
Published online 4 May 2017 Nucleic Acids Research, 2017, Vol. 45, Web Server issue W435–W439
doi: 10.1093/nar/gkx279

IntaRNA 2.0: enhanced and customizable prediction of
RNA–RNA interactions
Martin Mann1, Patrick R. Wright1 and Rolf Backofen1,2,*

1Bioinformatics, Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany and
2Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany

Received February 27, 2017; Revised March 31, 2017; Editorial Decision April 05, 2017; Accepted May 02, 2017

ABSTRACT

The INTARNA algorithm enables fast and accurate
prediction of RNA–RNA hybrids by incorporating
seed constraints and interaction site accessibility.
Here, we introduce INTARNAv2, which enables en-
hanced parameterization as well as fully customiz-
able control over the prediction modes and output
formats. Based on up to date benchmark data, the
enhanced predictive quality is shown and further im-
provements due to more restrictive seed constraints
are highlighted. The extended web interface provides
visualizations of the new minimal energy profiles for
RNA–RNA interactions. These allow a detailed in-
vestigation of interaction alternatives and can reveal
potential interaction site multiplicity. INTARNAv2 is
freely available (source and binary), and distributed
via the conda package manager. Furthermore, it has
been included into the Galaxy workflow framework
and its already established web interface enables ad
hoc usage.

INTRODUCTION

The interaction of RNA molecules is an important fac-
tor for regulatory processes in all organisms. The in silico
modeling and prediction of such RNA–RNA interactions
is thus a central aspect in current research projects. In the
last decades, various approaches to solve this problem have
been proposed (see reviews (1,2)). To enable highly accurate
predictions, state-of-the-art tools not only take the stability
(energy) of possible RNA–RNA interactions into account
but also consider the accessibility of the interacting subse-
quences (3). The latter is often incorporated by adding a
pseudo-energy penalty proportional to the subsequences’
probability to be involved in intramolecular structure for-
mation (4). Prediction quality can be further improved by
addressing additional features known from experimentally
validated interactions. For instance, bacterial small RNAs
(sRNA) and eukaryotic microRNAs form highly stable

subinteractions, which are considered to seed the formation
of extended RNA–RNA duplexes (5,6).

INTARNA, first introduced in (7), is one of the most
widely used state-of-the-art RNA–RNA interaction predic-
tion approaches (2,3). It is employed in prokaryotic (8–10)
and eukaryotic (11–13) systems, and its web server (14,15)
received ∼16 500 external jobs in 2016. Its fast heuristic pre-
diction mode enables genome wide target prediction while
its high prediction accuracy is based on the incorporation
of interaction site accessibility and seed constraints.

However, INTARNA has become technically outdated for
the following reasons. Firstly, INTARNA was fixed to an
aged Vienna RNA library (v1.*) (16) and its energy parame-
ters Turner99 (17). Secondly, it featured a strongly restricted
user interface and was hard to maintain, update or extend.

Here, we introduce INTARNAv2, a complete open-source
reimplementation of the previous approach (from now on
referred to as INTARNAv1) with a strong focus on ef-
ficiency, modularity and flexibility. The implementation
closely follows the software development guidelines sug-
gested in (18) and enables enhanced and customizable
RNA–RNA interaction prediction.

INTARNAv2 enforces the seed interaction to be ener-
getically favorable. Furthermore, a slightly changed treat-
ment of dangling end energy contributions, compared to
INTARNAv1 and other approaches, has been incorporated.
This, in concert with the usage of recent RNA energy pa-
rameters (from the Vienna RNA package v2.* (19)), enables
an improvement of prediction quality. The newly performed
benchmark uses a data set of 160 experimentally verified
enterobacterial sRNA–mRNA interactions and evaluates
genome wide screens for each interaction pair.

The extended INTARNAv2 web interface within the
Freiburg RNA tools [Freiburg RNA tools: http://rna.
informatik.uni-freiburg.de/IntaRNA.] v4.4.2 (14,15) en-
ables full control over energy parameters, seed constraints
and accessibility computation. The user has to provide ei-
ther lists of interacting RNAs (all versus all predictions) or
can perform a genome wide target screen (providing the ac-
cording NCBI accession number) for a given input RNA.
Using an efficient dynamic programming scheme, the mini-
mum free energy interactions (or suboptimals if requested)
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are listed and additional details can be retrieved for each
predicted interaction pair. Furthermore, the new version
provides minimal energy profiles for interacting RNA pairs
that enable a detailed investigation of interaction alterna-
tives.

METHODS

INTARNAv2 reimplements and extends the original IN-
TARNA approach (7) and closely follows established rules
for software development in systems biology, e.g. see (18).

Besides the heuristic prediction mode of INTARNAv1
that allows fast, genome-wide predictions (7), INTARNAv2
also features exact interaction prediction by reimplement-
ing and extending the RNAUP approach (4). Since seed con-
straints are optional for all prediction modes, INTARNAv2
can emulate RNAUP predictions (by disabling the seed re-
quirement). Furthermore, the user interface enables full
control of accessibility usage within RNA–RNA interac-
tion prediction. Per default, unpaired probabilities are com-
puted using the Vienna RNA package v2.* routines. Here,
both global (RNAUP-like) or local unpaired probabilities
(as computed by RNAPLFOLD (20)) can be selected. IN-
TARNAv2 also supports the loading of pre-computed ac-
cessibility data. This can significantly reduce the run time
since the computation of the accessibility is highly time con-
suming (7). This feature is especially useful when screening
a large target sequence (21). By disabling the integration of
accessibility information, INTARNAv2 can be used to em-
ulate predictions from TARGETSCAN (22) or RNAHYBRID
(23).

Seed stability constraints are a new feature of IN-
TARNAv2, which enable direct control over the stability of
the seed interaction. To this end, an upper energy bound can
be provided. This defaults to 0 kcal/mol and thus requires
all seed interactions to be energetically favorable. Further-
more, the user can optionally provide a lower bound on the
unpaired probability of the subsequences forming the seed
to define whether highly accessible regions are to be favored.

Dangling end contributions incorporate a stabilizing effect
due to the stacking of unpaired nucleotides directly neigh-
boring base pairs (17). Since the interaction model of IN-
TARNA incorporates the accessibility, i.e. ‘unpairedness’,
of the involved subsequences, an explicit dangling end case
treatment was implemented in INTARNAv1, i.e. dangling
end contributions were only incorporated if the according
nucleotide was also part of the accessible subsequence con-
sidered for interaction formation (see Supplementary mate-
rial for further details).

INTARNAv2 simplifies the dangling end treatment for in-
teractions. Here, the conditional probability of the dangling
end to be free when the interaction is formed is used to
weight the according dangling end contributions (see Sup-
plementary material for details). These conditional proba-
bilities can be directly computed from the respective acces-
sibility terms already available for the interaction scoring.

Minimal energy profiles, either position wise for each
RNA (4) or intermolecular index pairwise for an RNA pair,
can provide deeper insights into RNA–RNA interaction
alternatives, since as for single RNA structure prediction,
the optimal interaction is not necessarily the only or bio-

logically correct option. With INTARNAv2 both types of
profiles can be generated by linking their generation with
the respective dynamic programming computations. That is,
whenever an interaction site (a cell in the according table)
is computed, the respective minimal energy profiles are up-
dated. This feature comes with a linear/quadratic overhead
in computation time for single/pairwise profiles, respec-
tively, since all indices within the according subsequences
have to be updated. For instance, the run time of the heuris-
tic prediction mode of O(n2) is increased to O(n3) for sin-
gle sequence profiles and O(n4) for pairwise minimal energy
profiles. While computationally demanding, the investiga-
tion of these profiles provides meaningful additional infor-
mation about possible interaction patterns, as discussed in
the Results section.

Suboptimal interaction enumeration also enables the in-
vestigation of interaction alternatives. In INTARNAv1, only
query interactions were allowed to overlap, since interaction
alternatives in the target were of interest. INTARNAv2 now
enables explicit control where suboptimal interactions are
allowed to overlap. Besides the (so far limited) possibility
to constrain overlaps to one sequence, this enables the enu-
meration of variants of the minimum free energy interaction
(overlap in both) as well as the suppression of any overlap
in both.

Customizable output in CSV format complements the
normal or detailed ASCII chart output of the interac-
tion details. The CSV output provides for the first time
a machine-readable output format of all interaction de-
tails. To this end, the user can specify all details of interest
(columns of the CSV table) that will be reported for each
predicted interaction.

For further options of INTARNAv2 to constrain
the interaction, seed site, accessibility computation,
energy model, multi-threading, output formats, in-
stallation, docker/conda/galaxy packages, etc. we
refer to its documentation [INTARNA at github:
https://github.com/BackofenLab/IntaRNA/.].

RESULTS AND DISCUSSION

In order to evaluate the impact of recent energy parameters
and the altered energy computation (see Methods), we per-
formed a benchmark on genome-wide interaction predic-
tions. In recent comprehensive benchmarks (2,24,25), IN-
TARNA and RNAUPwere shown to be the best performing
tools that are not based on conservation. Thus, we limited
our comparison to INTARNAv1 and INTARNAv2. To as-
sess performance, we followed the procedure previously ap-
plied in (25). The dataset of verified RNA–RNA interac-
tions was extended by several candidates that have been re-
ported in recent literature (26–36). Together, this is a dataset
of 160 verified sRNA–target interactions (see Supplemen-
tary Table S1).

For interaction prediction, we extracted 200 nucleotides
upstream and 100 nucleotides downstream of the annotated
start codon for each protein coding gene in Escherichia coli
(NC 000913) and Salmonella (NC 003197). This gives rise
to 4319 putative targets in E. coli and 4553 putative tar-
gets in Salmonella all of length 300 nucleotides with the
start codon located at positions 201, 202 and 203. Tar-
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Figure 1. The figure shows the whole genome target prediction perfor-
mance of INTARNAv1 (orange) and INTARNAv2 (blue) on a bench-
mark set of 160 experimentally verified enterobacterial (E. coli, Salmonella)
RNA–RNA interactions including 28 different sRNAs (see Supplemen-
tary Table S1 and Supplementary FASTA). Furthermore, the performance
of INTARNAv2 was assessed with the same data set under enforcement of
a seed energy E ≤ –4.8 kcal/mol (dashed blue). The x-axis represents the
amount of predictions per sRNA at a given rank and the y-axis shows the
cumulated number of true positives for all sRNA whole genome target pre-
dictions.

get predictions were performed for sRNAs (see Supple-
mentary FASTA) from both species individually with IN-
TARNAv1 and INTARNAv2 (parameters see Supplemen-
tary material). The resulting predictions were ranked by en-
ergy score with the lowest energy ranking on position 1.

A comparison is provided in Figure 1, which shows a
slightly increased performance of INTARNAv2 compared
to INTARNAv1 using comparable parameterization for
both tools with equivalent run time (data not shown). The
memory requirement of INTARNAv2 was drastically re-
duced by a factor of 6 (from an average of 79MB to 13MB).

Seed evaluation

To investigate the impact of more restrictive seed con-
straints, we first evaluated the energy distribution of seed
interactions (without ED and dangling end contributions).
To this end, we exhaustively generated all seeds (without
bulges) for 5–8 bp, which revealed the seed energies to be
normally distributed (see Table 1 for details). We observe
that the mean value follows the formula (bp − 4)* − 1.6,
where –1.6 is the average contribution of an additional
stacking base pair for the Turner04 energy parameters.

For testing more tight constraints, we enforced the seed’s
stability to be above average (P-value: 0.5) and reran the
benchmark. Since the number of seed base pairs was set to
7, only interactions with a seed that shows an energy below
−4.8 kcal/mol are reported. The results are shown in Fig-
ure 1 and reveal that a noticeable performance increase can

Table 1. Distribution of seed energies E for different seed lengths (= num-
ber of base pairs; no bulges allowed) with �|� = mean|standard deviation.
The highlighted row corresponds to the seed constraints of the benchmark

Seed length min(E) max(E) �(E) �(E)

5 −9.2 8.3 −1.6 2.5
6 −12.5 9.6 −3.2 2.8
7 −15.8 9.9 −4.8 3.1
8 −19.1 11.2 −6.4 3.4

Figure 2. Minimal energy profile for all intermolecular index pairs covered
by any predicted interaction of Spot42 with the sthA mRNA (with E < 0).
Conserved accessible regions I, II and III of Spot42 known to interact are
tagged on the right.

be obtained. Furthermore, the run time is heavily reduced
(halved) since less than half the number of sequence pairs
that showed a stable interaction without constraint enable
such a stable seed (only 55 227 of 121 988).

While this looks promising, such boundaries have to be
chosen carefully. For instance, the prediction for the veri-
fied interaction of DsrA with the rpoS mRNA (37) is com-
pletely lost (no seed with E ≤ −4.8 kcal/mol) while it is
top ranked (rank 1) for both INTARNAv1 as well as IN-
TARNAv2 without seed constraint (see Supplementary Ta-
ble S1). Thus, further research is needed on whether or not
general suggestions for upper seed energy bounds can be
provided or if such bounds are to be chosen in a sequence
and organism dependent manner.

Minimal energy profiles

The extended web interface of INTARNAv2 visualizes min-
imal energy profiles for interaction predictions that enable a
sophisticated overview of interaction alternatives and their
relative positioning. Figure 2 shows an example for the in-
teraction of Spot42 with a region around the translation
start site of the sthA (b3962) mRNA, which encodes a pyri-
dine nucleotide transhydrogenase. Spot42 is known to inter-
act with its targets via three accessible regions (I, II and III)
(38), and the profile highlights sites I and III near the start
codon. In fact, it has been shown that both regions I and III
are important for regulation of the sthA mRNA (39), and
this can also be deduced by investigating the profiles for the
according Spot42 mutants (see Supplementary material).

Interestingly, while region II does not seem to be centrally
involved in the interaction, its mutation still slightly reduces
regulation by Spot42 (39). This might stem from a minor
stability reduction of both sites I and III (predicted mini-
mal energy increase of about 0.5 kcal/mol) when region II
is mutated.
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CONCLUSIONS

The reimplementation of INTARNA enables state-of-the-
art energy parameters as well as seed constraint and accessi-
bility incorporation for fast and accurate RNA–RNA inter-
action prediction. Increased prediction quality for genome-
wide target predictions are also beneficial for comparative
interaction prediction approaches like COPRARNA (25,40).

Based on an extended benchmark set, we show the en-
hanced prediction quality of INTARNAv2 and highlight
the possibility for further improvements, e.g. using more re-
strictive seed constraints. While promising, such constraints
need careful tuning since they can lead to false negative pre-
dictions.

One of the new features of the INTARNA web server is
the visualization of minimal energy profiles for interacting
RNAs. This enables the detailed study of alternative RNA–
RNA interactions. This way, it is possible to see whether
multiple interaction sites are likely and if these can occur
in conjunction or only exclusively. Furthermore, mutational
effects can be analyzed and thus guide wet-lab experiments,
which attempt in depth validation of predicted target sites
(33,39,41).

The new flexible framework is the foundation for fur-
ther upcoming extensions of INTARNA. One direction is
to enable multi-site RNA–RNA interaction predictions.
This way, hypotheses from the minimal energy profile in-
vestigations can be extended and further consolidated for
successive experimental validation. Another direction is to
enable further established input and output formats for
an even more general embedding of INTARNA into high-
throughput workflow systems like Galaxy (42).

In summary, the reimplementation lays the groundwork
for INTARNA to remain among the state-of-the-art RNA–
RNA interaction prediction tools in future. Thus, it will
continue to be useful and available for both bioinformati-
cians and wet-lab experimentalists.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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