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ABSTRACT 

Background. In human glomerular diseases, visualizing podocyte injury is desirable since podocytes do not regenerate 
and podocyte injury leads to podocyte loss. Herein, we investigated the utility of immunostaining for early growth 

response 1 ( EGR1) , which is expressed in injured podocytes from the early stages of injury in animal experiments, as a 
podocyte injury marker in human glomerular diseases. 
Methods. This study included 102 patients with biopsy-proven glomerular diseases between 2018 and 2021. The 
proportion of EGR1 expression in podocytes ( %EGR1pod) was analyzed in relation to clinical and histopathological 
features, including glomerular and urinary podocyte-specific markers. 
Results. %EGR1pod correlated significantly with the urinary protein:creatinine ratio, urinary nephrin and podocin mRNA 

levels, and glomerular podocin staining ( rho = 0.361, 0.514, 0.487 and –0.417, respectively; adjusted P = .002, < .001, < .001 
and < .001, respectively) . Additionally, %EGR1pod correlated with cellular/fibrocellular crescents ( rho = 0.479, adjusted 
P < .001) . %EGR1pod was high in patients with glomerulonephritis, such as immunoglobulin A nephropathy ( IgAN) , lupus 
nephritis and antineutrophil cytoplasmic antibody–associated glomerulonephritis, and in those with podocytopathies, 
such as membranous nephropathy and primary focal segmental glomerulosclerosis, while %EGR1pod was low in 

patients with minimal change disease. In a subgroup analysis of IgAN, %EGR1pod was higher in Oxford C1 patients than 

in C0 patients. However, unexpectedly, patients with higher %EGR1pod were more prone to attain proteinuria remission, 
suggesting that EGR1 in the context of IgAN reflects reversible early injury. 
Conclusions. Our findings indicate that EGR1 is a promising potential marker for identifying active early podocyte injury 
in human glomerular diseases. 
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GRAPHICAL ABSTRACT 

Keywords: EGR1, glomerular diseases, kidney biopsy, podocyte, podocyte injury 

KEY LEARNING POINTS 

What was known: 

• Podocyte injury is associated with the initiation and progression of glomerular diseases because podocytes rarely proliferate 
or regenerate.

• There is no established marker that is enhanced in injured podocytes in human glomerular diseases.
• Early growth response 1 ( EGR1) is expressed in injured podocytes from the early stages of injury in animal experiments.

This study adds: 

• EGR1 expression in podocytes was significantly positively correlated with proteinuria, urinary podocyte mRNA levels and cel- 
lular/fibrocellular crescents, and was significantly negatively correlated with glomerular podocin staining in various human 
glomerular diseases.

• In the early phase of immunoglobulin A nephropathy, patients with higher EGR1 positivity of podocytes were more prone to 
recovery, suggesting that EGR1 reflects reversible early injury.

• EGR1 could be a promising potential marker for identifying active early podocyte injury in human glomerular diseases.

Potential impact: 

• Identifying EGR1-positive podocytes coupled with intensive treatment could potentially improve the kidney prognosis of 
patients with glomerular diseases.
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NTRODUCTION 

odocytes are terminally differentiated, highly specialized 
pithelial cells that cover the outer surfaces of glomerular cap- 
llaries. Accumulating evidence has shown the importance of 
odocyte injury in the initiation and progression of glomeru- 
ar diseases. Podocytes exposed to severe and/or persistent in- 
uries detach from the glomerulus into the urine; substantial 
odocyte loss leads to glomerulosclerosis because podocytes 
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arely proliferate or regenerate [1 –3 ]. A decrease in nephron
umber increases intraglomerular pressure on the residual 
lomeruli, leading to the progression of kidney diseases. More- 
ver, podocyte injury can spread to other podocytes in the
lomerulus [4 –6 ]. Thus, the early control of podocyte injury is
rucial to inhibit the progression of glomerular diseases. 

Proteinuria and albuminuria tests are frequently used for 
odocyte injury detection but are not specific to podocyte injury.
herefore, as more specific biomarkers for podocyte injury,
uantitative approaches for urinary podocyte number, urinary 
odocyte proteins, urinary podocyte mRNAs, urinary exosomes 
nd urinary microparticles have been reported [7 –17 ]. Although
uch biomarkers are useful because they can be noninva- 
ively and repeatably measured, visualizing injuries of resi- 
ent podocytes in tissues prior to their detachment from the
lomerulus is essential. Therefore, immunostaining analysis of 
odocyte-associated proteins, such as nephrin, podocin and 
odocalyxin, is performed. However, decreased expression of 
hese proteins cannot distinguish podocyte injury from deple- 
ion. Thus, a biomarker expressed by injured podocytes in hu-
an glomerular diseases, such as desmin in rodents, is desirable

o detect podocyte injury. 
Early growth response 1 ( EGR1) is a zinc finger transcrip- 

ion factor that regulates cell survival, proliferation, cell death 
nd fibrosis in response to DNA damage and ischemia [18 , 19 ].
e detected a high expression of Egr1 in injured podocytes of
EP25 mice, an inducible podocyte injury model [3 , 20 ]. Egr1
RNA levels have been shown to increase 70-fold on day 4
fter the induction of podocyte injury, when the expression 
f podocyte-associated proteins was not yet decreased. EGR1- 
ositive podocytes expressed desmin. Using podocyte-selective 
ln1 conditional knockout mice, another group reported that 
GR1 was expressed in podocytes shortly after the induction of
ln1 knockout and that Egr1 knockout ameliorated albuminuria 
nd glomerulosclerosis [21 ]. EGR1 is conserved across species; 
he EGR1 protein has been reported to be expressed in podocytes
n human glomerular diseases, such as membranous nephropa- 
hy ( MN) , immunoglobulin A nephropathy ( IgAN) and focal seg- 
ental glomerulosclerosis ( FSGS) , and EGR1 mRNA is expressed 

n diabetic nephropathy [20 –22 ]. However, EGR1 expression at
he mRNA and protein levels was rarely observed in podocytes
f intact glomeruli [20 , 21 , 23 ]. 

In this study, we aimed to explore the clinical utility of EGR1
taining as a podocyte injury marker in human glomerular dis-
ases. We discovered that EGR1 expression in podocytes cor- 
elated significantly with proteinuria, urinary podocyte mRNA 

evels and cellular/fibrocellular crescents, and inversely with 
lomerular podocin expression. EGR1 expression was observed 
n the podocytes of patients with various glomerular diseases 
ut was less frequent in patients with minimal change disease
 MCD) . Moreover, EGR1-positive podocytes can be recovered in 
gAN since patients with higher EGR1 positivity of podocytes 
ere more prone to attain proteinuria remission after intensive 
reatment. 

ATERIALS AND METHODS 

atients and ethics 

his single-center cross-sectional and prospective study was 
onducted in accordance with the Declaration of Helsinki and 
pproved by the Ethics Committee of the Jikei University School
f Medicine [approval number 30-048( 9069) ]. Written informed 
onsent was obtained from all participants included in this
tudy. 

Patients with primary and secondary glomerular diseases 
ho underwent kidney biopsies at the Jikei University Hospital,
okyo, from June 2018 to December 2021 were recruited. The
ollowing patients were excluded: patients under 20 years
f age, patients with tubulointerstitial diseases and kidney
ransplant patients. Patients with minor glomerular abnormal- 
ties ( MGA) with mild proteinuria and/or microhematuria were 
ncluded. 

Clinical data and laboratory data, including serum creati-
ine level, urinary protein:creatinine ratio ( UPCR) , 24-h urinary 
rotein excretion ( UPE) level, 24-h creatinine clearance ( CCr) 
evel and hematuria, were obtained from the patient’s medi-
al records at the time of diagnostic kidney biopsy. The esti-
ated glomerular filtration rate ( eGFR) was calculated using a 
reatinine-based equation for the Japanese population [24 ]. 

istopathological evaluation 

istopathological data, including pathological diagnosis, the 
otal number of glomeruli obtained from biopsy specimens,
nd glomeruli containing global or segmental glomeruloscle- 
osis, endocapillary hypercellularity and crescents, were ob- 
ained from reports by pathologists and reviewed by the authors.
he degree of tubulointerstitial damage was semi-quantitatively 
valuated as increased extracellular matrix separating tubules 
nd atrophic tubules and expressed as a percentage of the af-
ected area over the observed cortical area, with 1%–5% rounded
o 5%, and other values rounded to the nearest 10%. The Oxford
lassification was used to evaluate the histopathological find-
ngs of IgAN patients [25 ]. 

Paraffin sections ( 3-μm thick) of kidney biopsies were 
mmunostained with antibodies against EGR1, podocin 
nd Wilms’ tumor 1 ( WT1) ( antibody list can be found in
upplementary data, Table S1) . Sections subjected to EGR1 im- 
unostaining were counterstained with a periodic acid–Schiff 

 PAS) stain. EGR1-positive cells located along the outside of
he glomerular basement membrane ( GBM) were identified as 
GR1-positive podocytes using serial sections stained for WT1
nd podocin. The total number of EGR1-positive podocytes per
otal number of WT1-positive podocytes in the kidney section
f each patient was designated as %EGR1pod. The percentage
f glomeruli, including EGR1-positive cells located along the
utside of the GBM among non-globally sclerotic glomeruli,
as designated as %EGR1glo. The glomerular podocin score
as calculated by averaging the scores of all non-globally
clerotic glomeruli assigned on a scale of 0–8 according to
he degree of podocin immunostaining in a paraffin section
 Supplementary data, Fig. S1) [5 ]. 

The minimum number of non-globally sclerotic glomeruli 
valuated per section was set to eight. Small ( diameter < 50 μm)
nd partial glomeruli were excluded from the immunostain-
ng evaluation. Since it is difficult to identify podocytes in
he vicinity of the crescent, glomeruli with full-moon cres-
ents were excluded from the immunostaining analysis. Fur-
hermore, in glomeruli with segmental crescents, only EGR1-
ositive podocytes located away from the crescent were counted
 Supplementary data, Fig. S2) . 

rine samples 

he procedures for urine sampling and measurements were
onducted according to the method described by Fukuda et al.,

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
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151 patients screened
for eligibility

102 patients enrolled

Patients excluded:
  41 for <8 non-globally sclerotic glomeruli
    5 for Tubulointerstitial diseases
    2 for Data missing 
    1 for Withdrawal 

Figure 1: Flowchart of patient enrollment. 

w
l
t
t
s
F
p
i
N
d
h  

C
o
p
i
t
t
p
t
M

S

T
s
c
S
t
t
o  

T
v
fi  

i
v
c
h
s
R

R

B

I
t  

T
t
t
r
i

C
a

%
n  

0
a
F
l
d

P
h

%
g
d
(
p
c
a
P
c
o

C
g

P
s
0
[
P  

n
g
h
2  

r
1

S

N
w  

%  

a  

u
p
p
s  

0
a
c  

a
%  

 

a  

i
t
T  

i
7
a

ith minor modifications [15 ]. Briefly, urine samples were col- 
ected in the morning during the kidney biopsy and cen- 
rifuged; the pellet was used for the mRNA measurement, and 
he supernatant was used for the podocalyxin protein mea- 
urement. Quantitation of nephrin ( TaqMan probes, Thermo 
isher Scientific, Waltham, MA, USA: Hs00190446_m1) and 
odocin ( Hs00922492_m1) mRNA abundance was performed us- 
ng a Rotor-Gene Q real-time PCR cycler ( Qiagen, Venlo, The 
etherlands) . Standard curves were constructed using serially 
iluted standards comprising cDNA reverse-transcribed from 

uman kidney total RNA ( Clontech Laboratories, Mountain View,
A, USA) . The quantity of nephrin or podocin mRNA in 10 μL 
f the 1:10 000 diluted standard was set as 1 U. Podocalyxin 
rotein levels were measured using a sandwich enzyme-linked 
mmunosorbent assay kit for human podocalyxin ( Aviva Sys- 
ems Biology OKEH02869, San Diego, CA, USA) . The concentra- 
ions of urinary nephrin mRNA, podocin mRNA and podocalyxin 
rotein were standardized to the urinary creatinine concentra- 
ion. The precise methods are described in the Supplementary
ethods. 

tatistical analysis 

he clinical and pathological variables of the patients are pre- 
ented as medians and interquartile ranges or numbers and per- 
entages. Correlations between variables were assessed using 
pearman’s rank correlation. Differences were evaluated using 
he Mann–Whitney U test for two groups and the Kruskal–Wallis 
est for more than three groups. The Bonferroni–Holm method 
r Steel’s method was used for multiple comparison corrections.
he Kaplan–Meier curve was applied to assess the prognostic 
alue of podocyte EGR1 expression for proteinuria remission, de- 
ned as at least two consecutive findings of < 0.3 g/g of UPCR,
n IgAN patients. Hazard ratio ( HR) and 95% confidence inter- 
al ( 95% CI) , adjusted by age, sex, baseline UPCR and eGFR, and 
orticosteroid use, were calculated using the Cox proportional 
azards model. Statistical significance was defined as a two- 
ided P -value < .05. All statistical analyses were performed using 
 software version 4.3.1. 

ESULTS 

aseline characteristics of the patients 

n total, 102 patients were enrolled in this study ( Fig. 1 ) . All pa- 
ients underwent a single kidney biopsy during the study period.
able 1 presents the clinical and histopathological characteris- 
ics of the included patients. All participants were Japanese, and 
he median %EGR1pod was 2.45 ( 1.11–4.65) %. Figure 2 shows the 
epresentative immunostaining for EGR1 with WT1 and podocin 
n serial sections. 
orrelation between podocyte EGR1 expression 

nd clinical parameters 

EGR1pod correlated significantly with UPCR, UPE level, and uri- 
ary nephrin and podocin mRNA:creatinine ratios ( rho = 0.361,
.342, 0.514 and 0.487, respectively; adjusted P = .002, .006, < .001 
nd < .001, respectively) ( Table 2 , Fig. 3 , Supplementary data,
ig. S3) . %EGR1pod correlated weakly with urinary podocalyxin 
evels without statistical significance ( rho = 0.253) ; %EGR1pod 
id not correlate with eGFR, 24-h CCr or hematuria. 

odocyte EGR1 expression and kidney biopsy 
istopathological features 

EGR1pod was significantly and inversely correlated with 
lomerular podocin score ( rho = −0.417, adjusted P < .001) but 
id not show a significant correlation with the podocyte number 
 Table 2 , Fig. 3 , Supplementary data, Fig. S3) . Podocyte EGR1 ex- 
ression was significantly associated with cellular/fibrocellular 
rescents ( rho = 0.479, adjusted P < .001) and tended to be weakly 
ssociated with tubulointerstitial damage ( rho = 0.272, adjusted 
 = .051) but not with global glomerulosclerosis or fibrous cres- 
ents. EGR1-positive binucleated podocytes were occasionally 
bserved ( Supplementary data, Fig. S4) . 

omparison of podocyte EGR1 expression among 
lomerular diseases 

odocyte EGR1 expression was also compared among repre- 
entative glomerular diseases. Compared with MGA [0.31 ( 0.20–
.37) %], %EGR1pod was significantly higher in IgAN and MN 

2.76 ( 1.77–4.23) % and 3.83 ( 2.59–6.19) %, respectively; adjusted 
 = .015 and .037, respectively] ( Fig. 4 ) . The %EGR1pod of lupus
ephritis ( LN) , antineutrophil cytoplasmic antibody–associated 
lomerulonephritis ( ANCA-GN) and primary FSGS tended to be 
igher than that of MGA [4.71 ( 4.46–4.88) %, 7.81 ( 6.24–8.84) % and 
.60 ( 2.48–4.00) %, respectively; adjusted P = .063, .088 and .135,
espectively]. In contrast, MCD had a low %EGR1pod [0.42 ( 0.38–
.47) %]. 

ubgroup analyses of patients with IgAN 

ext, we performed a subgroup analysis of the 37 patients 
ith IgAN ( Supplementary data, Table S2) . In this population,
EGR1pod correlated significantly with UPE level ( rho = 0.559,
djusted P = .011) ( Table 3 , Supplementary data, Fig. S5) . UPCR,
rinary nephrin and podocin mRNA levels, urinary podocalyxin 
rotein level, glomerular podocin scores and endocapillary hy- 
ercellularity correlated moderately with %EGR1pod, with no 
tatistical significance in this subgroup ( rho = 0.432, 0.375, 0.4,
.417, −0.362 and 0.403; adjusted P = .114, .184, .162, .139, .279 
nd .161, respectively) . %EGR1pod tended to be associated with 
ellular/fibrocellular crescents ( rho = 0.442, adjusted P = .092) ,
nd patients with Oxford C1 lesions had a significantly higher 
EGR1pod than those with C0 lesions ( adjusted P = .030) ( Fig. 5 ) .
The 33 patients with IgAN, who had UPCR of 0.3 g/g or more

t kidney biopsy and were followed for > 1 year, were divided
nto two groups by the median of %EGR1pod ( 2.99%) and longi- 
udinally observed over a period of 2 years ( Supplementary data,
able S3) . Pr otein uria r emission w as observ ed mor e fr equentl y
n the higher %EGR1pod group [adjusted HR 2.72 ( 95% CI 1.01–
.29) ] ( Fig. 6 A, Supplementary data, Table S4) . The subgr oup 
nalysis by the podocyte number showed that the group with a 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
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Table 1: Patient characteristics ( n = 102) . 

Characteristic Value 

Clinical findings 
Age, years 49 ( 36–59) 
Sex, no. ( %) 

Female 43 ( 42.2) 
Male 59 ( 57.8) 

Height, cm 164 ( 159–171) 
Weight, kg 62.6 ( 55.2–73.2) 
BMI, kg/m2 23.0 ( 20.9–25.3) 
Hypertension, no. ( %) 51 ( 50.0) 
RAAS inhibitors usage, no. ( %) 40 ( 39.2) 
Diabetes mellitus, no. ( %) 13 ( 12.7) 

Laboratory findings 
Serum creatinine level, mg/dL 0.93 ( 0.73–1.19) 
eGFR, mL/min/1.73 m2 65.0 ( 43.5–79.0) 
24-h CCr, mL/min a 86.0 ( 63.5–112.0) 
UPCR, g/g 0.88 ( 0.53–2.40) 
UPE, g/day b 0.96 ( 0.50–2.55) 
Urinary RBC count, no. ( %) 

Grade 0, 0–4 cells/HPF 33 ( 32.4) 
Grade 1, 5–9 cells/HPF 9 ( 8.8) 
Grade 2, 10–19 cells/HPF 16 ( 15.7) 
Grade 3, 20–49 cells/HPF 24 ( 23.5) 
Grade 4, 50–99 cells/HPF 10 ( 9.8) 
Grade 5, ≥100 cells/HPF 10 ( 9.8) 

Urinary nephrin mRNA:creatinine ratio, ×104 U/g 5.33 ( 2.35–23.26) 
Urinary podocin mRNA:creatinine ratio, ×104 U/g 1.74 ( 0.56–7.22) 
Urinary podocalyxin:creatinine ratio, ×10−5 g/g 1.49 ( 0.69–2.80) 

Diagnosis 
IgAN, no. ( %) 37 ( 36.3) 
MN, no. ( %) 7 ( 6.9) 
LN, no. ( %) 5 ( 4.9) 
MCD, no. ( %) 5 ( 4.9) 
ANCA-GN, no. ( %) 4 ( 3.9) 
Primary FSGS, no. ( %) 3 ( 2.9) 
IgA vasculitis with nephritis, no. ( %) 3 ( 2.9) 
Obesity-related glomerulopathy, no. ( %) 3 ( 2.9) 
Thin basement membrane disease, no ( %) 2 ( 2.0) 
Primary MPGN, no ( %) 2 ( 2.0) 
Diabetic nephropathy, no ( %) 1 ( 1.0) 
Poststreptococcal glomerulonephritis, no ( %) 1 ( 1.0) 
Light-chain deposition disease, no ( %) 1 ( 1.0) 
PGNMID, no ( %) 1 ( 1.0) 
Hypertensive nephrosclerosis, no. ( %) 10 ( 9.8) 
Secondary FSGS, no. ( %) 5 ( 4.9) 
Minor glomerular abnormalities, no. ( %) 4 ( 3.9) 
Others, no. ( %) 8 ( 7.8) 

Histopathological findings 
Glomerular number per section 25 ( 19–32) 
Global glomerulosclerosis c , % 9.1 ( 2.1–19.8) 
Segmental glomerulosclerosis d , % 0.0 ( 0.0–2.5) 
Cellular/fibrocellular crescents d , % 0.0 ( 0.0–2.2) 
Fibrous crescents d , % 0.0 ( 0.0–0.0) 
Tubulointerstitial damage, % 7.5 ( 5.0–20.0) 
Glomerular podocin score 7.79 ( 7.45–7.98) 
Podocyte number per glomerulus, cells/glomerulus/section 16.7 ( 13.7–20.7) 
EGR1-positive podocytes per glomerulus, cells/glomerulus/section 0.42 ( 0.18–0.68) 
%EGR1pod, % 2.45 ( 1.11–4.65) 
%EGR1glo, % 29.0 ( 17.1–42.7) 

a n = 99. 
b n = 96. 
c The percentage of global glomerulosclerosis was calculated by dividing the number of globally sclerotic glomeruli by the total number of glomeruli. 
d The percentage of glomeruli with segmental glomerulosclerosis, cellular/fibrocellular crescents and fibrous crescents was calculated by dividing the number of 
glomeruli with each lesion by the number of non-globally sclerotic glomeruli. 
Values are presented as the number ( percentage) or median ( 25th–75th percentiles) . 
BMI, body mass index; HPF, high-power field; MPGN, membranoproliferative glomerulonephritis; PGNMID, proliferative glomerulonephritis with monoclonal IgG de- 

posits; RAAS, renin–angiotensin–aldosterone system; RBC, red blood cell. 
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Figure 2: EGR1 expression in podocytes. Shown are representative images of WT1 ( A) , EGR1 ( B) and podocin ( C) staining in serial sections from the same glomerulus. 
The section subjected to EGR1 immunostaining were counterstained with a PAS stain. ( D) The negative control for EGR1 staining, which was stained without the 
primary antibody for EGR1. The dashed circles represent EGR1-expressing podocytes. Original magnification, ×400. Scale bars = 25 μm. 
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able 2: Correlation between %EGR1pod values and clinical and hist

ariable Rho 

linical parameters 
UPCR 0 .361 

UPE a 0 .342 
Urinary nephrin mRNA:creatinine ratio 0 .514 
Urinary podocin mRNA:creatinine ratio 0 .487 
Urinary podocalyxin:creatinine ratio 0 .253 
Urinary RBC count 0 .215 
eGFR −0 .0605 
24-h CCr b −0 .112 
istopathological parameters 
Glomerular podocin score −0 .417 
Podocyte number per glomerulus −0 .186 
Cellular/fibrocellular crescents 0 .479 
Fibrous crescents 0 .202 
Tubulointerstitial damage 0 .272 
Global glomerulosclerosis 0 .0173 
Segmental glomerulosclerosis 0 .0372 

 n = 96. 
 n = 99. 
ho, Spearman’s rank correlation coefficient. P -values were adjusted using the Bonfer
BC, red blood cell. 
ological parameters in patients with glomerular diseases. 

Unadjusted P -value Adjusted P -value 

< .001 .002 

< .001 .006 
< .001 < .001 
< .001 < .001 
.010 .082 
.030 .211 
.546 1 
.269 1 

< .001 < .001 
.061 .305 

< .001 < .001 
.042 .253 
.006 .051 
.863 .863 
.710 1

roni–Holm method. 
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Figure 3: Scatterplots between %EGR1pod and podocyte biomarkers in patients with glomerular diseases.%EGR1pod correlated significantly with the UPCR,UPE,urinary 
nephrin mRNA:creatinine ratio, urinary podocin mRNA:creatinine and glomerular podocin score. The correlation between %EGR1pod and the urinary podocalyxin: 
creatinine ratio was weak, with no statistical significance. Scatterplots are depicted using linear regression and 95% confidence limits of the regression coefficient. 
Both axes are logarithmic. † Each %EGR1pod value was added to 1 for logarithmic transformation. Rho, Spearman’s rank correlation coefficient; Adj. P, adjusted P -value. 
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Figure 4: Comparison of podocyte EGR1 expression among glomerular diseases. 
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%EGR1pod in IgAN and MN was significantly higher [2.76 ( 1.77–4.23) % and 3.83 
( 2.59–6.19) %, respectively; adjusted P = .015 and .037, respectively] than in MGA 
[0.31 ( 0.20–0.37) %]. The %EGR1pod in LN, ANCA-GN, MCD and pFSGS [4.71 ( 4.46–
4.88) %, 7.81 ( 6.24–8.84) %, 0.42 ( 0.38–1.47) % and 2.60 ( 2.48–4.00) %, respectively] 

were not statistically significantly different from that in MGA ( adjusted P = .063, 
.088, .530 and .135, respectively) . Horizontal bars show the median and vertical 
bars indicate the 25th–75th percentiles. The P -values were adjusted using Steel’s 
method with MGA set as a reference. *Adjusted P < .05. 
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igher %EGR1pod and higher number of podocytes was the most 
elevant to proteinuria remission ( Fig. 6 B, Supplementary data,
able S5) . Although there was no statistical significance in the 
nteraction between %EGR1pod and podocyte number, a syner- 
istic clinical significance was observed. 
able 3: Correlation: between %EGR1pod and clinical and kidney biopsy h

ariable Rho 

linical parameters 
UPCR 0 .432 
UPEa 0 .559 
Urinary nephrin mRNA:creatinine ratio 0 .375 
Urinary podocin mRNA:creatinine ratio 0 .4 
Urinary podocalyxin:creatinine ratio 0 .417 
Urinary RBC count 0 .156 
eGFR −0 .0242 
24-h CCr b −0 .00672 
istopathological parameters 
Glomerular podocin score −0 .362 
Podocyte number per glomerulus −0 .177 
Endocapillary hypercellularity 0 .403 
Cellular/fibrocellular crescents 0 .442 
Fibrous crescents 0 .0908 
Tubulointerstitial damage 0 .361 
Global glomerulosclerosis −0 .0327 
Segmental glomerulosclerosis 0 .0988 

 n = 33. 
 n = 35. 
ho: Spearman’s rank correlation coefficient. P -values were adjusted using the Bonfer
BC, red blood cell. 
ifference between podocin and EGR1 expression upon 

odocyte injury 

lomerular podocin expression is possibly affected by both 
odocyte injury and depletion; therefore, we compared glomeru- 
ar podocin scores with urinary markers of podocyte injury and 
odocyte number. Glomerular podocin scores correlated most 
trongly with podocyte number per glomerulus ( rho = 0.372, ad- 
usted P < .001) and correlated weakly with UPCR, UPE level, and 
rinary nephrin and podocin mRNA levels ( rho = −0.249, −0.237,
0.244 and −0.311, respectively; adjusted P = .047, .040, .040 and 

007, respectively) ( Table 4 , Supplementary data, Fig. S6) . The 
ecrease in glomerular podocin expression may be more influ- 
nced by podocyte number than podocyte injury. 

dentification of EGR1-positive podocytes independent 
f WT1 and podocin staining 

n the above analyses, we identified EGR1-positive podocytes 
n serial sections immunostained for EGR1, WT1 and podocin.
lthough the number of WT1-positive podocytes was not sig- 
ificantly different among glomerular diseases in the present 
tudy ( Supplementary data, Fig. S7) , WT1 expression may 
e reduced beyond the level of detection in severely injured 
odocytes. In such cases, the %EGR1pod value may be mis- 
stimated. Therefore, we identified EGR1-positive cells located 
long the outer side of the GBM without relying on WT1 and 
odocin staining. The ratio of glomeruli containing these EGR1- 
ositive cells ( %EGR1glo) was well correlated with %EGR1pod 
 rho = 0.908, P < .001, Supplementary data, Fig. S8) and as- 
ociated with proteinuria, urinary podocyte mRNA levels and 
ellular/fibrocellular crescents, and negatively with glomerular 
odocin expression ( Supplementary data, Table S6 and Fig. S9) .
EGR1glo could be a simple assessment tool for podocyte EGR1 
xpression. 
istopathological parameters in patients with IgAN ( n = 37) . 

Unadjusted P -value Adjusted P -value 

.008 .114 
< .001 .011 
.023 .184 
.015 .162 
.011 .139 
.357 1 
.887 1 
.969 .969 

.028 .279 

.293 1 

.013 .161 

.006 .092 

.593 1

.028 .256 

.848 1

.561 1

roni–Holm method. 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
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Figure 5: Podocyte EGR1 expression and Oxford MEST-C score in patients with IgAN. Patients with C1 lesions had significantly higher %EGR1pod than those with C0 

lesions [3.83 ( 2.99–6.27) % vs 2.28 ( 1.15–3.41) %; unadjusted P = .006; adjusted P = .030]. There was no statistical difference in the M [M1 vs M0: 2.76 ( 1.98–4.22) % vs 
2.76 ( 1.64–4.42) %; unadjusted P = .983; adjusted P = .983], E [E1 vs E0: 4.22 ( 2.72–5.26) % vs 2.45 ( 1.28–3.57) %; unadjusted P = .028; adjusted P = .112], S [S1 vs S0: 2.76 
( 1.60–3.80) % vs 3.62 ( 1.95–7.15) %; unadjusted P = .353; adjusted P = .706] or T lesions [T1 vs T0: 4.03 ( 2.75–5.24) % vs 2.39 ( 1.42–3.77) %; unadjusted P = .094; adjusted 
P = .281]. Horizontal bars show the median and vertical bars show the 25th–75th percentiles. P -values were adjusted using the Bonferroni–Holm method. 

Figure 6: Prognostic analyses in patients with IgAN. ( A) The probability of proteinuria remission. The patients were divided into two groups by the median of %EGR1pod 

( 2.99%) and longitudinally observed for 2 years. Proteinuria remission was defined as at least two consecutive findings of < 0.3 g/g of UPCR. The probability of protein- 
uria remission was estimated using a Kaplan–Meier survival curve. The HR for proteinuria remission was adjusted by age, sex, baseline UPCR, baseline eGFR and 
corticosteroid use. HRs and statistical significance did not change significantly with different combinations of covariates ( Supplementary data, Table S4) . ( B) Subgroup 
analysis by podocyte number. The patients were divided into four subgroups according to the median of %EGR1pod and the median of glomerular podocyte number 

( 15.3 cells/glomerulus/section) . The HRs for proteinuria remission were adjusted by age, sex, baseline UPCR, baseline eGFR and corticosteroid use. HRs and statistical 
significance of the group with high %EGR1pod and high podocyte number compared to the group with low %EGR1pod and low podocyte number did not change 
significantly with different combinations of covariates ( Supplementary data, Table S5) . The P -value for the interaction between %EGR1pod and podocyte number per 

glomerulus was .504. 

Table 4: Correlation between the glomerular podocin score and podocyte-associated markers. 

Variable Rho Unadjusted P -value Adjusted P -value 

UPCR −0 .249 .012 .047 
UPE a −0 .237 .020 .040 
Urinary nephrin mRNA:creatinine ratio −0 .244 .013 .040 
Urinary podocin mRNA:creatinine ratio −0 .311 .001 .007 
Urinary podocalyxin:creatinine ratio −0 .122 .222 .222 
Podocyte number per glomerulus 0 .372 < .001 < .001 

a n = 96. 
Rho, Spearman’s rank correlation coefficient. P -values were adjusted using the Bonferroni–Holm method. 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad289#supplementary-data
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ISCUSSION 

trategies to protect podocytes from injury before depletion are 
esirable to prevent the onset and progression of glomerular dis- 
ases, as podocytes cannot replicate. In this regard, visualizing 
njured podocytes that have not been shed from the glomeruli 
s crucial; however, to date, no established markers that are en- 
anced in injured podocytes in human tissues exist. Although 
nt/beta-catenin and its transcripts and filamin-B may be can- 
idates for such markers [26 –28 ], none has been validated in 
uman glomerular diseases. In this study, we discovered that 
odocyte EGR1 expression correlated significantly with protein- 
ria and urinary podocyte mRNA levels and inversely with 
lomerular podocin expression. Moreover, EGR1 was also occa- 
ionally expressed in binucleated podocytes, which are known 
o be associated with podocyte injury [29 ]. These results suggest 
hat EGR1 is a pathological marker of podocyte injury in human 
lomerular diseases. 

Immunostaining analysis of podocyte-associated proteins is 
ften performed to evaluate podocyte injury; however, podocyte 
njury cannot be distinguished from depletion. In this study,
lomerular podocin staining correlated most strongly with 
odocyte number per glomerulus and correlated weakly with 
roteinuria, and urinary nephrin and podocin mRNA levels,
hile podocyte EGR1 expression did not correlate with podocyte 
umber. Furthermore, markers that are de novo expressed by in- 
ury are easier to identify than those that are downregulated 
y injury. These findings imply that EGR1 may be superior to 
odocin for detecting ongoing podocyte injury. 
Podocyte EGR1 expression was significantly associated with 

cute extracapillary lesions and was more frequently observed 
n the patients with ANCA-GN and LN, which are prone to 
rescentic glomerulonephritis. Podocyte EGR1 expression was 
lso higher in IgAN patients with Oxford C1 lesions than in 
hose without C lesions. Since podocyte injury has been re- 
orted to be associated with active lesions and acute extracap- 
llary proliferation in patients with glomerulonephritis, includ- 
ng IgAN, ANCA-GN and LN, podocyte EGR1 expression could 
eflect secondary podocyte injury due to active glomerular in- 
ammation [9 , 11 , 13 –15 , 30 ]. Podocyte injury may have been 
bserved more frequently in patients with ANCA-GN and LN 

han those with other glomerular diseases because of the poten- 
ial for rapid progression to glomerulosclerosis. In fact, urinary 
odocyte mRNAs were reported to be higher in LN and crescentic 
lomerulonephritis than in other glomerular diseases [15 ]. The 
ack of a relationship between %EGR1pod and kidney function 
r glomerulosclerosis among all patients might be due to the 
eterogeneity of glomerular diseases. 
Notably, the longitudinal analysis of IgAN patients showed 

hat a higher %EGR1pod was relevant to proteinuria remis- 
ion. This association could be more pronounced in patients 
ith higher podocyte number, despite statistical evidence in 
his small group. Given that most of these patients were in- 
ensively treated with corticosteroids, EGR1-expressing injured 
odocytes in active IgAN could be rescued from depletion by 
nti-inflammatory treatment. This may be consistent with the 
act that urinary podocyte markers decrease after treatment 
n IgAN patients [13 ]. Intensive treatment in patients showing 
ctive glomerulonephritis with EGR1-positive podocytes could 
mprove kidney prognoses. Further studies on various types of 
lomerulonephritis are warranted. 

Among primary podocytopathies, EGR1-expressing 
odocytes were less frequently observed in MCD than in 
N and primary FSGS. Although MCD often relapses, it has 
 better kidney prognosis than in MN or FSGS [31 , 32 ]. Unlike
econdary podocyte injury in glomerulonephritis, podocyte 
GR1 expression may be associated with poor prognosis in 
rimary podocytopathies where injury is relatively confined 
o podocytes. Also, differentiating MCD from primary FSGS is 
ften difficult at the time of diagnosis, but EGR1 expression 
ould assist in this regard. Further studies are required to clarify 
hese. 

The role of EGR1 in podocyte injury has not been fully 
lucidated. Recent studies have demonstrated that EGR1 in- 
uces podocyte injury via the direct regulation of thioredoxin- 
nteracting protein ( TXNIP) , which is necessary for Nod-like 
eceptor protein 3 ( NLRP3) inflammasome activation and pro- 
otes oxidative stress [33 , 34 ]. Both NLRP3 inflammasome and 
xidative stress have been observed in podocytes of human 
lomerular diseases and animal models [35 –40 ] and represent 
ossible mechanisms of podocyte injury related to EGR1. An- 
ther possible mechanism is the antagonistic effect of EGR1 
gainst WT1, leading to the dedifferentiation of podocytes [20 ].
GR1 and WT1 both belong to the EGR family and share highly
omologous DNA binding domains, and competition between 
GR1 and WT1 has been reported in other cells [41 –44 ]. Podocyte
GR1 expression has been reported to be regulated by epige- 
etic modifications, metabolites and cytokines [21 , 33 , 34 , 45 , 46 ]; 
hese factors might affect podocyte EGR1 expression in podocy- 
opathies. 

A limitation of this study is that EGR1 expression is not 
pecific to podocytes. EGR1 has been previously reported to be 
xpressed in mesangial cells, renal tubules and the intersti- 
ium [47 –50 ]. Therefore, to identify EGR1-expressing podocytes,
e performed PAS staining to detect GBM and immunostain- 

ng for WT1 and podocin in serial sections. Another limitation 
s that %EGR1pod was calculated using serial paraffin sections,
hich may have led to measurement errors between sections.
o minimize these differences, we calculated %EGR1pod using 
otal EGR1 and WT1 counts in all glomeruli of the sections 
nstead of the average EGR1:WT1 ratio in each glomerulus.
oreover, %EGR1glo, which is calculated with one section 
f EGR1 staining, showed a strong correlation and similar results 
ith %EGR1pod. However, underestimation of EGR1-positive 
odocytes in glomeruli with segmental crescents is possible. 
In conclusion, EGR1 may serve as an effective marker for 

dentifying active early podocyte injury in human glomerular 
iseases. 
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