between the two species. These differences help to underscore the
difficulty of motif-based analyses, in which motif quality, motif
degeneracy, choice of statistical cutoff scores, and size and
composition of the sequence search space all impact the end result.
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Figure 1: Genomic region showing promoters, enhancers, and insulators. Pictured is a 100 kb fragment of the Drosophila genome

(chr2L:12,593,026..12,693,025), based on the FlyBase v.FB2013_04 genome annotation [102]. Transcripts for the genes nub, Ref2, pdm2, and CG15485 are
shown along the top of the figure. Each promoter is highlighted with a vertical black dashed arrow. Insulators are depicted by orange dashed lines and
enhancers by yellow circles containing upward-pointing arrows; the arrows connote that while the time when enhancers become active is known, how long
they remain active generally has not been described. Enhancer names are drawn from the REDfly database [103]. Developmental time is portrayed vertically on
the y-axis; not all stages are shown and the axis is not to scale. Blue circles and lines depict gene expression from each promoter based on RNA-seq data
provided as part of the genome annotation. Circles represent the onset of expression and lines continued expression, which sometimes must be inferred as it is
not always possible to determine from which promoter the later expression originates. Note that of the seven promoters located between the two insulators,
only three appear to be co-regulated, potentially by the nub_CE8011 enhancer (red text). Promoter pdm2-RB/RC may be regulated by the pdm2_CE8012
enhancer, but the other nearby transcripts are not expressed at the time when this enhancer becomes active (blue text). Interestingly, enhancer pdm2_CRM6
is active exactly when promoter pdm2-RA is inactive, raising the possibility that it engages in insulator bypass to activate one of the other pdm2 promoters or

that its native role is as a negative regulatory element and its classification as an enhancer is due to experimental artifact (green text).

Large-scale mapping of TSSs has revealed different classes of
promoters based on TSS distribution [10-12]. “Single” or “narrow”
peak promoters are distinguished by a tight cluster of TSSs spanning
only one or several basepairs, whereas for “broad, ” “weak,” or “wide”
peak promoters the TSSs are distributed over a wide range, up to 100
bp. Intermediate classes such as “broad with peak” or “multimodal”
have also been observed. TSS clusters are considered as distinct from
alternative promoters, which show a clear spatial separation from one
another, have their own core promoter regions, and give rise to
distinct, individually annotated transcripts of the same gene. It should
be noted that canonical core promoters are only well-defined for
narrow-peak promoters, and it is not clear exactly how the core
promoter region for a broad-peak promoter should be defined. Part
of the problem is that narrow peak promoters are generally the ones
associated with position-specific core promoter motifs such as the
TATA box, Inr, and DPE, whereas broad peak promoters are more
likely to have location-independent motifs and (in mammals) CpG
islands [10-13]. This lack of position-specific motifs makes it
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difficult to define the core promoter with any precision for the broad-
peak promoters absent extensive experimental determination, which
has not so far been undertaken. Acetylation of histone 3 lysine 9 has
also been shown to distribute differently among the different
promoter shape classes [14]. These sequence and biochemical
differences:

related to functional

housekeeping genes tend to have broad peak promoters, whereas

differences appear to be
tissue-specific gene promoters are more frequently narrow peak.

In addition to the core promoter, studies have suggested a
contributory role in proper gene regulation for the extended promoter
region of up to approximately 350 bp upstream of the TSS (e.g. [6]).
Although it is possible that this simply reflects the activity of the
closest-lying distal czs-regulatory modules (enhancers), differences in
nucleotide composition are also observed in this region relative to
more upstream sequences in both flies and humans, suggesting that
the proximal promoter does indeed represent a distinct functional

region [5].
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Enhancers

Although a promoter is absolutely required for gene transcription,
a significant part of metazoan transcriptional regulation occurs via the
action of distal cis-regulatory modules. The best studied of these are
transcriptional enhancers, distal non-coding sequences that positively
regulate transcription. As originally defined, enhancers act without
regard to orientation, distance, or placement (5'/ 3") relative to the
transcribed gene [15]. In practice, however, the term ‘enhancer’ is
often used Ioosely to mean any positive-acting regulatory element,
without explicit confirmation of distance or orientation independence.
Enhancers are frequently modular; a gene with a complex expression
pattern may have a large number of enhancers, each up to a few
hundred basepairs in length and each responsible for a discrete
spatiotemporal aspect of the gene’s expression. Many genes also
possess seemingly redundant, or functionally highly similar, enhancers,
which in at least some cases have been shown to increase fidelity or
robustness of gene expression [10-13]. Enhancers serve as a platform
for the assembly of transcription factors, including activators,
repressors, and chromatin modifying enzymes. The dominant model
of enhancer function is that enhancers act by means of DNA looping,
forming contacts with the promoter in order to either stabilize RNA
polymerase binding or mediate release of stalled polymerase.
Enhancers have been the subject of several recent comprehensive
review articles, and the reader is referred to these for further details
[19-23].

There is growing evidence that enhancers are marked in the
genome by specific sets of histone modifications, in particular
monomethylation of histone 3 lysine 4 (H3K4mel) and acetylation
of histone 3 lysine 27 (H3K27ac) [24]. These observations have been
used to undertake widespread enhancer discovery in human cell lines
and provide what is likely a lower-bound estimate of over 400,000
enhancers spanning over 10% of the genome [25]. Histone
modification patterns have also been used to make inferences about
the activity state of enhancers, including “active” and “poised”
elements (e.g. [26,27]). However, definitive interpretation of the
relationship between specific chromatin modifications and enhancer
activity status should be treated with caution, as many of the current
results are obtained from large-scale genomic analysis of cultured cells
with relatively little in vivo validation. Indeed, many of the “enhancer”
sequences are not verified but rather inferred from histone
modification or chromatin accessibility, leading to a certain amount of
circularity in the data analysis. For example, enhancers may be
predicted based on one set of histone modifications, but then that
same predicted set may be used to evaluate if an additional feature is
also associated with enhancers, without there being a true validation
step in between. In one case where a set of enhancers with well-
described spatiotemporal activity was examined using cells isolated
from intact animals, a range of histone modifications was found to be
associated with both active and inactive enhancers, and some active
enhancers did not seem to have any of the described chromatin states
[28]. Thus, the true range of chromatin modifications associated with
enhancers is likely to be both complex and dynamic, and significant
further investigation is needed.

Genome-scale transcriptional profiling has made it apparent that
enhancers are often if not always transcribed into RNA. This
coupling was initially remarked on by Li et al. [29] for Drosophila
enhancers, and subsequently shown more directly in a number of
[30-32]. The prevalence of non-coding

transcription in the genome makes it difficult to determine if these

mammalian  systems

“eRNAs,” as they have become known, represent a single class of
transcripts or a combination of different transcripts arising from
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different mechanisms, and much remains to be understood about
enhancer-related transcription. However, a consensus has begun to
develop around eRNAs as bidirectional, non-poyladenylated RNAs
[reviewed by 33]. The functional importance of eRINAs also remains
unresolved. Although several studies have reported a role for the
transcripts themselves in inducing gene expression [e.g. 34,35,36],
other studies suggest that it is the act of transcription which is
important for enhancer activity, with the transcripts themselves merely
a byproduct [37]. Still other studies find that neither transcription
nor transcript is required, and that eRNAs merely represent
transcriptional “noise” [38]. It may well prove that all of these
conclusions are correct, with multiple different transcriptional
mechanisms contributing to the observed widespread enhancer
transcription.

Insulators

A third critical component contributing to global fidelity of gene
expression is the insulator. Originally defined in Drosophila, and still
best understood in that organism, insulators were so named due to
their ability to “insulate” genes from position effects in transgenic
assays. Historically, two major roles have been ascribed to insulator
elements: the ability to serve as boundary elements preventing the
spread of heterochromatin, and the ability to prevent enhancer activity
when interposed between an enhancer and promoter. It was
subsequently demonstrated that insulator elements act to promote
DNA looping, suggesting that their mechanism of action might be to
sequester regions of chromatin into discrete domains. In recent years,
bolstered by large-scale chromatin conformation assays that have
allowed for genome-wide identification of chromatin architecture
(reviewed by [39]), this has come to be viewed as the primary
function of insulator elements and, in fact, the more traditional
boundary and enhancer-blocking roles have been called into question
(see below). Detailed current views of insulator function can be found
in any of a number of several excellent recent reviews [40-43].

A large cohort of DNA-binding proteins have been associated
with insulator activity in Drosophila, including Su(Hw), ZWS5, GAF,
BEAF-32, CP190, Mod(mdg4), and CTCF [44-50]. Several studies
have demonstrated that these proteins often bind in concert, implying
cooperativity, although there is conflicting evidence as to which are
the predominant combinations and what effect this has on function.
Negre et al. [S1] described two insulator classes based on ChIP-seq
experiments, the first consisting of BEAF-32, CP190, and CTCF
binding sites and the second of Su(Hw)-associated sites; GAF showed
limited clustering with the other factors. However, Schwartz et al.
[52], based on similar data, define 16 binding classes. What if any
functional distinctions exist between these classes has not been
established. The differences lie largely in different treatments of
binding strength and interpretations of combinatorial binding. The
latter results suggest the possibility of a diversity of insulator roles and
functions based on different combinations of insulator binding
proteins. Until some of these questions are resolved, care should be
taken in making functional inferences based on currently annotated
Drosophila insulator elements, which do not take differences in
insulator protein binding into account.

In contrast to the large variety of insulator proteins identified in
Drosophila, insulator function in mammals appears to be primarily
carried out by CTCF. CTCEF, a large and ubiquitously-expressed zinc
finger protein [53], has been shown to be involved in the formation
of chromatin loops and chromatin architecture generally (reviewed by
[43,54]). Global mapping of CTCF-mediated interactions conducted

in mouse embryonic stem cells revealed extensive chromatin looping
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at multiple scales and suggests that CTCF plays an important role not
just in the classical insulator sense of preventing enhancer-promoter
interactions but also in facilitating such interactions to promote gene
expression [55]. CTCF associates with cohesin, and the cohesin
complex may be required for chromatin loop formation, and hence
insulator function, mediated by CTCF (reviewed by [56]). In
Drosophila, CP190 is frequently associated with CTCEF at insulators
and may play a role analogous to that of cohesin in mammalian cells
[43,57,58]. Also able to function as mammalian insulators are
binding sites for the RNA polymerase III transcription factor TFIIIC,
both at clustered tRINA genes and at individual TFIIIC bound sites,
including those located in short interspersed nuclear elements
(SINEs)[59]. Like CTCF insulators, TFIIIC insulators are found in
complex with cohesin, suggesting an overall similar mechanism for
insulator activity [60]. TFIIIC may represent the most ancient and
conserved insulator function, acting as such at least as far back as yeast

[61].

Do insulators have primary responsibility for maintaining
appropriate gene expression?

A growing amount of evidence has begun to raise questions as to
the centrality of the traditionally-conceived role of insulators as both
preventers of heterochromatic spreading and enhancer-blockers.
Despite a provocative correlation of CTCF and other insulator
proteins with the borders of epigenetically distinct chromatin
domains, mutation or RNAi-based depletion of these factors has little
effect on chromatin state boundaries, although a small number of loci
do show spreading of the repressive chromatin mark H3K27me3
[52,62,63]. Thus, while insulators may serve a chromatin boundary
function in certain instances, this does not appear to be a primary role
of these elements. Similarly, RNAi knockdown of insulator proteins
fails to reveal significant global changes in gene expression, a difficult
result to rationalize if insulator-mediated enhancer blocking provided
a major mechanism for preventing inappropriate activation of genes
by nearby enhancers [52]. In one of the few direct in vivo experiments
that have been performed, Soshnev et al. [64] created a genomic
deletion of a sequence that had been shown in a transgene assay to
function as a Su(Hw)-dependent insulator. Surprisingly, deletion of
the sequence failed to affect expression of adjacent genes. Moreover,
only a small fraction of insulators defined via insulator protein
binding in ChIP-seq assays have been found to display consistent
enhancer-blocking function in standard transgene insulator activity
assays [52,65].

On the other hand, the clear ability of some insulators to function
as enhancer-blockers in transgenic assays coupled with striking albeit
circumstantial data based on insulator positioning leave the possibility
of a wide-spread role of insulators as enhancer blockers an enticing
one. For instance, Negre et al. [51] show under-representation of
insulators between enhancers and their target promoters and
enrichment of insulators between enhancers and non-target
promoters. They additionally demonstrate that insulators are more
prevalent between differentially expressed promoter pairs than
between similarly expressed promoter pairs, as would be expected if
insulators were playing a role in enhancer blocking. Yang et al. [66]
examined adjacent genes with a “head to head” configuration and
found enrichment for BEAF-32 binding only in those pairs that were
not co-expressed. Although they did not test these sequences for
enhancer blocking activity or monitor changes of gene expression
following BEAF-32 depletion, the strong correlation is difficult to

discount.
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One complicating factor is that insulator activity may be a
regulated dynamic function rather than a fixed property. This has
been observed in Drosophila, where the formation of insulator bodies,
nuclear sites where multiple individual insulator sites are seen to
aggregate, is disrupted following heat shock as a result of
relocalization of CP190 away from insulator sites [67,68]. In a
similar vein, hormone stimulation results in changes of insulator
protein binding at a subset of sites, with concomitant subtle changes
in the expression of surrounding genes [68]. The mechanisms
responsible for the observed protein relocalization are currently
unknown. CTCF function in vertebrates can be modulated by co-
factor binding [69], whereas CTCF binding is influenced by DNA
methylation [70,71] and by transcription through CTCF binding
sites [72]. As a result, transgenic assays for insulator function may fail
due to missing factors or non-permissive conditions, leading to an
erroneous conclusion that a tested site is unable to mediate enhancer
activity.  Additional
discussed below (“genomic context™).

blocking assay-specific complications are

Enhancer-Promoter Specificity

Even under a best-case assumption about the enhancer-blocking
ability of most insulator elements, we are far from explaining just how
appropriate gene expression is maintained throughout the genome.
For example, making the extreme assumption that all of the annotated
insulators in the Drosophila genome [S1] are accurately identified and
contain enhancer blocking activity, we still find that over half of all
promoter pairs lying between two insulators have completely
uncorrelated activity (MSH, unpublished data; see example in Fig. 1).
Therefore, either the majority of enhancer blocking insulators have yet
to be identified, or additional mechanisms, other than chromatin
insulators, have primary responsibility for restricting enhancer activity
to the proper promoters.

An aspect of gene regulation that is likely to be important,
although frequently overlooked, is the role played by specific
compatible/incompatible

enhancer-promoter  pairings, that s,

enhancers that are capable of activating only certain promoters.
Although  the

interactions is well known [73-78], this has been considered to be an

existence of such specific enhancer-promoter
exception to, rather than a norm of, the mechanisms used to restrict
enhancer activity [79]. However, there is reason to believe that
enhancer-promoter specificity may be significantly more prevalent
than commonly assumed. In addition to the widely uncorrelated
promoter activity described above, a genome-wide survey of core
promoter motifs in Drosophila showed that the promoter sequences
of neighboring genes are more similar than expected by chance (even
after accounting for gene duplication), with a strong correlation
between core promoter motif similarity and both strength and pattern
of gene expression [5]. These findings suggest that common enhancers
might be regulating the adjacent genes with similar promoters, but not
those with dissimilar promoters. Gehrig et al. [80] tested ten different
enhancers in reporter gene assays in zebrafish, using 18 different
promoters with each. For at least eight of the enhancers they were able
to identify one or more incompatible promoters. Similarly, in a test of
18 Drosophila enhancer-trap loci, Butler and Kadonaga [73] found
that four (22%) showed specificity for one of two tested core
promoters.

There is clear evidence that core promoter motifs play a key role
in determining enhancer-promoter specificity, in particular with
respect to the well-described Drosophila TATA and DPE motifs,

which for at least some tested enhancers signify a mutually exclusive
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set of compatible promoters [73,74,77,78]. Less is known about what
mediates specificity from the perspective of the enhancer. The
transcription factor Caudal has been shown in Drosophila to
preferentially activate promoters with the DPE motif as compared to
the TATA motif and especially the combination of TATA and BRE*
motifs [81]. However, the molecular interactions underlying this
preference remain uncharacterized. In general, the mechanisms
mediating enhancer-promoter specificity remain pootly understood.

Genomic context

Enhancer promiscuity has been believed to be the rule because in
reporter gene assays, most enhancers are able to activate heterologous
promoters. However, in truth, few enhancers are tested with a variety
of different promoters, and the evidence for heterologous promoter
activation is to some extent circular: sequences that fail to activate
gene expression in a reporter gene assay are typically labeled as “non
regulatory” precisely due to their failure to drive expression from a
heterologous promoter. Even granting a general lack of promoter
specificity in reporter gene assays, however, it is distinctly possible
that such assays do not realistically reflect the situation confronted by
an enhancer in its true genomic context.

Distance

At least two major differences come into play when comparing
typical reporter gene assays to actual genomic scenarios. One,
enhancers in reporter constructs are usually placed in proximity to the
promoter, rarely more than several hundred basepairs and often less
than 100 basepairs away. Although by formal definition “enhancers”
are distance-independent [15], in practice distance effects, ranging
from attenuation to complete elimination of enhancer activity as
distance increases, have frequently been observed when assayed. The
mechanisms responsible for distance-dependence are not well
understood, but at least three classes of elements have been described
in Drosophila. One class comprises the “promoter tethering elements”
[78,82-85]. These elements lie in proximity to the promoter and are
responsible for mediating interaction with appropriate distal
enhancers. A tethering element in the engrailed (en) locus contains
Polycomb response elements (PREs), and the presence of PREs is
potentiaﬂy a contributing factor in the ability of en enhancers to act at
a distance [78]. Of three assayed genes whose promoters contain both
Inr and DPE motifs, both en and invected were activated by the en
enhancers, and both have closely linked PREs. In contrast, sprt, which
has a similar promoter but no PRE, failed to respond. The
requirement for the PRE suggests that Polycomb-group proteins may
be involved in promoter tethering, although whether this is through
the chromatin-modifying activity of the Polycomb complex or a
different mechanism is currently unknown. In the w/ite locus, binding
of Zeste to a promoter-proximal region is required for long-range
interactions with the whire eye enhancer, but is dispensable when the
enhancer is moved close to the promoter [86]. Interestingly, this same
interaction displays insulator bypass, i.e., it allows activation of the
promoter despite an intervening insulator. How common tethering
elements may turn out to be, and whether the presence of PREs
and/or Zeste binding sites are defining features of this class of
elements, remains to be determined.

The second class consists of the “promoter targeting sequences”
(PTS) [87]. The two known PTS elements both lie within the
Drosophila Abdominal-B locus and have two activities: they allow for
long-distance enhancer-promoter interaction and for restricting this
interaction to a single promoter. The PTS, similar to the Zeste-
binding promoter tethering element described above, are able to
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mediate insulator bypass; in fact, insulator presence may be a
requirement for initial PTS activity [88,89]. Interestingly, presence of
an insulator is not necessary for maintenance of PTS activity,
suggesting that the PTS may function via epigenetic modification of
local chromatin and/or formation of a stable chromatin loop [88].
However, these mechanisms have not yet been tested. PTS elements
differ from promoter tethering elements mainly in location: the latter
are promoter-proximal whereas the former are more enhancer-
proximal. It is not yet known whether both utilize a similar
mechanism of action or if they represent truly different classes of
elements.

A
ON

TATA

ON

INR/DPE

ON OFF

TATA INR/DPE

OFF ON

TATA
E insulator
ON

INR/DPE

OFF
TATA no known

motifs
F

ON
(weak

TATA

insulator

OFF

no known
motifs

Figure 2: Promoter competition experiments (adapted from [66,81]).
Arrows represent promoters, with key core promoter motifs listed below.
Blue boxes represent enhancers, ovals insulators. (A) The enhancer is able
to activate a TATA-containing promoter as well as (B) an INR/DPE-
containing promoter, when either is the only promoter present in
proximity. (C) When both promoters are placed equidistant from the
enhancer, only the TATA promoter is activated. (D) Placement of an
insulator between the enhancer and TATA promoter blocks activation of
this promoter and restores the ability of the enhancer to activate the
INR/DPE promoter. (E) A different promoter, which does not contain any
known core promoter motifs, does not compete effectively with the TATA
promoter and (F) allows it to be activated even in the presence of an
intervening insulator. The strength of the activation (degree of insulator
bypass) may depend on how strongly the other promoter is able to
compete for the enhancer.
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The third class, for which there is currently only a single example,
is the “remote control element” (RCE) found in the Drosophila
shaven (Pax-2) “sparkling” enhancer [90]. The RCE is completely
dispensable for enhancer activity when near (~ 100 bp) the promoter,
but essential for activation at a distance (> 800 bp). As few enhancers
have been subject to the intensive mutagenesis-based analysis carried
out for the sparkling enhancer, no less tested at multiple distances
from the promoter, it remains to be seen whether the RCE represents
a rare or common mechanism for insuring enhancer-promoter

specificity.

Promoter competition

The second, and perhaps even more relevant, difference between
reporter assay and genomic context is the presence of additional
flanking promoters, which may compete with one another for
activation by an enhancer. In human erythrocytes, the alpha-globin
MCS-Rs enhancer regulates the NME4 gene, located 300 kb distal,
in addition to the more close[y located glpha—g/ob[n genes, as
evidenced both by gene expression and physical interaction between
the enhancer and the NAME4 promoter [91]. If the alpha-globin genes
are deleted, expression of NME4 is upregulated and the MCS-
Rs/NME4 interaction increases in strength. These results suggest
that competition between the more proximal alpha-globin promoters
and the distal NME4 promoter favors interaction of the enhancer
with the former. When the competing alpha-globin promoters are no
longer present, the enhancer is released for increased interaction with
(and hence activation of) the NME4 promoter. Other promoters
lying between alpha-globin and NME4 are unaffected.

Working in Drosophila, Ohtsuki et al. [77] demonstrated that an
enhancer which in isolation is compatible with either of two different
promoters might interact exclusively with just one when offered a
choice between them (Fig. 2A-C). Not all promoters provide
competition, and preference for one promoter over another is
determined at least in part by core promoter motifs. Lee and Wu [74]
used an elegant transvection assay to arrive at similar conclusions.
Thus, even though an enhancer may appear to function with a given
promoter in isolation in a reporter assay, in its genomic context the
same enhancer might be prevented from activating that promoter due
to the neighboring presence of a more preferred partner. Considering
jointly the potential effects of both distance between an enhancer and
promoter and competition from other nearby promoters suggests a
complex range of parameters that factor into promoter choice, and
which could lead to distinct effects in a native genomic context not
observed in reporter assays utilizing a single heterologous promoter.

Promoters, enhancers, and insulators together in context
Promoter competition and distance have also been shown to
influence insulator activity. Building on the assay developed by
Ohtsuki et al. [77], Cai et al. [92] demonstrated that a Su(Hw)
insulator displayed effective enhancer-blocking activity in the presence
of a strong competitor promoter, i.e., a promoter with clear preference
for the enhancer (Fig. 2C,D). However, the identical insulator had
much weaker enhancer-blocking function when the challenging
promoters were non-competitive: an insulator interposed between an
enhancer and its preferred promoter had reduced or even no effect
when the second flanking promoter was not compatible with the
enhancer (Fig. 2E,F). Indeed, insulator-mediated enhancer blocking
activity ranged from strong to moderate to none depending on the
degree of similarity between the promoters. This implies that not only
may promoters with sufficiently different sequences not require an
intervening insulator to keep from being activated by a common
enhancer, but that an insulator, even if present in such a situation, may
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have limited or even no activity. Similarities between insulators and
promoters have been remarked upon—promoters can mediate both
chromatin-barrier and enhancer-blocking functions, and both
elements are involved in the formation of chromatin loops—and
selectivity in enhancer-promoter interactions may depend on local
chromatin conformation and relative affinity for loop formation
among all three of enhancers, promoters, and insulators [93].
Consistent with this, Maksimenko et al. [94] found that the
arrangement of multiple nearby insulator sites, as well as the respective
distances between enhancers, insulators, and promoters, could
significantly affect the degree of enhancer blocking conferred by the
insulators. These findings suggest possible explanations for some of
the contradictory results discussed above with respect to putative
insulators not appearing to function as such in transgene assays: some
of the tested insulator sequences may only function in the presence of
a sufficiently competitive second promoter, or may be affected by the
relative spacing of the various regulatory components combined in the
assay. Considering that many genes have multiple alternative
promoters which (compared to promoters of different genes) are
spaced relatively close together, the potential impact of promoter
competition or of promoters embodying insulator-like enhancer
blocking functions is considerable. Determining the extent to which
this is so will need to await the development of more complex
insulator assays that take into account promoter strength, promoter
competition, and enhancer-promoter distance.

Summary and Outlook

Transcriptional regulation takes place within a complex genomic
milieu in which enhancers, promoters, and insulators are closely
connected both along the one-dimensional linear chromosome and
within the three-dimensional nuclear chromatin environment. To
date, our understanding of regulatory events has been limited by the
constraints of the assays available for their exploration. Cell culture-
based studies have the advantage of lower noise in genome-scale
assays, but may not always faithfully recapitulate in vivo conditions.
In vivo studies, on the other hand, usually entail simultaneous
examination of multiple cell types. These assays therefore suffer from
reduced sensitivity to the events occurring in any one cell type and
enable only an averaged picture of what might in fact be discrete
interactions taking place in different cells. Meanwhile, in either
system, typical reporter gene assays using closely-linked enhancers and
a single promoter may not sufficiently recapitulate the genomic
environment of promoter competition and enhancer action-at-a-
distance to provide a realistic picture of how regulatory elements are
functioning in their native context. Fortunately, there have been
substantial recent developments in methodology for single-cell assays
[95,96] and genome engineering [97]. Single-cell assays offer the
possibility of determining transcriptional and epigenetic profiles for
specific cell types isolated from primary tissue rather than cell lines,
ultimately allowing for investigation of a wider range of cell types as
well as developmental time-series analysis and other high-resolution
spatial and temporal analyses not currently possible. Genome
engineering methods such as transcription activator-like effector
nucleases (TALENS) and the RNA-guided CRISPR /Cas9 system
enable precise deletion or mutagenesis of regulatory sequences in a
wide selection of model organisms. Moreover, transcription activator-
like effectors (TALEs) have been used to great effect to target
activators or repressors to enhancer sequences to modulate their
function [98] as well as to induce specific epigenetic modifications in
a sequence-specific manner [99-101]. In concert, these methods hold

great promise for enabling a new generation of detailed and holistic in
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vivo investigations that may resolve some of the contradictions in the

current data and shed new light on how proper gene expression is

maintained within the genomic context.
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