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2.18.1 Introduction

Virtual and experimental high-throughput screening (HTS) are widely used to identify novel ligands for drug
development.'™ Despite their successes, these methods are haunted by false positives, compounds that initially appear
to have a desired biological activity but on closer evaluation are found to act by spurious mechanisms. Often, these
counterfeit screening hits have peculiar behaviors that cannot be reconciled with canonical modes of inhibition. These
compounds are ultimately found to be developmental dead-ends and are discarded, typically after a great deal of time
and resources has been devoted to them.

The frustration caused by such molecules is compounded by their prevalence; it has been estimated that in
any given experimental HTS, the ratio of false positives to true positives is at best 1:1 and more likely 10:1.°
This enrichment of phony inhibitors has led to increased scrutiny of hit lists and an increased interest in develo-
ping filters and counterscreens to rapidly recognize and eliminate ‘non-lead-like’ compounds from further
consideration.*™""!

"Toward this end, work over the last decade has been devoted to understanding the origins of false-positive screening
hits. Experimental artifact, such as compound impurity'? or assay interference,”'? is a well-known cause. Inhibitor

1415 o privileged scaffolds!®?% has also been described. More recently, aggregate

promiscuity due to reactive groups
formation has emerged as a potential mechanism of promiscuous inhibition.?*** This model proposes that some
nonspecific inhibitors form aggregates in solution and that the aggregate species is responsible for enzyme inhibition
(Figure 1). Preliminary studies suggest that aggregate-forming promiscuous compounds may be common among
screening libraries and hit lists. This chapter will initially focus on nonspecific enzyme inhibition as caused by
aggregate-forming molecules and will review experimental methods for the identification of such compounds.
Computational algorithms for the prediction of all types of promiscuous inhibitors will then be discussed and

outstanding questions regarding promiscuous inhibitors in drug discovery will be considered.
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Enzyme
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100 nm

Enzyme

Figure 1 Model of promiscuous enzyme inhibition. The promiscuous compounds form aggregates in solution and enzyme
molecules (white arrows) adsorb onto the surface of the aggregate particle, resulting in enzyme inhibition. Although initial
microscopy images suggest surface adsorption of enzyme molecules, absorption of enzyme into the aggregate interior cannot be
excluded. (Reprinted with permission from McGovern, S. L.; Caselli, E.; Grigorieff, N.; Shoichet, B. K. J. Med. Chem. 2002, 45,
1712-1722. Copyright (2002) American Chemical Society; from McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K. J.
Med. Chem. 2003, 46, 4265-4272. Copyright (2003) American Chemical Society.)

2.18.2 Promiscuous Inhibition by Aggregate-Forming Compounds

By the late 1990s, experimental and virtual HTS were commonly used to identify new leads for drug design. Although
various screening techniques and algorithms had been developed, it became apparent that the output from these large-
scale methods was suboptimal. Hit lists were populated, if not dominated, by nonspecific compounds with peculiar
properties, such as steep inhibition curves, flat structure—activity relationships (SARs), and complex time-dependent
behavior. Despite the use of filters for reactivity,'"* chemical swill,'"! and druglikeness,”> problematic molecules
continued to appear on screening hit lists. These compounds caused much frustration and were often abandoned after
significant effort had been invested in them.

To explore the underlying mechanism responsible for this perplexing behavior, 115 compounds were initially

investigated. This included 45 screening hits,>*** 15 leads used as experimental tools,?®

and 55 clinically prescribed
drugs.?” Of the 115 compounds studied, 53 were found to inhibit diverse model enzymes, including B-lactamase,
chymotrypsin, dihydrofolate reductase, and B-galactosidase. These promiscuous compounds showed time-dependent
inhibition that was sensitive to enzyme concentration, the presence of bovine serum albumin (BSA), and ionic strength.
Based on these observations, it was hypothesized that the nonspecific compounds formed aggregates in solution, and the
aggregate particles caused enzyme inhibition (Figure 1).>> Consistent with this hypothesis, dynamic light scattering
(DLS) and transmission electron microscopy revealed that the promiscuous compounds formed particles on the order of
30-1000 nm in diameter; these particles were absent from solutions of nonpromiscuous compounds.”?

How did the aggregate particles interact with enzyme molecules to cause inhibition?** Centrifugation experiments
suggested a direct interaction between aggregate-forming inhibitors and enzyme molecules; this interaction was
disrupted by the addition of detergent such as Triton X-100.** Aggregate formation and enzyme inhibition by the
promiscuous compounds were also prevented or rapidly reversed by the addition of Triton X-100.>* Additional
microscopy studies showed that protein molecules were adsorbed onto the surface of the aggregate particles, although
absorption into the aggregate interior could not be excluded. This interaction was also prevented by the addition
of detergent such as Triton X-100.>* To account for these observations, it was proposed that some promiscuous
compounds form aggregates in solution and enzyme molecules adsorb onto the surface of the aggregate particle,
resulting in reversible enzyme inhibition (Figure 1).*

Since the first proposal of this model, a growing number of research groups have identified potential aggregate-based
inhibitors among their screening hits (Table 1). Their observations, in addition to the initial, small-scale evaluation of

the prevalence of aggregators suggest that they occur among screening hits,?>*%!

small-molecule reagents used in the
lab,?® and, surprisingly, even clinically used drugs.”’** A recent study evaluating 1030 random druglike molecules
suggests that up to 19% show experimental signatures of aggregate-based promiscuity.>® Because of the potentially
widespread occurrence of aggregate formers, there is much interest in the development of rapid experimental methods
for the identification of these promiscuous compounds. There has also been a growing interest in the development of
computational models to predict compounds likely to act as aggregate formers because such filters could be used to
remove suspect molecules from screening libraries or from hit lists. These experimental and computational efforts are

considered in turn in the following sections.
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Table 1 Promiscuous compounds from virtual and high-throughput screening

Structure Bype of screen 1Csp (UM) versus — Experimental evidence for Reference
target promiscuity
Virtual screen 5 ® Decreased inhibition with 23,24
B-Lactamase detergent
— Q ® Decreased inhibition with
o070 — NH@O increased enzyme
concentration

® [nhibition of diverse enzymes
® Time-dependent inhibition
® Particles observed by DLS

NH, O OH “ Virtual screen 5 ® Decreased inhibition with 28
PMM/PGM? detergent

Cl
® Decreased inhibition with
increased enzyme
concentration

OH O NH, ® Time-dependent inhibition
® Particles observed by DLS

Virtual screen 25 ® Decreased inhibition with 29
Edema factor increased enzyme
concentration
® Time-dependent inhibition

Cell-based HTS ND* ® [nhibition of diverse enzymes 31
EF-CaM
FRET-based HTS 7.4 ® Decreased inhibition with 30
Coronavirus BSA
proteinase
Phase 1II clinical 1.6 ® Decreased inhibition with 32
trial” PTP1b detergent

® Decreased inhibition with
increased enzyme
concentration

® Time-dependent inhibition

2Disperse Blue.

b PMM/PGM, phosphomannomutase/phosphoglucomutase.

°Not determined, compound observed to inhibit edema toxin-induced change in cellular morphology.
9The compound, ertiprotafib, had been studied in phase Il trials prior to evaluation for promiscuity.32

2.18.3 Experimental Identification of Promiscuous Inhibitors

The peculiar experimental signature of aggregate-forming compounds can be used to distinguish them from specific,

23,24,28

well-behaved inhibitors, and several research groups have used these characteristics to triage their screening hits

for potential promiscuity.!#?7313442 The appropriate experiments range in complexity and intensity from a rapid
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biochemical assay to a much more laborious microscopy study. Depending on the purposes of the research effort, these
experiments can be tailored appropriately. For most early-stage discovery programs, the following experiments are
performed to answer the question: Is this hit likely inhibiting the screening target as an aggregate? If the answer is yes,
it is unlikely that the hit will be a favorable starting point for lead design and it should be dropped from further
consideration immediately, as the pain of throwing out compounds early in the process pales in comparison to the agony
of abandoning leads that have been through several nonproductive development cycles. If the answer to the above
question is no, then one element of the hit’s potential has been reassuringly established. The necessary experiments
and examples of their recent application in drug discovery projects are described below; detailed recipes for performing
these assays have been described elsewhere.*?

2.18.3.1 Biochemical Assays for Promiscuity

Fortunately for screening programs faced with evaluation of tens to thousands of hits, the most informative experiments
are among the easiest to perform and are the most amenable to high-throughput methods. Often, the experimental
assay that initially identified the screening hit can be easily modified to accomplish many of the initial tests of
promiscuity. Additionally, these protocols can be used to assay for other mechanisms of promiscuity, such as chemical
reactivity. If the original assay lacks sufficient dynamic range or is otherwise difficult to alter, it may be simpler to use
easily purchased model enzyme systems such as chymotrypsin or B-lactamase. Colorimetric, kinetic assays have proven
to be especially robust for these purposes.

The particular components of the assay can affect the outcome. For instance, the ionic strength® and pH** of the
buffer can alter the aggregation and inhibition properties of the compounds; 50 mM potassium phosphate, pH 7.0, has
previously been found useful. Increased enzyme concentration®® or the presence of excess protein such as albumin®*°
can decrease the apparent inhibition by aggregators; a starting enzyme concentration of 1-10nM is typical. Ideally,
solutions of inhibitors and substrate are prepared from fresh buffer or dimethyl sulfoxide (DMSO) stocks and diluted
into buffer so that the final DMSO concentration in the assay is as low as possible, preferably less than 5%. Substrate
concentrations are typically greater than the K, for the reaction to allow for maximal velocities.

2.18.3.1.1 Detergent sensitivity

In the presence of detergents such as Triton X-100, inhibition by aggregate-forming inhibitors is markedly attenuated.
For instance, the inhibition of B-lactamase by a 3 uM solution of tetraiodophenolphthalein (I4PTH), a prototypical
aggregator, decreases from 78% in the absence of detergent to 3% in the presence of 0.01% Triton X-100.>* Indeed,
"Triton X-100 rapidly reverses inhibition of -lactamase by [4PTH without affecting a specific, well-behaved inhibitor of
the enzyme (Figure 2).

To date, detergent sensitivity is the easiest way to discriminate between aggregators and nonaggregators.
Therefore, the most rapid method of identifying aggregate-based inhibitors is to repeat the screening assay with the
addition of 0.01% TTriton X-100. A typical protocol consists of incubating fresh detergent, inhibitor at the ICs,
(concentration of inhibitor that reduces enzyme activity by 50%), and enzyme for 5 min and initiating the reaction with
substrate.”**** If inhibition is due to aggregation, inhibition should decrease from 50% to less than 40% in the

24,45

presence of detergent. It may also be useful to consider adding 0.01% 'Triton X-100 to the baseline assay buffer as a
prophylactic measure to prevent aggregate-forming compounds from appearing as inhibitors at all.

The first control for this experiment requires establishing that the addition of Triton X-100 does not significantly
affect the reaction rate or any of the other assay components. A negative control experiment will show that a well-
behaved inhibitor of the system is not affected by the detergent, and a positive control will show that a known
aggregator, such as I4PTH,? is attenuated by the detergent.

It is worth noting the discussion in this chapter emphasizes the use of Triton X-100, as it has been shown to reverse
enzyme inhibition by aggregators (Figure 2).** Other detergents have been employed as agents to study promiscuity,
such as saponin,zm8 Tween-20,* and CHAPS.>**

Because of its relative simplicity, detergent sensitivity has been used in a growing number of drug discovery projects to
triage compounds for promiscuity (Table 1).253*¢339 Eor instance, using a library of 147 compounds derived from the
Cdc25A phosphatase inhibitor dysidiolide, Koch and co-workers found selective inhibitors of three enzymes that were
structurally similar to Cdc25A. All of the library compounds were assayed against each target enzyme in the presence and
absence of 0.001 or 0.01% Triton X-100 to ultimately identify the specific inhibitors.*® Detergents have also been used to
study the inhibition of PTP1b by ertiprotafib, a compound that had reached phase II clinical trials (Table 1).** The ICs,
of ertiprotafib against 1 nM PTP1b increased 10-fold with the addition of 0.01% Triton X-100. This observation, in
combination with other properties of the compound,* was consistent with an aggregate-based mechanism of inhibition.
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Figure 2 The effect of 0.01% Triton X-100 added during a B-lactamase inhibition assay. (a) Inhibitor is 10uM 14PTH.
(b) Inhibitor is 5 uM rottlerin. () Inhibitor is 0.6 uM BZBTH2B, a specific B-lactamase inhibitor.%® In all panels, thick lines (—)
denote reactions containing inhibitor and thin lines (—) denote reactions containing DMSO control. TX100, Triton X-100.
(Reprinted with permission from McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K. J. Med. Chem. 2003, 46,
4265-4272. Copyright (2003) American Chemical Society.)

2.18.3.1.2 Sensitivity to enzyme concentration

The key observation leading to the development of the aggregate hypothesis was that the promiscuous inhibitors were
sensitive to the concentration of enzyme. For instance, a 10-fold increase in the concentration of B-lactamase from 1 to
10 nM was sufficient to increase the 1Csq of 35 aggregate-forming compounds by 3- to over 50-fold, even when the
inhibitor was present at micromolar concentrations.> The ability of nanomolar enzyme to titrate micromolar inhibitor
suggested that the active form of the inhibitor might be an aggregate of many individual inhibitor molecules; although
the ratio of individual inhibitor molecules to enzyme molecules might be 1000:1 or greater, the ratio of aggregate
particles to enzyme molecules would be much lower.

To evaluate screening hits for this property, the concentration of the target enzyme is increased 10-fold and the
assay is repeated with the inhibitor at the ICs, obtained at the baseline enzyme concentration. If aggregate formation is
involved, inhibition ought to decrease from 50% to less than 40% against the 10-fold greater concentration of enzyme.
"This assay requires that the ratio of inhibitor to enzyme remains elevated, on the order of 1000:1 or greater, even after
the enzyme concentration has been increased. Many assays may not be able to tolerate increases in enzyme
concentration due to cost, limited reagent availability, or an increased reaction rate that makes it technically difficult to
obtain accurate velocity measurements. In such cases, it may be helpful to decrease the initial assay concentration of
the enzyme or to use alternative substrates with slower reaction rates.”’

As in the detergent assay described above, a well-behaved inhibitor should not be affected by the increase in
enzyme concentration and can serve as a negative control.”* A known aggregator that has been shown to be sensitive to
enzyme concentration should be used as a positive control.>*2%?7

This protocol has also been used by several research groups to evaluate screening hits.!*?%%%7 For example,
Disperse Blue against 3.3 pgmL ~! phosphomannomutase/phosphoglucomutase (PMM/PGM) had an ICsq of 5uM;
when the enzyme concentration was increased to 33 ugmL ~ ', the compound did not show any detectable inhibition
up to 10 uM.?® Similarly, the ICs, of ertiprotafib against PTP1b increased from 1.6 to 9 uM as the concentration of the
enzyme increased from 10 to 100 nM.*?
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The inclusion of BSA also decreases the potency of aggregate-based inhibitors through a similar mechanism to
increasing the enzyme concentration, except enzyme molecules are displaced from inhibitor particles by inert protein
instead of active enzyme.”® Consequently, addition of BSA to screening assays has been used to accomplish the
equivalent purpose; for examples, see ***° and Table 1.

2.18.3.1.3 Inhibition of diverse model enzymes
One of the earliest warning signs leading to the discovery of aggregators was their ability to inhibit dissimilar targets.*?
For example, rottlerin, a widely used kinase inhibitor,*® has an ICs, of 3 pM against PKCS, 1.2 uM against B-lactamase,
2.5 uM against chymotrypsin, and 0.7 pM against malate dehydrogenase.?® It has since become clear that aggregators
can inhibit a variety of enzymes, ranging from B-lactamase (40 kDa monomer) to p-galactosidase (540 kDa tetramer).”?

Ideally, for each screening hit under consideration, at least one counterscreen is performed against an enzyme that is
unrelated to the target enzyme in terms of structure, function, and ligand recognition. Depending on the level of
certainty required, testing against one dissimilar enzyme may be sufficient; testing against two or more provides
additional reassurance. Screening across receptors also allows for investigation of other mechanisms of promiscuity, such
as chemical reactivity or privileged scaffolds; nonspecific inhibition from any mechanism may be sufficient to drop the
compound from further optimization studies.

For secondary screening to be practical, an experimentally robust system with readily available components and a
straightforward assay readout should be used. Beta-lactamase, chymoptrypsin, and malate dehydrogenase have been

6,27,29,31,45 ;
26:27.293145 It may be more convenient to use enzymes already known to the research

used successfully in the past.
group; for instance, Fattorusso and colleagues assayed a novel caspase inhibitor discovered in a combination NMR and
computational screening project against a metalloprotease that was also under investigation in their laboratory.®’

Control experiments for these assays are straightforward. Specific inhibitors of the target enzyme and the enzymes
used for counterscreening should not cross-react. For the positive control experiment, a known aggregator should be
shown to inhibit each enzyme under study.

In practice, hits are often tested against related enzymes to evaluate for specificity within a protein class or
across species.*® For instance, Blanchard and co-workers used HTS of 50000 compounds to identify novel corona-
virus proteinase inhibitors. After a series of filters, the 572 hits yielded five compounds with 1Csq values of 0.5-7 uM
for the target, and two of those compounds inhibited coronavirus protease but not four other proteases.*® Baldwin
and colleagues screened a 220000 compound library to find novel inhibitors of dihydroorotate dehydrogenase
from Plasmodium falciparum; follow-up screens identified a competitive inhibitor with an ICsy of 16 nM against the
parasite enzyme and 200uM against the human isozyme.'? These approaches have been extended by recent
technological developments that allow for testing compounds against multiple enzymes in parallel. For instance,

. 9 . . .
4748 and enzyme microarrays® have been described. These techniques provide an

proteomics-based methods
evaluation of inhibitor specificity against several enzymes simultaneously; future developments along these lines can

be expected.

2.18.3.1.4 Time-dependent inhibition

Preincubation of aggregate-based inhibitors with enzyme increases the apparent ICsy of the compounds 2- to over
50-fold.*****” Several mechanisms could account for this observation, such as slow on-rates or covalent binding. To
explore the origin of time-dependent behavior by aggregators, Tipton’s group conducted a thorough analysis of the
kinetic behavior of Disperse Blue.”® Their results suggested that slow-binding did not occur when this compound
interacted with its target enzyme, PMM/PGM. Instead, they found that the compound behaved as a parabolic,
noncompetitive inhibitor, and they proposed that the kinetic signature of time-dependent inhibition with a nonlinear
dependence on inhibitor concentration may be a marker for aggregation.”® Future studies to evaluate the generaliza-
tion of this observation are certainly anticipated. In the meantime, it should be noted that time-dependent inhibition
is consistent with several modes of enzyme inhibition and is not singularly sufficient to denote a compound as
an aggregator.

In a typical test for time dependence, an ICsq is determined by incubating enzyme with inhibitor for 5 min and
initiating the reaction with substrate. The assay is then repeated, except substrate is first mixed with the inhibitor at
the 1Cs¢ concentration and the reaction is initiated by the addition of enzyme. If inhibition without incubation
decreases from 50% to less than 40%, the result is consistent with the time-dependent behavior observed of
aggregators. Control experiments include repeating the assay with a specific, nontime-dependent inhibitor of the target
enzyme as well as a known aggregator. These protocols are usually performed in conjunction with other assays to

evaluate inhibitor behavior (e.g., see 32,
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2.18.3.1.5 Steep inhibition curves

It has been observed that steep inhibition curves are often associated with undesirable screening hits.® This
experimental property has been used as a filter to triage compounds; for example, in their search for coronavirus
inhibitors, Blanchard and co-workers eliminated 54 of 126 compounds because they did not have a sigmoidal
semilogarithmic dose—response curve.*” Aggregate-forming inhibitors have also been shown to have a steep inhibition

26

curve relative to classically behaved inhibitors,” although mechanistic understanding of this experimental observation

awaits further study.

2.18.3.2 Light Scattering

The biochemical experiments described above provide phenomenological support for the identification of an aggregate-
based inhibitor, but they do not yield direct evidence for the presence of aggregate particles. To obtain such data, a
biophysical method such as DLS is necessary. DLS has a growing number of applications in the biological and material
sciences, but this discussion will focus on the use of DLS to determine if particles are present in a solution of a
promiscuous inhibitor and, if so, what is their size? In conjunction with the assays previously described, DLS completes
the series of experiments typically needed to characterize a promiscuous, aggregate-based inhibitor.

DLS is most commonly used to analyze particles with a diameter of 1-1000 nm. In a standard setup, a sample of the
solution under study is placed in a chamber and exposed to a laser. Particles in the sample cause the laser light to
scatter. A detector at a fixed angle relative to the chamber records the scattered photons over a period of time, usually
tens of seconds to minutes. Because particles in the sample undergo Brownian motion, the intensity of the scattered
light measured by the detector will fluctuate, typically on the microsecond timescale. These fluctuations reflect the
rate of diffusion by the particle in solution, which in turn depends on the hydrodynamic radius of the particle according
to the Stokes—Einstein equation. The necessary calculations are performed by software provided with the DLS
instrument, and given certain assumptions about particle shape and distribution, the hydrodynamic radius can be used
as a measure of particle size. This is only a brief explanation of the method; for more details on the theory and practice
of DLS, see descriptions by Santos®! and Wyatt.>

For analysis of a promiscuous inhibitor, the first task is to determine if particles are present. Graphically, this can be
determined from the shape of the autocorrelation function obtained during the DLS experiment. For instance, rottlerin
is a known promiscuous, aggregate-forming inhibitor,?® and it yields an autocorrelation function with well-defined
decay on the microsecond timescale as shown in Figure 3a. The same is true for K-252¢, another promiscuous
kinase inhibitor (Figure 3b). Surprisingly, suramin, a compound that is known to inhibit multiple targets, produces
an autocorrelation function with a poorly defined decay, suggesting that it does not form aggregates in solution
(Figure 3c¢).%°

Additionally, it is useful to note the average intensity of the scattered light at the detector during the experiment.
‘This is usually reported as counts per second (cps) or kilocounts per second (kps). The absolute value of the intensity
will depend on the particular instrument used, but solutions that are known to be particle free, such as filtered water,
should yield average intensities at least an order of magnitude less than that of solutions known to contain particles,
such as latex beads or albumin. Therefore, it is worthwhile to conduct both positive and negative control experiments
to evaluate the signal-to-noise ratio of the instrument.

If particles are present, the next step is to determine their size. Typically, this is calculated by software that
accompanies the instrument. Results between different algorithms, even in the same software package, can vary
markedly based on assumptions about particle shape. Again, it is worthwhile to test the system using particles of known
size, such as latex bead standards or albumin.

More recent developments in DLS technology allow for coupling of DLS with a high-performance liquid
chromatography (HPLC) column to provide rapid eluent analysis. Of particular interest for screening purposes, at least
two companies (Wyatt Technology Corporation and Precision Detectors, Inc.) have developed high-throughput DLS,
increasing the number of compounds that can be studied by this method.

A growing number of research groups have incorporated DLS into their evaluation of hit or lead compounds.
For instance, Klebe’s group used DLS to rule out aggregation as a contributor to the inhibition of tRNA-guanine
transglycosylase by several hits identified in a FlexX-based screen.® Similarly, Wang and co-workers used light
scattering to rule out aggregation as contributor to the activity of a novel non-nucleoside reverse transcriptase inhi-
bitor (NNRTT).*” The technique has also been used to confirm the presence of particles in solutions of suspec-
ted promiscuous inhibitors. Soelaiman and colleagues used DOCK to identify new inhibitors of edema factor, a
toxin secreted by Bacillus anthracis. Three active compounds were evaluated by DLS, and one was found to form
particles greater than 1000 nm in diameter.”’ Tipton’s group also used DLS in their analysis of Disperse Blue; at 10 uM,
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Figure 3 Representative autocorrelation functions from DLS experiments. (a) 15uM rottlerin, (o) 10uM K-252¢, and
(c) 400 uM suramin. (Reprinted with permission from McGovern, S. L.; Shoichet, B. K. J. Med. Chem. 2003, 46, 1478-1483.
Copyright (2003) American Chemical Society.)

the compound was observed to form particles with a mean radius of 43.4nm and average scattering intensity
of 92.4keps.?®

DLS has also been used to explore the factors influencing aggregation by small molecules. In a report from Arnold’s
group, 15 diaryltriazine and diarylpyrimidine NNRTIs were studied by DLS to evaluate the effect of pH and
compound concentration on aggregate size.** All of the compounds were found to form particles in solution. For three
compounds studied in detail, aggregate size increased as the pH increased from 1.5 to 6.5. Aggregate size was also
found to increase as the inhibitor concentration increased from 0.001 to 10 mM. Intriguingly, compounds with particle
radii of 30-110 nm had more favorable absorption than compounds with radii greater than 250 nm, and it was proposed
that the systemic adsorption of the drugs depended on the formation of appropriately sized aggregates.**
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2.18.3.3 Microscopy

Confocal fluorescence and transmission electron microscopy have been used to visualize small molecule aggregates and
to explore the interaction of these particles with protein.?>**** Low-resolution imaging has been obtained by confocal
study of green fluorescent protein (GFP) in the presence of I4PTH aggregates.?* Initial images obtained by this
method suggest that the inhibitor aggregates cause GFP to accumulate in clusters; these clusters dissolve upon
addition of Triton X-100 (Figure 4). Notably, GFP retains its fluorescence signal in the presence of [4PTH, suggesting
that the protein is not denatured by the aggregates (Figure 4b). Higher resolution imaging of similar solutions of
B-galactosidase and I4PTH obtained by transmission electron microscopy show that the protein adsorbs onto the
surface of the inhibitor aggregate (Figure 4e), and with the addition of detergent, this interaction is prevented
(Figure 4f). These observations, in combination with biochemical and biophysical studies, suggest that enzyme is
adsorbed onto the surface of the aggregate particles and thereby inhibited, although absorption into the aggregate
interior cannot be excluded.?* Furthermore, the interaction between aggregate and enzyme can be prevented or
reversed by the addition of Triton X-100.%*

Electron microscopy is an intensive process not typically amenable to screening, although there has been at least
one report of a research program using transmission electron microscopy to evaluate a novel drug lead for aggregation.®
The technique was also used to visualize aggregates formed by NNRTIs studied by Arnold’s group; although these
compounds were not considered promiscuous, aggregate formation was suggested to mediate bioavailability of the
drugs.**

2.18.3.4  Additional Confirmation Assays

Beyond the experiments described above, there are several tests one could consider performing to evaluate screening
hits for peculiar behavior. Most simply, the original assay could be repeated under exactly the same conditions to
evaluate for trivial experimental errors.'* More rigorously, it has been proposed that when the same compound library is
screened against the same target in three different assay protocols, the agreement between assays is only 35%.'

(d) Sy (e) — (f)

Figure 4 Visualization of 14PTH aggregates and GFP molecules by confocal fluorescence microscopy (a—c) and TEM (d-).
(@) 0.33mgmL~"' GFP alone. (b) 0.25mgmL~" GFP with 500 uM 14PTH. (c) 0.25mgmL " GFP with 500 uM 14PTH and
0.0075% Triton X-100. (d) 0.5mgmL~" GFP alone. (¢) 0.1mgmL~" GFP with 100pM I4PTH. () 0.1mgmL~" GFP with
100 uM 14PTH and 0.001% Triton X-100. Representative I4PTH aggregates are marked with black arrows, GFP molecules with
white arrows. Bar =5 um in panels a-c; bar =200 nm in panels d—f. (Reprinted with permission from McGovern, S. L.; Helfand,
B. T.; Feng, B.; Shoichet, B. K. J. Med. Chem. 2003, 46, 4265-4272. Copyright (2003) American Chemical Society.)
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Consequently, it may be useful to design an alternative assay protocol for the target and then rescreen the entire library
or, less laboriously, only the initial hits with the alternative format.'?

Depending on the particular screening protocol used, it may be informative to test the compound set for
interference with the assay readout. For instance, Jenkins and colleagues used a fluorescence-based HTS to identify
angiogenin inhibitors."? The initial set of hits was re-plated with activated fluorescent substrate to evaluate the hits for
interference with the fluorescent readout; strikingly, 73% of the hits were found to interfere.'?

Screening for chemical reactivity may also be productive. The ability of the same screening hit to inhibit diverse
receptors, as described above, may be the first sign of reactivity. Time-dependent behavior may also suggest an
irreversible reaction. More directly, some authors have found it useful to repeat the screening assay in the presence of
dithiothreitol (DTT) to evaluate hits for thiol reactivity.'>® Alternatively, mass spectrometry (MS) has been used to
evaluate compounds for adduct formation."

Less glamorously but no less importantly, it is often useful to evaluate the purity of screening hits because the
observed activity may be due to a contaminant. A variety of approaches are possible; most simply, a new solution of the
compound can be prepared from fresh powder or with powder from a different lot.'> Alternatively, the compound can
be repurified and then reassayed.'® For a more rigorous analysis, HPLC or MS can be employed to detect impurities.'?

2.18.4 Computational Prediction of Promiscuous Compounds

Given the expense of experimental work and the desire to minimize efforts spent on false positives, there is a
considerable interest in the development of computational methods to predict compounds likely to behave
promiscuously. Since Lipinski’s seminal work showed that 90% of drugs share a common set of easily identified
properties,”> there has been much effort devoted to predicting druglike behavior based on chemical structure. The
following section will review recent computational approaches for identifying various classes of promiscuous
compounds.

2.18.4.1 Frequent Hitters

As defined by the Roche group, ‘frequent hitters’ are compounds that appear as actives in multiple screening projects,
across a range of targets.” These include reactive species, compounds that interfere with the assay, and privileged
scaffolds. To predict compounds likely to act as frequent hitters, Roche and colleagues first developed a database of
known frequent hitters. These compounds were culled from compounds that had hit in at least eight different HTS
assays, compounds from an in-house depository that had been requested by at least six different discovery projects, and
additional compounds from various sites within Roche.”® Eleven teams of medicinal chemists voted on the structures to
identify molecules that according to their expert opinion and experience were likely to be frequent hitters. To obtain a
set of nonfrequent hitters, a diverse set of compounds from the Roche human drug database were selected. The final
data set contained 479 frequent hitters and 423 nonfrequent hitters.>

Structural analysis with LeadScope revealed that no single substructure was sufficient to identify a frequent hitter. To
extend the analysis, Ghose and Crippen descriptors were calculated for all compounds in the data set and used to define a
partial least squares (PLS) multivariate linear regression model. The PLS model correctly predicted 92% of frequent
hitters and 88% of nonfrequent hitters. The group then developed a nonlinear model using a neural network, again based
on the Ghose and Crippen descriptors. The final model correctly classified 90% of frequent hitters and 91% of nonfrequent
hitters.> As the authors explained, ‘frequent hitter’ is not synonymous with ‘undesired structure;” for instance, ligands that
bind a similar set of receptors will cross-react because of common substructures. Therefore, this model was not intended
for elimination of compounds but for prioritization of compounds for purchase, library design, or testing.

A subsequent effort to identify frequent hitters was described by Merkwirth and co-workers.>* Various single and
ensemble methods, including k-nearest neighbors classifiers, support vector machines (SVM), and single ridge
regression models, were derived for binary classification of compounds. These models were then trained against the
same frequent hitters data set described above. The best models had cross-validated correlation coefficients of up to
0.92 and misclassification rates of 4-5%, an improvement from the 10% misclassification rate produced by the neural
network approach.’*

2.18.4.2 Aggregators

Recent efforts have been directed toward the problem of identifying aggregating promiscuous inhibitors. Seidler
and colleagues screened 50 clinically prescribed drugs and found that seven showed aggregate-based inhibition of
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B-lactamase, chymotrypsin, and malate dehydrogenase.?” These experimental results were used to develop a data set of
111 compounds containing 48 aggregators and 63 nonaggregators. Simple cutoffs based on solubility or ClogP classified
87% or 81% of the 111 compounds correctly, respectively. To obtain a more precise model, a recursive partitioning
algorithm based on 260 physicochemical descriptors was developed (Figure 5). As shown in Table 2, the model
correctly classified 43 of 48 aggregators (90%) and 61 of 63 nonaggregators (97%).%

The same neural network® and SVM method®* described in the preceding section were then tested against the 111
compounds in the aggregator test set; the results are described fully in ** and briefly here (Table 2). The neural net
identified 30 of 48 aggregators (63%) and 53 of 63 nonaggregators (84%) with a Matthew’s correlation coefficient of
0.48. The SVM method correctly predicted 32 of 48 aggregators (67%) and 58 of 63 nonaggregators (92%) with a
Matthew’s correlation coefficient of 0.63. In summary, these methods did not discriminate between aggregators
and nonaggregators as well as the recursive partitioning model. One obvious cause is that these models were trained
against a data set containing frequent hitters acting by a variety of mechanisms, not simply aggregation. Nonetheless, it

1: NON (5/5)

S _sssN<=2.287| F
2: AGG (28/29)

F Q 3: NON (3/3)
Contains COOH
ClogP <= 3.633 (40) F
(111)
O————
ClogP >=5.389 T
(11)

5: AGG (7/8) 4: AGG (8/8)

&)

max_conj_path <= 18.5
(66)

6: NON (53/58)

Figure 5 Recursive partitioning analysis of 111 aggregators and nonaggregators. Each branch contains the physicochemical
criterion used to split a group of compounds; T indicates compounds that satisfy this criterion, and F indicates compounds that
do not. Terminal nodes are green and coded as NON' if they consist predominantly or completely of nonaggregators; terminal
nodes are red and coded as ‘AGG’ if they are predominantly or completely aggregators. Nodes with more compounds are
identified by larger circles. (Reprinted with permission from Seidler, J.; McGovern, S. L.; Doman, T. N.; Shoichet, B. K. J. Med.
Chem. 2003, 46, 4477-4486. Copyright (2003) American Chemical Society.)

Table 2 Classification rates for three different algorithms tested on the same data set of 48 aggregators and 63
nonaggregators

Algorithm Aggregators correctly classified (total = 48) Nonaggregators correctly classified (total = 63)
No. % No. % Reference
Recursive partitioning 43 90 61 97 27
Neural network 30 63 53 84 53
Ensemble method 32 67 58 92 53
(SVM)“

#SVM, support vector machines.
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is remarkable that these algorithms performed as well as they did, given that the molecules on which they were
trained were not specifically designated aggregators or nonaggregators. Indeed, it is intriguing to consider that the
frequent hitters data set may include (as yet unidentified) aggregators, thereby contributing to the success of these
models.

Recently, an additional 1030 compounds have been tested for aggregation®; the results increase the number of
publicly reported compounds studied for this property by an order of magnitude. As the database of compounds
explicitly found to be aggregators or nonaggregators grows, it is hoped that these data will provide greater insight into
the nature of aggregation and enable the development of more precise models.

2.18.4.3 Privileged Substructures

Certain molecular scaffolds encode for recognition of diverse receptors. These privileged substructures are often
starting points for the design of ligands with improved specificity for a particular receptor. This section will review two
pharmacophore-based studies describing the use of privileged substructures for designing G protein-coupled receptor
(GPCR) targeted compound libraries'” and for identifying promiscuous kinase inhibitors.'®

Mason and co-workers introduced a method for generating 4-point pharmacophores that could be modified to
include a pharmacophore for a particular substructure such as a privileged scaffold.!” Using Chem-X, atom types were
automatically generated and assigned to a feature type used to generate the pharmacophore. Atom types or dummy
centroid atoms unique to a privileged substructure were designated as a special ‘privileged’ feature type. This feature
type was designated as one of the four points used to generate the pharmacophore map for the compound. Because all
of the subsequent pharmacophore descriptor sets contained the privileged substructure, molecular similarity and
diversity could be compared relative to their shared privileged scaffold. The authors proposed that this could be used as
an aid for library design, either to imitate features of known active compounds or to explore ‘missing diversity’ among
existing compounds containing the desired scaffold. The latter goal could be accomplished by using molecules
containing the privileged substructure as reagents to obtain desired chemically accessible products.'”

In addition, the method was shown to identify pharmacophores enriched among a class of ligands sharing similar
biological activity. For instance, structural features shared by GPCR ligands were distinguished from those in a set of
small molecule enzyme inhibitors and in a set of random compounds.!” The method could also be used to address
ligand selectivity by comparing pharmacophore keys across sets of ligands for related enzymes, such as trypsin,
thrombin, and factor Xa. More recent work has explored the use of pharmacophores for describing related binding sites,
for instance see >°.

In a subsequent report, Aronov and Murcko derived a five-point pharmacophore to describe kinase frequent
hitters.'® In this work, frequent hitters were defined as compounds with K; values less than 50 nM against two or more
of the following diverse kinases: protein kinase A, Src, Cdk2, Erk2, and Gsk3. Selective inhibitors were defined as
compounds that had a K; value less than 50 nM against only one of the five kinases and greater than 50 nM against the
other four. Both the promiscuous and selective compounds were known to exhibit ATP-competitive kinase inhibition at
nanomolar concentrations. In total, the authors compiled a set of 43 frequent hitters and 209 selective inhibitors.'®

Ligand-bound structures of four of the promiscuous compounds had been solved in-house; these structures were
aligned and used to generate a five-point pharmacophore composed of two hydrogen bond donors, two hydrogen
bond acceptors, and one aromatic feature.'® These results were compared against the frequent hitter and selective
inhibitor data sets described above; 38 of 43 frequent hitters (88%) but only 10 of 209 selective inhibitors (5%)
matched the pharmacophore. Considering only selective inhibitors with a K; value less than 2nM for one of the
kinases (25-fold greater specificity), 0 of 61 compounds (0%) matched the pharmacophore. Therefore, the
pharmacophore captured some of the features that distinguished frequent hitters from specific inhibitors.'® By placing
the pharmacophore features in the ATP binding site, it was possible to identify interactions between conserved
kinase residues and the frequent hitters that contributed to the inhibitors’ promiscuity. The authors proposed that
either by addition of features beyond those five associated with promiscuity or subtraction of at least one of the
substructures represented by the pharmacophore, it might be possible to engineer ligands with greater specificity for a
given kinase.'®

2.18.4.4 Reactive Species

Chemically reactive groups are a well-known source of false-positive screening hits.'* Several commercial and in-house
filters for identifying and removing reactive species are currently in use.’>>® Despite the widespread use of filters,
reactive compounds remain a significant challenge for discovery efforts. For example, Blanchard and co-workers
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reported that of 69 HTS hits against coronavirus protease, 64 (93%) were discarded after repeat assays with D'T'T
suggested thiol reactivity.*

To address this persistent problem, Hajduk’s group at Abbott has proposed the thiol reactivity index (TRI) for
estimating the probability that a given compound will be reactive.'® Their recently developed ALARM NMR method
for detecting thiol reactivity found that of 476 lead compounds experimentally shown to be reactive, only 156 (33%)
were predicted as such by computational filters. To better define the relevant moieties, structural descriptors were
calculated for a series of reactive compounds. The probability of reactivity (Pr) for any given structure was then
defined as the sum over all structural descriptors of the number of occurrences of each descriptor in that compound
weighted by the TRI for that descriptor. If the Py for a compound was greater than 0.3, the compound was predicted to
be reactive. The TRI for each descriptor was determined by using nonlinear regression to maximize the agreement
between observed and predicted reactivity as described by a scoring function.'®

The final set of 75 nonzero TRIs was applied to a data set of 3504 compounds studied by ALARM NMR."® Using a
Pr of 0.3, 486 of 509 experimentally reactive compounds (95%) were correctly predicted and 2005 of 2995
experimentally nonreactive compounds (67%) were correctly predicted. As described, the method has a high sensitivity
and a low number of false negatives, making it a useful flag for identifying compounds for follow-up experimental

reactivity testing."

2.18.4.5 Experimental Artifact

Interference with the assay readout is another familiar source of screening false positives.”'* Few computational
approaches for removing actives due to experimental artifact have been developed, but Jenkins and colleagues
proposed that virtual screening can be used as a filter for such compounds.'® Their underlying hypothesis was that true
positives should be enriched by virtual screening and false positives due to experimental artifact should be de-enriched.
To explore this idea, the National Cancer Institute Diversity Set and the ChemBridge DIVERSet were combined
to produce a library of 18111 compounds that was initially docked against angiogenin in a fluorescence-based HTS.
"To distinguish true hits from false positives, HTS hits were rescreened in a luciferase assay and an HPLC assay. Of 178
initial HTS hits, 12 (6.7%) were confirmed as true hits by the follow-up assays.

The same database of compounds was also tested against angiogenin in two separate virtual screens, one using
DockVision for docking and Ludi for scoring, and a second using GOLD for both docking and scoring. The
computational methods were then evaluated for their ability to enrich for true hits among the total docked library and
also among the H'T'S hit list. The DockVision/Ludi combination ranked 33% of the true hits in the top 10% of the total
database for a 3.3-fold enrichment over random and the GOLD algorithm placed 42% of the true hits in the top 2% to
yield a 21-fold enrichment. When only the HT'S hits were docked, the highest enrichment was observed by a consensus
scoring method that counted compounds ranked in the top 25% by both virtual screening methods. This approach
placed four of the true hits among the top 9 (5%) of the 178 HTS hits for an enrichment of 6.6-fold over HTS
alone. The authors concluded that virtual screening was best used as a post-HTS filter to prioritize compounds for
further testing.

2.18.5 Future Directions

Despite the growing interest in promiscuous compounds, several outstanding questions remain. For instance, what is
the prevalence of aggregate-based inhibitors, particularly among small molecules that are most interesting for drug
design? Early observations suggest that these compounds may be widespread among druglike compounds®*%; further
work to explore the distribution of aggregators is clearly needed.

Even if aggregators are found to occupy substantial regions of relevant chemical space, what is the significance of
this behavior? Is aggregation a feature or a bug? Since clinically used drugs have been found capable of inhibiting
enzymes by forming aggregates,”” one could make the argument that aggregation is not a significant problem for drug
design. Indeed, recent studies have proposed that aggregation may be a necessary step in the systemic uptake of
NNRTTs,** suggesting that aggregation may even be a desirable property.

Clearly, it is possible for drugs to show aggregation-based inhibition, as a compound that is specific at nano-
molar concentrations for a pharmacologic target may also aggregate at micromolar concentrations. Indeed, it is
interesting to speculate on possible consequences of aggregation by drugs. But aggregation at micromolar
concentrations leading to inhibition of nontarget receptors does not change the fact that the drug also inhibits
its target at nanomolar concentrations. This is the important difference between a drug that inhibits off-pathway
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targets via aggregation and a hit that inhibits its screening target via aggregation. The purpose of screening is to find
new leads for inhibitor design. A screening hit that is only active because it inhibits its target receptor via aggregation is
likely not a good starting point for further design work and should be abandoned. Furthermore, even though the
screening hit shares the same pathology (aggregation) as a real drug, it does not necessarily follow that it may also share
the same desired feature (classical inhibition of a target). Conversely, aggregation at micromolar concentrations does
not exclude the possibility that the compound may also act as a specific inhibitor of a given target at nanomolar
concentrations.

Efforts have been made to explore the mechanism of aggregate-mediated inhibition,”**** but these experiments
have only raised more questions. What is the nature of the physicochemical interaction between enzyme molecules and

aggregate particles? Recent studies of nanoparticle-mediated inhibition of chymotrypsin®”>®

may provide insight.
Functionalized amphiphilic nanoparticles have been found to inhibit chymoptrypsin via an electrostatic interaction
followed by denaturation; up to 50% of enzyme activity was restored by the addition of surfactant.’” Depending
on the particular functional groups exposed on the surface of the nanoparticle, various modes and degrees of
inhibition were observed.*® Various biophysical experiments including fuorescence, fluorescence anisotropy, DLS,
and circular dichroism were performed to study the conformational changes induced in the enzyme due to nano-
particle binding.’”® Similar experiments to explore the nature of aggregate-mediated enzyme inhibition may be
worthwhile.

It is also interesting to consider the scope of receptors that are targets for small molecule aggregates. For instance,
some enzymes are more susceptible to inhibition by aggregators than other enzymes. Is this due to variations in protein
size, shape, surface charge distribution, or other physicochemical property? Additionally, most work to date has been
done with soluble enzymes, but aggregators have also been identified in screens using membrane-bound receptors.??
Do aggregating compounds generally inhibit surface receptors? If so, how does inhibition compare to that of soluble
enzymes? Can aggregators act as agonists as well as antagonists? These questions are active areas of research, and
results from these studies are eagerly anticipated.

A final area of interest concerns the SARs among aggregators. What distinguishes aggregators from nonaggregators?
What factors determine the size of the particle formed by each aggregator? Preliminary observations have been made by
a few groups. For instance, Frenkel and colleagues analyzed SARs among 15 aggregating NNR'TTs and found that
compounds containing oxygen atoms tended to form larger particles.** The authors proposed that oxygen’s ability to
serve as a hydrogen bond donor could result in different interactions from a similarly placed carbon or nitrogen atom
and consequently lead to different aggregation patterns. In a separate study, Seidler and co-workers studied a series of
azole antifungals, four of which were aggregate formers and two of which were not.?’ Interestingly, the two
nonaggregators are prescribed as orally available medications, but the four aggregators are only administered as topical
agents. These compounds could be distinguished from each other based on their ClogP values, with the aggregators
having a ClogP greater than 5 and the nonaggregators having a value less than 5.7 In addition to physical properties,
potential structural descriptors have been suggested by the various computational models described above.
Additionally, pharmacophore-based methods may be a useful approach for studying SARs among these compounds.
It is hoped that as more small molecules are explicitly studied for aggregation, the structural influences leading to
aggregation will be better defined and the mechanism itself will be better understood.
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