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Abstract: The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes,
and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the
homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed
tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular
movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a
structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three
cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively.
Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB,
focusing on claudin-5 and angulin-1.

Keywords: blood-brain barrier (BBB); tight junction (TJ); claudin; angulin; angubindin-1; antibody;
Clostridium perfringens enterotoxin (CPE); Clostridium perfringens iota-toxin (Ia)

1. Introduction

The existence of the blood-brain barrier (BBB) has been suggested by Paul Ehrlich’s experiments
with aniline dyes in the late 19th century [1]. The BBB separates the brain’s extracellular fluid from
the circulating blood, plays a role in protecting the brain from pathogens and other substances,
and maintains the homeostasis of the central nervous system (CNS). The BBB consists of four types of
cells: endothelial cells, pericytes, astrocyte end-feet, and microglial cells (Figure 1a). Epithelium acts as
a barrier separating the inside of the body from the outside environment, and epithelial and endothelial
cells form tight junctions (TJs) by sealing the paracellular spaces [2]. TJs control the diffusion of ions
and solutes across the paracellular spaces to maintain homeostasis and to prevent the absorption
of drugs into the body and the delivery of drugs into tissues (Figure 1b) [3]. BBB endothelial cells
form TJs and express specific polarized transport systems to tightly control paracellular movements
of solutes, ions, and water. Based on successful CNS drugs, small molecules that fit the Lipinski’s
“Rule of Five”, comprising molecular weight, lipophilicity, polar surface area, hydrogen bonding,
and charge, are favorable for BBB penetration. Furthermore, the efflux transporters in the BBB, such as
P-glycoprotein (P-gp), excrete drugs from the brain and are major obstacles to drug penetration into the
brain. Therefore, P-gp substrates are not desirable for CNS-targeted drug discovery [4–6]. More than
98% of small-molecule drugs fail to penetrate the brain. Thus, many researchers in the field of drug
discovery and development are trying to develop BBB drug delivery technologies for the treatment of
CNS diseases [7].
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Figure 1. Illustration of the blood-brain barrier and tight junction (TJ). (a) Components of the blood-
brain barrier. The blood-brain barrier is formed by vascular endothelial cells, pericytes, astrocytes, 
and microglial cells. The vascular endothelial cells form tight junctions. (b) Schematic structure model 
of a tight junction strand. Tight junctions tightly associated laterally to each other form a paired tight 
junction strand (kissing point). The intercellular space is completely obliterated at the kissing point 
[8]. (c) Structural model of a tight junction. Bicellular TJs and tricellular TJs, which are a structure at 
the contact of two cells and three cells, respectively [9]. 

To date, the following technologies have been developed to deliver drugs into the brain based 
on the functions of the BBB: receptor-mediated transcytosis, transferrin receptor and insulin receptor; 
solute carrier-mediated transcytosis, L-type amino acid transporter 1 (LAT1) and glucose transporter 
type 1 (GLUT1); and drug efflux transporters, P-glycoprotein (P-gp) [10]. These drug delivery 
strategies were developed to target the transcellular pathway. BBB disruption with mannitol, a 
hyperosmolar agent, is already used clinically for drug delivery via paracellular transport into the 
CNS. Although the osmotic opening of the BBB with mannitol may allow the delivery of 
antineoplastic drugs to patients with brain tumors, the interendothelial TJs are estimated to spread 
in a width of approximately 20 nm, and this uncontrolled opening of TJs poses a risk of undesired 
molecules (such as toxins) entering the brain [11,12]. Consequently, techniques for modulating size-
selective BBB openings to enable safe drug absorption are being developed worldwide. Here, we 
review and discuss the safety of TJ modulators for drug delivery to the brain. 

2. Tight Junction of the Blood-Brain Barrier 

The formation of tight junctions (TJs) in the blood-brain barrier (BBB) requires transmembrane 
proteins, namely the claudin family, angulin family, TJ-associated myelin and lymphocyte (MAL) 
and related proteins for the vesicle trafficking membrane link (MARVEL) protein (TAMP) family, 
junctional adherence molecule (JAM) family, and zonula occludens (ZO) family proteins, which are 
scaffold proteins of those membrane proteins (Figure 2). There are two types of TJs: bicellular TJs 
(bTJs) and tricellular TJs (tTJs), which are structures at the contact of two cells and three cells, 
respectively (Figure 1c). Claudins and occludin, a TAMP family protein, are essential factors in the 
formation of bTJs [8], and the TAMP family protein tricellulin and angulin family proteins are key 
proteins in the formation of tTJs [13,14]. 

Figure 1. Illustration of the blood-brain barrier and tight junction (TJ). (a) Components of the blood-brain
barrier. The blood-brain barrier is formed by vascular endothelial cells, pericytes, astrocytes,
and microglial cells. The vascular endothelial cells form tight junctions. (b) Schematic structure model
of a tight junction strand. Tight junctions tightly associated laterally to each other form a paired tight
junction strand (kissing point). The intercellular space is completely obliterated at the kissing point [8].
(c) Structural model of a tight junction. Bicellular TJs and tricellular TJs, which are a structure at the
contact of two cells and three cells, respectively [9].

To date, the following technologies have been developed to deliver drugs into the brain based
on the functions of the BBB: receptor-mediated transcytosis, transferrin receptor and insulin receptor;
solute carrier-mediated transcytosis, L-type amino acid transporter 1 (LAT1) and glucose transporter
type 1 (GLUT1); and drug efflux transporters, P-glycoprotein (P-gp) [10]. These drug delivery strategies
were developed to target the transcellular pathway. BBB disruption with mannitol, a hyperosmolar
agent, is already used clinically for drug delivery via paracellular transport into the CNS. Although the
osmotic opening of the BBB with mannitol may allow the delivery of antineoplastic drugs to patients
with brain tumors, the interendothelial TJs are estimated to spread in a width of approximately 20 nm,
and this uncontrolled opening of TJs poses a risk of undesired molecules (such as toxins) entering the
brain [11,12]. Consequently, techniques for modulating size-selective BBB openings to enable safe drug
absorption are being developed worldwide. Here, we review and discuss the safety of TJ modulators
for drug delivery to the brain.

2. Tight Junction of the Blood-Brain Barrier

The formation of TJs in the BBB requires transmembrane proteins, namely the claudin family,
angulin family, TJ-associated myelin and lymphocyte (MAL) and related proteins for the vesicle
trafficking membrane link (MARVEL) protein (TAMP) family, junctional adherence molecule (JAM)
family, and zonula occludens (ZO) family proteins, which are scaffold proteins of those membrane
proteins (Figure 2). There are two types of TJs: bicellular TJs (bTJs) and tricellular TJs (tTJs), which are
structures at the contact of two cells and three cells, respectively (Figure 1c). Claudins and occludin,
a TAMP family protein, are essential factors in the formation of bTJs [8], and the TAMP family protein
tricellulin and angulin family proteins are key proteins in the formation of tTJs [13,14].
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Figure 2. Schematic structures of tight junction proteins [8,14,15]. Arrows indicate the interactions 
between represented tight junction proteins and scaffold protein zonula occludens (ZO)-1. JAM, 
junctional adherence molecule. PDZ, postsynaptic density-95, discs-large, ZO-1. SH3, Src Homology-
3. GUK, guanylate kinase. 

2.1. Claudin-5 and Other Claudins 

Claudins are tetra-transmembrane proteins and, since claudin-1 and claudin-2 were identified 
in 1998, 27 members of this family have been discovered in mammals [16,17]. Claudins are composed 
of an intracellular N- and C-terminus, two extracellular loops, a large fist extracellular segment 
(ECS1), a shorter second extracellular segment (ECS2), and an intracellular loop [18]. Found at the C-
terminus of claudins, there is a postsynaptic density-95, discs-large, zonula occludens (ZO)-1 (PDZ) 
domain-binding motif for binding to a scaffold protein such as ZO-1, and a C-terminal containing a 
transmembrane domain required for tight junction (TJ) localization (Figure 2) [19]. Claudins have the 
property of interacting with other claudin family members on the same (cis-interaction) and opposite 
(trans-interaction) cell membranes, thereby generating a TJ strand [20]. Claudins have two 
extracellular regions that are essential for the interaction between claudin family members, and the 
differences in the amino acid sequences of these regions among claudins cause differences in the 
abilities of claudin-based TJs [21]. Additionally, as each claudin family member has a different tissue 
expression profile, the TJ of each tissue shows a unique strength and permeability. Found at the 
blood-brain barrier (BBB), multiple subtypes of claudins are expressed and, in particular, claudin-5 
is predominantly expressed compared with the other subtypes [22]. 

Claudin-5 was identified in 1999 through a similarity search with a sequence that has been 
reported as a common deletion within velo-cardio-facial syndrome [23]. Claudin-5, like other 
members of the claudin family, has a tetra-transmembrane domain and consists of 218 amino acids, 
with a molecular weight of 23 kDa. Claudin-5 is widely expressed in various organs [24,25], and it is 
expressed in endothelial cells [26,27]. Introduction of claudin-5 into rat brain capillary endothelial 
cells (TR-BBB) resulted in significantly lower permeability of the TR-BBB/claudin-5 monolayer [22]. 
Thus, claudin-5 has been shown to exhibit a particularly strong interaction ability among claudin 
family members, which might be related to the strong TJ properties of the BBB [28]. 

Although claudin-5-deficient mice died within 10 h of birth, morphological examination of the 
brain capillaries of claudin-5-deficient mouse embryos showed no differences against those of the 
wild-type and those with no hemorrhage or edema in the brain. Additionally, no major abnormalities 
were detected in various hematoxylin–eosin-stained tissues. Tracer experiments in claudin-5-
knockout mice revealed that small molecules of 1 kDa or less, such as Hoechst stain H33258 (562 Da) 
and gadolinium-diethylenetriamine-N,N,N’,N″,N″-pentaacetic acid (742 Da), passed through the 
BBB, but microperoxidase (1.9 kDa) and tetramethylrhodamine-conjugated dextran (10 kDa) did not 
[29]. Furthermore, a size-selective, transient BBB opening was observed in siRNA-induced claudin-5 
knockdown mice. The permeation of small molecules of up to 742 Da, but not molecules of 4.4 kDa, 

Figure 2. Schematic structures of tight junction proteins [8,14,15]. Arrows indicate the interactions
between represented tight junction proteins and scaffold protein zonula occludens (ZO)-1. JAM,
junctional adherence molecule. PDZ, postsynaptic density-95, discs-large, ZO-1. SH3, Src Homology-3.
GUK, guanylate kinase.

2.1. Claudin-5 and Other Claudins

Claudins are tetra-transmembrane proteins and, since claudin-1 and claudin-2 were identified in
1998, 27 members of this family have been discovered in mammals [16,17]. Claudins are composed of
an intracellular N- and C-terminus, two extracellular loops, a large fist extracellular segment (ECS1),
a shorter second extracellular segment (ECS2), and an intracellular loop [18]. Found at the C-terminus
of claudins, there is a postsynaptic density-95, discs-large, ZO-1 (PDZ) domain-binding motif for
binding to a scaffold protein such as ZO-1, and a C-terminal containing a transmembrane domain
required for TJ localization (Figure 2) [19]. Claudins have the property of interacting with other
claudin family members on the same (cis-interaction) and opposite (trans-interaction) cell membranes,
thereby generating a TJ strand [20]. Claudins have two extracellular regions that are essential for
the interaction between claudin family members, and the differences in the amino acid sequences of
these regions among claudins cause differences in the abilities of claudin-based TJs [21]. Additionally,
as each claudin family member has a different tissue expression profile, the TJ of each tissue shows a
unique strength and permeability. Found at the BBB, multiple subtypes of claudins are expressed and,
in particular, claudin-5 is predominantly expressed compared with the other subtypes [22].

Claudin-5 was identified in 1999 through a similarity search with a sequence that has been
reported as a common deletion within velo-cardio-facial syndrome [23]. Claudin-5, like other members
of the claudin family, has a tetra-transmembrane domain and consists of 218 amino acids, with a
molecular weight of 23 kDa. Claudin-5 is widely expressed in various organs [24,25], and it is
expressed in endothelial cells [26,27]. Introduction of claudin-5 into rat brain capillary endothelial cells
(TR-BBB) resulted in significantly lower permeability of the TR-BBB/claudin-5 monolayer [22]. Thus,
claudin-5 has been shown to exhibit a particularly strong interaction ability among claudin family
members, which might be related to the strong TJ properties of the BBB [28].

Although claudin-5-deficient mice died within 10 h of birth, morphological examination of the brain
capillaries of claudin-5-deficient mouse embryos showed no differences against those of the wild-type
and those with no hemorrhage or edema in the brain. Additionally, no major abnormalities were
detected in various hematoxylin–eosin-stained tissues. Tracer experiments in claudin-5-knockout
mice revealed that small molecules of 1 kDa or less, such as Hoechst stain H33258 (562 Da) and
gadolinium-diethylenetriamine-N,N,N′,N′′,N′′-pentaacetic acid (742 Da), passed through the BBB,
but microperoxidase (1.9 kDa) and tetramethylrhodamine-conjugated dextran (10 kDa) did not [29].
Furthermore, a size-selective, transient BBB opening was observed in siRNA-induced claudin-5
knockdown mice. The permeation of small molecules of up to 742 Da, but not molecules of 4.4 kDa,
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from the brain microvessels was observed for up to 48 h after the injection of claudin-5 siRNA
in mice, with no significant adverse effects. Furthermore, the administration of neuropeptide
thyrotropin-releasing hormone (360 Da) from the tail vein to the mice after the injection of
claudin-5 siRNA inhibited the permeation for up to 5-times longer than that observed in non-target
control mice [30].

During an analysis using a human brain capillary endothelial cell line (BCEC) induced
to express C-terminally tagged murine claudin-5-yellow fluorescent protein (YFP) by
doxycycline (hCMEC/D3-mCLDN5-YFP), an in vitro model of human BBB showed that the
murine claudin-5-YFP-transduced hCMEC/D3 cells exhibited a significant increase in the
transepithelial/transendothelial electrical resistance (TEER) levels, indicating the integrity of TJ
dynamics in cell culture models, and a decrease in paracellular permeability compared to those
in parental hCMEC/D3 cells (211 Ω cm2 for hCMEC/D3-mCLDN5-YFP cells versus 117 Ω cm2 for
hCMEC/D3 cells). However, the barrier properties of hCMEC/D3-mCLDN5-YFP cells were still
lower than those of porcine BCECs that generally show a high TEER level [31,32]. These results
suggest that besides claudin-5, other proteins are involved in the formation of the BBB. Indeed,
glucocorticoid hydrocortisone, which increases the TEER level and improves the BBB function,
induced the barrier function in hCMEC/D3 cells (324 Ω cm2) by upregulating claudin-5 and occludin [33].

Recently, a gene expression analysis of frozen brain tissue obtained by laser capture microdissection
revealed that the expression of claudin-1, -5, -11, -12, -25, and -27 was higher than that of occludin as a
TJ marker in human cortical capillaries [34]. Seen in capillaries microdissected from mice, the transcript
level of claudin-5, -11, -12, and -25 was higher than that of occludin, and the protein level of claudin-5 was
the highest among all claudins in the purified mouse brain capillaries [34]. Claudin-11 contributed to
the formation of strong TJs, and the expression of claudin-11 was downregulated in the brain and spinal
cord capillaries of experimental autoimmune encephalomyelitis (EAE) model mice, widely used as an
animal model of CNS inflammation multiple sclerosis, and in patients with multiple sclerosis [34,35].
Although functional analyses of CNS myelin using claudin-11 knockout mice have been performed [36,37],
there is no report of a BBB permeability analysis, necessitating further research to elucidate the in vivo
contribution of claudin-11 at the BBB. Regarding claudin-12-lacZ knock-in mice, claudin-12 was
expressed at low levels in brain endothelial cells compared to that in other cell types in the body;
this suggests that claudin-12 is not required for the BBB TJ function [38]. Although claudin-12 null mice
showed reduced calcium permeability in the proximal tubule, the function of the BBB TJ has not yet
been reported [39]. The knock down of claudin-25, also known as claudin domain containing 1, in the
mouse brain endothelial cell line bEND.3 did not affect TEER, but resulted in unstructured TJ strands
and a reduced protoplasmic mesh number [34]. Furthermore, Ohnishi et al., reported that claudin-25
knockdown increased the permeability of human brain endothelial cells to fluorescence-conjugated
dextran (4 kDa) [40]. There are no reports of claudin-25 knockout mice, and research on the functions
of claudin-25 in in vivo claudin-25 knockout mice is expected in the future.

The above findings suggest that in claudin-5 knockout mice, the presence of other claudin-based
TJs could maintain the structural integrity of endothelial cells in the brain and prevent bleeding [29].
Quite the reverse, persistent suppression of claudin-5 in adult doxycycline-inducible claudin-5
knockdown mice resulted in seizures and the mice died 3–4 weeks after claudin-5 suppression [41].
This suggests that long-term loss of the BBB barrier function, even by molecules less than 1 kDa,
compromises the safety of the BBB opening [42]. Thus, claudin-5 plays an important role in the barrier
properties of the BBB, and the lack of adverse effects such as brain hemorrhage, edema, and behavioral
changes due to transient claudin-5 knockdown is important and advantageous from the perspective of
drug delivery to the brain.

2.2. Occludin

Occludin is the first identified TJ protein; this TAMP family protein is a tetra-transmembrane
protein with a molecular weight of 6–6.5 kDa (Figure 2) [43]. Although occludin is an important
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component of TJs, occludin itself, unlike claudins, cannot form a TJ strand. However, occludin,
upon interaction with claudins, can form a complex TJ strand and enhance barrier function [44].
Although occludin-deficient mice show no phenotype of TJ formation and strand morphology,
histological abnormalities such as calcification around the vascular endothelial cells in the brain were
observed [45].

Regarding EAE model mice, the expression of both claudin-5 and occludin proteins decreased
with an increase in the expression of vascular endothelial growth factor A (VEGF-A), and this,
in turn, resulted in the BBB opening [46]. Intriguingly, although the injection of claudin-5 or occludin
siRNA injection into mice did not increase the BBB permeability of the biotinylated dextran (3 kDa),
the co-administration of claudin-5 and occludin siRNAs allowed molecules of up to 3–4 kDa to diffuse
across the BBB via the paracellular pathway, but not molecules of 10 kDa. Additionally, in the Tg2576
mouse model of Alzheimer’s disease that found overexpression of a mutant form of the amyloid
precursor led to an increased brain amyloid-β (Aβ) level and impaired cognate functions, chronic
administration of siRNAs targeting claudin-5 and occludin significantly increased the plasma Aβ(1-40)
(4.3 kDa) levels and decreased the brain Aβ(1-40) levels. Subsequently, the cognitive function of mice
was enhanced. These chronic administrations of these siRNAs did not show any evident toxicity in the
peripheral organs [47]. These results suggest that the co-suppression of both occludin and claudin-5
can modulate size-selective BBB permeability.

2.3. Tricellulin and Angulin-1

A tTJ is formed where three cells meet. Tricellulin is the first discovered protein that constructs tTJs
and is an essential protein for the formation of tTJs and bTJs [9]. Tricellulin is a tetra-transmembrane
protein consisting of 558 amino acids, with a molecular weight of 63 kDa. The C-terminus region
of tricellulin is necessary for binding to the scaffold protein, ZO-1 (Figure 2). Tricellulin, occludin,
and MarvelD3 are highly homologous and called TAMP. Tricellulin plays an important role in the
barrier function, which depends on the localization of tricellulin. Tricellulin localized at tTJs and bTJs
is involved in the permeability of macromolecules (4–10 kDa), ions, and large solutes, respectively [48].
However, mice lacking tricellulin do not show an abnormal phenotype associated with the BBB [49].

Angulin is a single-transmembrane protein with immunoglobulin-like extracellular domains and
an intracellular domain that functions as a tricellulin recruiter, recruiting tricellulin to the intersection
of the three cells to form a tTJ (Figure 2) [50]. The angulin family has three subtypes. Angulin-1,
which also is known as a lipolysis-stimulated lipoprotein receptor (LSR) [51], is localized to endothelial
cells in the brain [34]. The knockout of angulin-1 decreased the barrier function, but there were
no abnormalities in the ultrastructure of the brain blood vessels in the angulin-1-deficient mice.
Although angulin-1-deficient mice died before embryonic day 15.5, leakage of the small molecule
Sulfo-NHS-biotin (446 Da) into the brain was observed, but not large endogenous proteins, such as
albumin (69 kDa), antibodies (160 kDa), and fibrinogen (52 kDa). Leakage of small molecules into the
brain was not observed in adult angulin-1 heterozygous knockout mice; thus, one copy of angulin-1 is
sufficient to maintain the BBB permeability. These findings indicate that angulin-1 might regulate the
size-selective permeability of the BBB. Additionally, in BBB-disrupted experimental models, such as
the EAE model and a middle cerebral artery occlusion (MCAO) model of stroke, the expression of
angulin-1 in inflammatory and leaky lesions of blood vessels was significantly downregulated [52].
These results indicate that angulin-1 plays an important role in the barrier function of the BBB.

The transcript levels of both tricellulin and angulin-1 were increased in CNS endothelial cells
compared to those in peripheral endothelial cells [53,54]. However, tricellulin is distributed ubiquitously
in several tissues, and the effect of the molecular size of molecules on their permeability depends on the
localization of tricellulin in bTJs or tTJs [48,49]. Quite the opposite, angulin-1 is specifically expressed
in tTJs of vascular endothelial cells that form the BBB [50,53]; therefore, angulin-1 is a promising target
in CNS drug delivery.
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2.4. Junctional Adherence Molecules (JAM-A)

JAM family proteins, first reported in 1998, are type I transmembrane proteins belonging to the
immunoglobulin superfamily that have two immunoglobulin-like loops, with a molecular weight
of 40 kDa (Figure 2) [55]. JAMs are dimerized on the same cell membrane and form tetramers by
interacting with a dimer between opposite cell membranes [56].

JAM-A is highly expressed in vascular endothelial cells in the brain. JAMs can interact with
lymphocyte function-associated antigen-1, which plays an important role in the extravasation of
lymphocytes. The administration of a JAM-A-blocking monoclonal antibody (BV11) to a mouse
model of acute cytokine-induced meningitis with increased BBB permeability reduced the number
of leukocytes that penetrated the brain [57]. During a rat cortical cold injury model, the expression
of JAM-A significantly decreased in the lesion site after brain damage [58]. It was reported that
knockdown of JAM-A in human dermal microvascular endothelial cells caused claudin-5 and ZO-1 to
disappear from TJs [59]. Recently, Kakogiannos et al. revealed that JAM-A promotes the expression
of the transcription factor CCAAT/enhancer-binding protein α (C/EBPα), and C/EBPα induces the
expression of claudin-5. Additionally, the expression of claudin-5 in the vasculature of various tissues,
including the brain, was significantly reduced in JAM-A-deficient mice, which lost size-selective
barrier function as claudin-5-deficient mice [60]. However, JAM-A-deficient mice did not show a lethal
phenotype like claudin-5-deficient mice [61].

2.5. Zonula Occludens (ZO)-1

The ZO family belongs to the membrane-associated guanylate kinase homologs (MAGUK) family
and is composed of three members. ZO-1, identified in 1986, is a peripheral membrane phosphoprotein
with a molecular weight of 225 kDa [62,63]. ZO family proteins are scaffold proteins that bind
to claudins, occludin and tricellulin, and JAMs via the PDZ1 domain, GUK domain, and PDZ3
domain, respectively (Figure 2) [15]. ZO-1 and ZO-2 have many overlapping functions and are
expressed on endothelial cells [64]. Regarding ZO-1 and ZO-2 double knockout cells, the TJ structure
disappeared and even 150 kDa macromolecules could diffuse throughout the paracellular space [65].
Concerning human dermal microvascular endothelial cells, ZO-1 appears to mainly contribute to
the formation of TJs, and knockdown of ZO-1 alone causes claudin-5 and JAM-A to disappear from
TJs [59]. ZO-1-deficient mice showed vascular development defects associated with the mislocalization
of endothelial junctional adhesion molecules, and died before embryonic day 11.5 [66]. The role of
ZO-2 in the BBB is still unclear.

3. Tight Junction Modulators for Drug-Delivery Systems (DDSs)

Outlined in the previous section, claudin-5 and angulin-1 are abundantly expressed in brain
endothelial cells, and mice lacking claudin-5 or angulin-1 have a size-selective loosened BBB [29,52].
Therefore, both claudin-5 and angulin-1 are considered candidate targets for drug delivery to the BBB.
Regarding the discovery of drugs targeting membrane proteins, molecules that bind to extracellular
regions, such as antibodies, are the first choice. However, in the case of claudins, owing to their small
extracellular region (the first extracellular loop consists of approximately 50 amino acids and the second
extracellular loop consists of approximately 25 amino acids) and high protein sequence homology
among various species [67], it was difficult to develop claudin binders containing antibodies against
the extracellular region [68]. Hence, studies have initially been conducted using toxin fragments that
target TJs [69].

3.1. Claudin Binders

3.1.1. Fragment of Bacterial Toxins

Clostridium perfringens enterotoxin (CPE), a 35-kDa polypeptide consisting of 319 amino acids,
causes food poisoning in humans [70]. CPE has two functional regions, the N-terminal region is
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cytotoxic, and the C-terminal region (C-CPE184; 184–319 amino acids, ~15 kDa) binds to its receptors
claudin-3 and claudin-4 with high affinity (Figure 3) [71–73]. The C-terminal region of CPE (C-CPE)
does not show cytotoxicity and modulates the function of the epithelial TJ barrier by binding to
its receptors [72]. Although C-CPE binds not only to claudins-3 and -4 but also to claudins-6, -7,
-8, -9, -14, and -19, C-CPE cannot bind to claudin-5 [74–76]. The deletion construct of 10 amino
acids of the N-terminal of C-CPE184 exhibits a high solubility and affinity for claudins (C-CPE194;
194–319 amino acids) and modulates the TJ barrier [77,78].
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The crystal structures revealed that mammalian claudins morphologically resemble the left hand of
humans; claudins have four transmembrane helices (TM1–TM4) corresponding to the forearm and two
extracellular segments (ECS1 and ECS2) containing a β-sheet of five β-strands (β1–β5) corresponding
to the four fingers and thumb (Figure 4) [79–83]. The extracellular helix (ECH) at the end of ECS1
interacts hydrophobically with the extracellular region of TM3 of the neighboring claudin within the
same membrane (cis-interactions). The extracellular variable regions V1, the loop between β1 and β2
of ECS1, and V2, the loop between TM3 and β5 of ECS2, are required for head-to-head adhesion in
opposing lateral cell membranes (trans-interactions). The crystal structures of the mouse claudin-19,
human claudin-4, or human claudin-9 in complex with C-CPE revealed that C-CPE interacts with
the two extracellular regions of claudin, ECS1 and ECS2 (Figure 4). It has been reported that C-CPE
induces conformational changes the ECH in the extracellular region of claudins and disrupts the lateral
assembly of claudins [80–83].

Previously, we and others generated C-CPE mutants that can bind to claudin-5. C-CPE m19
(S304A/S305P/S307R/N309H/S313H) was obtained by screening claudin binders from a C-CPE
mutant-displaying phage library using claudin-displaying budded baculovirus. It could recognize
various claudins (claudins-1, -2, -4, and -5) [84,85]. C-CPE mt (Y306W/S313H) was designed based
on the crystal structure of claudins. The binding specificity of C-CPE mt to claudin-5 was increased
over wild-type C-CPE; moreover, this mutant bound to claudin-1 and showed weakened binding to
some claudins (claudins-3, -4, -6 to -9) [86,87]. C-CPE (N218Q/Y306W/S313H) also was designed by
structure-based mutagenesis, and it bound more strongly to claudin-5 and more weakly to claudin-1
and -4 than wild-type C-CPE [88].
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blue. C-CPE interacts with ECS1 and ECS2 in mouse claudin-19.

These claudin-5-binding C-CPE mutants enhanced the solute permeation of in vitro BBB models [87,88].
The treatment of in vitro BBB models, mouse cell line cerebEND, primary rat brain endothelial cells
with rat astrocytes (pRBMEC/AST), and primary porcine brain endothelial cells (pPBMEC), with C-CPE
mt and C-CPE (N218Q/Y306W/S313H) decreased TEER in a concentration-dependent and reversible
manner without cytotoxicity. These C-CPE mutants increased the permeability of carboxyfluorescein
(375 Da), but not that of fluorescence-conjugated dextran (4 kDa). Freeze fracture electron microscopy
revealed that the C-CPE mt treatment did not substantially affect the overall structure or total
breakdown of the TJs [88]. During a nonhuman primate BBB model, primary cynomolgus monkey
brain microvasculature endothelial cells with rat pericytes and astrocytes, C-CPE mt time-dependently
reduced TEER and increased the BBB permeability of the fluorescence-conjugated dextran (4 kDa)
without cytotoxicity [87].

During an in vivo experiment, C-CPE mt co-localized with claudin-5, allowing the passage of
Texas red (3 kDa) and rhodamine B-dextran (10 kDa) across the larval zebrafish BBB. C-CPE mt
affected the permeability of the BBB for up to 3 h after injection, but this BBB permeability was
unaffected 4 h after injection. This finding suggests that C-CPE variants can reversibly modulate the
BBB permeability and they are suitable for drug delivery to the brain in zebrafish [89]. To contrast,
C-CPE mt could not deliver a 16-mer gapmer antisense oligonucleotide (approximately 5.3 kDa) to the
brain of mice. C57BL/6 mice receiving C-CPE mt showed no abnormal behavior or liver or kidney
dysfunction, as assessed by histological and serum chemistry analyses. Additionally, mice treated
with Evans blue solution following C-CPE mt showed no extravasation of Evans blue, which is known
to bind to serum albumin and act as a macromolecule (approximately 70 kDa) in the blood, into the
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brain [90]. Although in vivo drug delivery to the brain by C-CPE mutants requires further investigation,
including a safety assessment, these findings indicate that C-CPEs are useful tools for drug delivery to
the BBB.

3.1.2. Antibodies against Claudin-5

Due to the small extracellular region of claudins and their high degree of homology among species,
immunization of mice and rats with claudins is difficult [67,68,91,92]. Our group successfully generated
monoclonal antibodies against the extracellular regions of human claudin-5 using the claudin-5
proteoliposome or the eukaryotic expression plasmid encoding human claudin-5 (DNA immunization
method) [87,93]. A flow cytometry-based cellular binding assay revealed that most of the generated
monoclonal antibodies can specifically bind to human and cynomolgus monkey claudin-5, but not
to mouse claudin-5. These antibodies decreased TEER in canine epithelial MDCKII cells expressing
human or cynomolgus monkey claudin-5, but not in mouse claudin-5-expressing MDCKII cells (Table 1).
The decrease in TEER caused by the antibodies occurred without cell injury, and it was recovered by
approximately 24 h after the antibodies were washed out. Furthermore, the ability of the antibodies to
modulate the TJ barrier was evaluated using an in vitro BBB model, primary cynomolgus monkey
brain microvasculature endothelial cells, with rat pericytes and astrocytes. The results revealed a
significant decrease in the TEER and an increase in the penetration of small-molecule fluorescent
tracers (both sodium fluorescein (376 Da) and fluorescence-conjugated dextran (4 kDa)) through the
intercellular space. Furthermore, anti-claudin-5 antibodies altered the subcellular localization of
claudin-5 from the cell membrane to the membrane and cytoplasm in cynomolgus monkey brain
endothelial cells [87,93].

Table 1. Summary of monoclonal antibodies that recognize the extracellular region of human claudin-5.

Clone Subtype Epitope
Binding Specificity 1 Effect on TJ Integrity in

MDCKII Cells 2

Ref.
Human Mouse Cynomolgus Other

Claudins Human Mouse Cynomolgus

M48 Mouse
IgG3 2nd loop +++ - +++ - +++ - +++ [87]

R2 Rat IgG2a 1st loop +++ - +++ - ++ - ++ [87]
R9 Rat IgG2b 2nd loop +++ + +++ - +++ - +++ [87]

2B12 Mouse
IgG2a 2nd loop +++ - +++ - ++ - ++ [93]

1 +++, +, and - indicate strong, weak, and negligible binding reactivity of anti-claudin-5 antibody to claudin-5
in each species. 2 +++, ++, and - indicate that the anti-claudin-5 antibodies have strong, normal, and negligible
modulating activity on the barrier formation of claudin-5 in each species, respectively.

Claudin-5 also is expressed at low to moderate levels in the intestinal epithelium, but the
contribution of claudin-5 to the barrier function of these epithelial cells is still unknown [24].
Interestingly, an analysis using cells transfected with claudin-5 revealed that claudin-5 increased TJ
permeability in the moderately high resistance human intestinal epithelial cell line, Caco-2, and did not
affect the paracellular barrier in the high resistance Madin–Darby canine kidney cell line, MDCK-C7 [94].
Additionally, the antibodies against claudin-5 did not affect the TEER of human intestinal epithelial
cell line T-84 that expresses claudin-5 [87]. Thus, except in the vascular endothelial cell barrier,
where claudin-5 is a main component of TJ, the contribution of claudin-5 to the barrier function is
considered to be low. This is similar to the finding that claudin family member-deficient mice did not
show barrier dysfunction in tissues expressing claudins but showed a lack of barrier function only in
specific tissues (see above). Therefore, the use of the anti-claudin-5 antibody may regulate the function
of the BBB without affecting the TJ in other epithelial tissues.
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Regarding claudin-5, three amino acids in the extracellular domains, D68 in the extracellular loop
domain (ECL) 1, T75 in ECL1, and S151 in ECL2, differ between humans and rodents [91]. Indeed,
binding analyses using human/mouse claudin-5 chimeric mutant (D68E, T75A, and S151T)-expressing
cells revealed that the binding of the monoclonal antibodies of clones M48 and 2B12, and clone R2,
was attenuated in the D68E and S151T mutants, respectively. Although the binding of clone R9
was partially attenuated in the S151T mutant, the TJ integrity of mouse claudin-5 transfectants was
not reduced by R9 due to the insufficient binding affinity of R9 to mouse claudin-5 [87,93]. Thus,
these antibodies cannot modulate the TJ barrier function in mice, and their in vivo safety and efficacy
have not been clarified.

Although claudin-5 is highly expressed mainly in vascular endothelial cells and functions as
a main component of the microvascular endothelial cell barrier [27], claudin-5 also is expressed by
epithelial cells in the intestinal tract and lungs [24,25]. However, many other claudin family members
and TJ proteins are expressed in these epithelial cells, and the contribution of claudin-5 to the cell
barrier in these epithelial cells is unknown. Indeed, anti-claudin-5 antibodies did not affect the barrier
function of T84 human intestinal cells [87]. Claudin family member-deficient mice are thought to
have no barrier dysfunction in all claudin-expressing tissues for the same reason that they showed a
significant lack of barrier function only in certain tissues. When other claudins are able to compensate
for claudin-5 function, it is suggested that anti-claudin-5 antibodies can modulate the BBB barrier
function without affecting TJ function in other tissues. Currently, our group is conducting experiments
in monkeys to evaluate the efficacy and toxicity of an anti-claudin-5 antibody in vivo.

3.1.3. Other Claudin-5 Modulators

Added to the method of directly regulating the function of claudin-5 as described above, it is
considered possible to modulate the BBB function by regulating the expression level of claudin-5.
Huang et al., showed that polyinosinic-polycytidylic acid [Poly(I:C)], a ligand for Toll-like receptor
3 (TLR3), reduces the expression of claudin-5 in a dose- and time-dependent manner and increases
the permeability of the human lung endothelial monolayer [95]. Poly(I:C) induced TLR3-mediated
activation of nuclear factor-kappa B (NF-κB), and NF-κB signaling suppressed the transcriptional
activity of the claudin-5 promoter [95–97]. However, further analysis is needed to determine whether
poly(I:C) can control the permeability of the BBB.

Jia et al., reported that high-dose bevacizumab, a neutralizing antibody against VEGF-A,
downregulated claudin-5 through upregulation of transforming growth factor β1 (TGFβ1). Conversely,
low-dose bevacizumab increased claudin-5 expression via the phosphoinositide 3-kinase (PI3K)
pathway [98]. Indeed, VEGF-A downregulated the expression of both claudin-5 and occludin [46,99],
and TGFβ1 also decreased claudin-5 expression and increased the BBB permeability in vitro and
in vivo [100,101]. Although it is possible to modulate the barrier function with an anti-VEGF antibody,
it is difficult to control the expression level of claudin-5 with an anti-VEGF antibody. Therefore, further
research is needed for its application to DDS technology for the management of brain diseases.

DDS technology that regulates the BBB permeability by regulating the claudin-5 expression is
promising, but further research is required to apply it practically.

3.2. Angulin Binders

3.2.1. Fragment of Bacterial Toxins

Clostridium perfringens iota-toxin is a binary toxin that causes antibiotic-associated enterotoxemia
and contains the enzymatic component (Ia) and receptor-binding component (Ib) of adenosine
diphosphate (ADP)-ribosyltransferase. Ib is composed of four domains consisting of 664 amino
acids (Figure 5) [102]. The three N-terminal domains of Ib play important roles in the organization
of the Ib-pore, and the C-terminal domain IV of Ib (Ib421-664; 421–664 amino acids, ~30 kDa),
named angubindin-1, binds to its receptors, angulin-1 and -3, but not to angulin-2 [103–105].
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Angubindin-1 changed the localization of angulin-1 and tricellulin from tTJs to bTJs, thus increasing
the permeability of TJs [104].
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During an in vitro BBB model, using primary rat brain capillary endothelial cells with rat
pericytes and astrocytes, angubindin-1 reduced the TEER value, which was recovered after the
removal of angubindin-1 from the culture medium. This finding indicates that angubindin-1 can
temporarily modulate the tTJ barrier [90]. Furthermore, in mice, angubindin-1 increased the BBB
permeability and was able to deliver a 16-mer gapmer antisense oligonucleotide (5.3 kDa) to the
brain. The silencing effect of the antisense oligonucleotide was observed 1–4 h after the injection
of angubindin-1. These data indicate that angubindin-1 can reversibly reduce the integrity of the
BBB in vivo. Therefore, mice treated with angubindin-1 showed no abnormal behavior and showed
normal liver and kidney functions according to histological and serum biochemical tests. Additionally,
mice treated with Evans blue solution following angubindin-1 showed no extravasation of Evans blue
into the brain [90]. These findings suggest that first-generation angulin binders, such as angubindin-1,
can modulate the tTJ barrier and can be safely used for CNS drug delivery in vivo.

3.2.2. Antibodies against Angulin-1

Angulin-1 was originally identified as a lipoprotein receptor (LSR) in the liver [51]. The expression of
angulin-1 also correlates with colon, bladder, breast, pancreatic, ovarian, and endometrial cancers [106–111].
Recently, Hiramatsu et al., developed the functional monoclonal antibody against the extracellular
region of human angulin-1 (anti-hLSR mAb (#1-25)) that crossreacted with mouse LSR. They showed
that the antibody inhibited very low density lipoprotein (VLDL)-dependent cell proliferation,
and administration of the antibody inhibited tumor growth in mouse xenograft models of hLSR+

epithelial ovarian cancer [110]. They also showed that administration of the anti-hLSR mAb (#1-25)
to C57BL/6J mice had no adverse effects on blood or organs. However, there is no information on
the effect of this antibody on the BBB function. Further analysis is needed to determine whether
second-generation angulin binders, including antibodies, can be a safe drug delivery tool to the brain.

4. Conclusions

The BBB plays an important role in protecting the brain from the entry of serum proteins,
inflammatory cells, pathogens, and other substances to maintain CNS homeostasis. During the
development of safe drug delivery tools to the brain, it is important to modulate reversible and
size-selective BBB permeability without BBB disruption. To date, drugs of various sizes, from small
molecules to macromolecules, have been developed. Small-molecule drugs have a molecular weight
of less than approximately 500 Da; whereas, macromolecules have a wide range of molecular
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weight, such as in oligonucleotide therapeutics and peptides (7–14 kDa), and antibodies (more than
100 kDa) [112]. Therefore, it is important to control the permeability of the BBB to a suitable
size according to the size of each drug. Previously mentioned, the modulation of claudin-5 and
angulin-1 enables the BBB permeability of molecules of molecular weight less than 1 and 5.3 kDa,
respectively [29,90]. Furthermore, the co-regulation of both claudin-5 and occludin increased the BBB
permeability of molecules as large as 4 kDa [46,47]. These findings indicate that targeted TJ components
and their combinations are important in controlling the size of molecules that pass through the BBB.

TJ modulators for drug delivery are classified as first-generation binders, which include toxins
and their fragments, and second-generation binders, which include antibodies [69,91]. Shown above,
C-CPEs and angubindin-1 are useful tools for studying drug delivery to the brain via the paracellular
pathway, but the clinical applications of these molecules are limited due to the immunogenicity. Thus,
it is important to develop second-generation TJ binders, such as antibodies and macrocyclic peptides.
Owing to the small extracellular region of claudin and its high degree of homology among species,
it is difficult to obtain functional antibodies against the extracellular region of claudins [67,68,91,92].
Recently, methods have been developed to obtain functional antibodies against membrane proteins
that are difficult to produce, such as claudins (see above) [87,93]. Furthermore, recently, Watari et
al., reported a high-throughput screening system based on the time-resolved fluorescence resonance
energy transfer method to identify claudin-4 binders. They identified several claudin-4 binders with
epithelial-barrier-disrupting activity, such as thiostrepton, using the developed method [113]. These
strategies are expected to accelerate the development of new claudin binders that modulate the BBB
function in the future. Further development of drug delivery technology to the brain is desired in
developing therapeutic agents for CNS diseases, such as Alzheimer’s disease, in the aging society.
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Abbreviations

Aβ Amyloid-β
BBB Blood-brain barrier
BCEC Brain capillary endothelial cell
bTJ Bicellular TJ
C/EBPα CCAAT/enhancer-binding protein α

CNS Central nervous system
CPE Clostridium perfringens enterotoxin
C-CPE C-terminal region of CPE
DDS Drug-delivery system
EAE Experimental autoimmune encephalomyelitis
ECH Extracellular helix
ECL Extracellular loop domain
ECS Extracellular segment
JAM Junctional adherence molecule
LSR Lipolysis-stimulated lipoprotein receptor
MARVEL MAL and related proteins for vesicle trafficking and membrane link
NF-κB Nuclear factor-kappa B
PDZ Postsynaptic density-95, discs-large, ZO-1
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P-gp P-glycoprotein
PI3K Phosphoinositide 3-kinase
Poly(I:C) Polyinosinic-polycytidylic acid
TAMP TJ-associated MARVEL protein
TEER Transepithelial/transendothelial electrical resistance
TGFβ1 Transforming growth factor β1
TJ Tight junction
TLR3 Toll-like receptor 3
TM Transmembrane helix
tTJ Tricellular TJ
VEGF-A Vascular endothelial growth factor A
VLDL Very low density lipoprotein
ZO Zonula occludens
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