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ABSTRACT: In recent years, the role of zinc in biological systems has been a subject of intense research. Zinc is 

required for multiple metabolic processes as a structural, regulatory, or catalytic ion. The objective of this study, was 
to assess the toxicity profile of a newly synthesized zinc-boron molecule on cultured cells. Zinc fructoborate, at 
different levels of concentration, was tested for its impact on the Vero kidney cell line (ATCC® CCL-81™) using the 
MTT assay. The compound exhibited a low cytotoxic effect on the cell line. Thus, our study demonstrates that the 
zinc fructoborate could become a promising dietary supplement molecule. 
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Introduction 

Zinc (Zn) is an essential trace element that is 

widely required in the cellular functions. 

It is involved in the glutaminergic 

transmission (signaling molecule) in the brain, in 

the antioxidant response and is a cofactor of 

many enzymes and transcription factors. 

Abnormal Zn homeostasis causes a variety of 

health issues including growth retardation, 

immunodeficiency, hypogonadism, and neuronal 

and sensory dysfunctions. 

Animal experiments have shown that, Zn 

deficiency may occur in aging which is 

associated with a decline in brain function. 

Zn homeostasis is regulated through Zn 

transporters and permeable channels [1-3], 

emphasizing the physiological relevance of Zn 

to life. 

A human genome bioinformatics study 

revealed that approximately 10% of all proteins 

may bind with Zn [4]. 

Physiological Zn supplementation in elderly 

restores the thymic endocrine activity and innate 

immune response (NK cell cytotoxicity) and 

increases the survival rate in old mice. 

Therefore, Zn supplementation is useful to 

achieve health longevity because the Zn-binding 

proteins may regain their original protective task 

against oxidative damage with a beneficial 

impact on the immune response [5-7]. 

The interaction of Zn and boric acid was 

characterized by the low acute toxicity of zinc 

borate (ZB) with an LD50 value higher than 

10g/kg body weight (b.w.) in rats [8] compared 

to the disodium tetraborate pentahydrate with an 

LD50 (median lethal dose) value of 3.3g/kg b.w. 

(ZB and disodium tetraborate pentahydrate have 

equivalent boron concentration). 

There was no evidence of toxic effects upon 

administering 1000mg ZB/kg b.w./day in a  

28-day repeated dose oral gavage toxicity study, 

which corresponds to the equivalent dose of 

50mg Boron (B)/kg b.w. [9]. 

The lowest-observed-adverse effect level 

(LOAEL) for testicular result is 26mg B/kg b.w. 

Background levels of Zn in humans may interact 

with boron to reduce the hazard of toxic effects. 

Zn levels in soft tissue in humans are two times 

higher than in comparative tissues of laboratory 

animals [10-12]. 

Zn has been also shown to protect against 

testicular toxicity of cobalt and cadmium 

[13,14]. 

Consequently, all these research data indicate 

that supplementation with stable natural active 
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zinc-boron complex-based nutritional 

formulations may delay aging. 

Therefore, we tested the in vitro cytotoxicity 

of the new synthesized zinc-boron complex, the 

zinc fructoborate. 

Material and Methods 

Cell lines 
In order to carry out our studies on the  

in vitro effect of zinc fructoborate (ZnFB), the 

Vero (ATCC® CCL-81™) epithelial cell line of 

monkey kidney was chosen. This cell line is 

recommended by ISO 10993-5: 2009 to test the 

cytotoxicity of certain compounds or medical 

devices. 

The Vero cells were grown in EMEM 

medium (Eagle’s Minimal Essential Medium) 

supplemented with 10% fetal bovine serum 

(FBS) and incubated in a humidified 5% CO2 

atmosphere at 37°C. 

The cells were kept in culture until they 

reached an 80% confluence, after which the 

adherent cells were detached, by treatment with 

trypsin-ethylenediaminetetraacetic acid (EDTA) 

and planted at a density of 104 cells/cm2 in  

96-well plates. 

After 24 hours of monolayer growth, the cells 

were incubated for another 24 hours in medium 

with sterile filtered zinc fructoborate and then 

subjected to analysis of cell density, morphology 

and cell viability. 

For the treatment with ZnFB the following 

concentrations were used: 0.01, 0.015, 0.1, 0.5, 

1.0, 1.5 and 3mM. As negative control cells 

were cultured under similar condition without 

any additives. A positive cytotoxicity control 

represented treatment of cells with 5% dimethyl 

sulfoxide (DMSO) [14,15]. 

Test substance 
The substance that was used in the assay was 

the zinc fructoborate. The test agent was 

obtained by synthesis in our laboratory, 

according to Hunter’s patent [16]. 

MTT assay 
The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] test is commonly 

used for cytotoxicity, viability and cell 

proliferation studies. Cell treatment with MTT 

allows the evaluation of oxidative metabolism 

and cellular response to external factors that may 

have a positive or negative effect on the survival 

of the cell culture. 

This quantitative colorimetric method is 

based on the reduction of the MTT yellow 

colored compound into the dark blue formazan. 

The MTT reduction by the mitochondrial 

enzymes (especially succinate dehydrogenase) is 

directly proportional to the number of cells 

viable, being an index of cellular/mitochondrial 

integrity. 

Optical density is evaluated 

spectrophotometrically, resulting in a direct 

relationship between absorbance, dye 

concentration and the number of viable and 

metabolic active cells [17-25]. 

Twenty-four hours after treatment with 

ZnFB, the cellular monolayer was washed with a 

phosphate-buffered saline (PBS) followed by 

adding the MTT solution (1mg/mL in serum-

free culture medium). 

After incubating at 37°C for three hours, the 

formazan crystals formed in the metabolically 

viable cells were dissolved in DMSO. 

The resulting solution was densitometrically 

analyzed at 584nm. 

Cell density and morphology 
The density and morphology of the Vero 

cells were observed using the contrast 

microscopy: an Olympus type CKX41 

microscope equipped with a video camera and 

an image capture system with CellSens software. 

Results 

At first, the in vitro effects of ZnFB were 

evaluated by observing the density and cell 

morphology in contrast phase microscopy. 

The Vero cells were grown in the presence of 

low concentrations of ZnFB as typical epithelial 

cells with a polygonal, elongated and flat 

morphology. 

Cell density was not significantly affected by 

this compound at low concentrations. 

Treatment of Vero cells with ZnFB for 

24 hours significantly affected the cells at a 

concentration equal or higher than 0.05 M 

(Fig. 1). 
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Fig.1. Effect of ZnFB on Vero cells morphology and density 

 

Furthermore, the survival potential (viability) 

of cells in the presence of ZnFB was assessed by 

mean of the MTT assay. The results of this test 

confirmed the above observations with respect 

to cell morphology and density. ZnFB does not 

affect cell viability at doses ranging from 0.01 to 

0.1mM. Contrarily, at concentrations between 

0.5 to 3mM, cells became metabolically inactive 

comprising only 8% of the activity of control 

cells. In addition, the cell survival is much lower 

than in the positive control cytotoxicity (DMSO) 

(Fig. 2). 
 

 

Fig. 2. Cell viability with different concentrations 
of ZnFB after 24 hours 

Following the 24-hours exposure time, the 

IC50 of ZnFB was also determined (Table 1, 

Fig. 3). 

Table 1. Statistics concerning IC50 and IC10 values 
for ZnFB 

Best-fit values 

LogIC50 -0.709 

LogIC10 -0.9053 

Slope -4.861 

IC50 0.1954 

IC10 0.1244 

Standard error 

LogIC50 0.09204 

Slope 1.491 
 

 

Fig. 3. IC50 graph (ZnFB: Zinc fructoborate) 
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Discussions 

Zn2+ is a crucial metal, vital for the activity of 

numerous enzymes engaged in a wide range of 

metabolic mechanisms [26-31]; zinc has 

additionally regulatory [29,32] and structural 

functions [32]. Correlated with other trace 

elements, zinc is generally non-toxic in vivo 

[26,27,33]. 

The rather low harmfulness of zinc in vivo 

might be attributed to a mix of homeostatic 

mechanisms, which direct gastrointestinal 

assimilation and discharge of zinc [27-29,33,34], 

the activity of an assortment of hormonal 

stimuli, which control cellular metabolism [29], 

fast redistribution of Zn in the body [30] and 

cellular adaptive mechanisms [34,35]. 

There have been a few studies that report the 

inhibitory as well as toxic effects of zinc in vitro 

in different types of cells, for instance, HeLa 

cells [36,37], McCoy and human prostate cells 

[36,38], lymphoid cells [39], fibroblasts [40,41], 

Cloudman S91 and B16 melanoma cells [42,43]. 

Most of these reports and the present 

investigation propose that Zn2+ in vitro becomes 

cytotoxic over 0.5-1mM and surpasses the 

toxicity of many other metal ions [37,40]. 

The evidence indicates that Zn uptake by the 

cells might be essential for the expression of 

cytotoxicity. 

The noticeable cytotoxic activity of zinc is 

fairly enigmatic. 

A feasible method of activity could be the 

dislocation of different metals from vital 

intracellular compartments. 

Zinc is known to compete with calcium, iron, 

copper, lead and cadmium for similar binding 

sites [27]. 

The susceptibility of cells in vitro to the 

harmful impacts of zinc might be reliant both on 

the rate of zinc uptake and the limitation of the 

defensive components. 

It was found that Zn2+ salts reveal toxic 

effects toward PC12 cells in the following 

diminishing order: zinc citrate, zinc sulphate 

>zinc orotate, zinc acetate, zinc chloride, zinc 

gluconate >zinc histidinate. This suggests that, 

regarding neuronal cells, uptake of various Zn2+ 

salts greatly influence toxicity. 

The IC50 determined for the ZnFB was 

0.195±0.005mM. ZnFB affects the viability and 

morphology of the cultured cells only at a 

concentration equal or higher than 0.5mM. 

Comparing to the other studies, ZnFB showed a 

relatively low toxicity, comparable to that of 

zinc histidinate (IC50 0.3mM). 

Conclusions 

Zinc is required for multiple metabolic 

processes as a structural, regulatory, or catalytic 

ion. Our study shows that ZnFB, a novel zinc-

boron active natural complex, has a low 

cytotoxic effect on the Vero kidney cells. The 

level of toxicity is lower than that of the mostly 

used supplement, zinc orotate. Altogether, the 

ZnFB could be successfully used as a new 

source of Zn2+ supplement. 
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