
Stimulation of Fibroblast Growth Factor Receptor-1 Occupancy 
and Signaling by Cell Surface-associated Syndecans and Glypican 
Robert Steinfeld, Herman Van Den Berghe, and Guido David 
Center for Human Genetics, University of Leuven and Flanders Institute for Biotechnology, B-3000 Leuven, Belgium 

Abstract. The formation of distinctive basic FGF- 
heparan sulfate complexes is essential for the binding 
of bFGF to its cognate receptor. In previous experi- 
ments, cell-surface heparan sulfate proteoglycans ex- 
tracted from human lung fibroblasts could not be 
shown to promote high affinity binding of bFGF when 
added to heparan sulfate--deficient cells that express 
FGF receptor-1 (FGFR1) (Aviezer, D., D. Hecht, M. 
Safran, M. Eisinger, G. David, and A. Yayon. 1994. 
Cell 79:1005-1013). In alternative tests to establish 
whether cell-surface proteoglycans can support the for- 
mation of the required complexes, K562 cells were first 
transfected with the IIIc splice variant of FGFR1 and 
then transfected with constructs coding for either syn- 
decan-1, syndecan-2, syndecan-4 or glypican, or with an 
antisense syndecan-4 construct. Cells cotransfected 
with receptor and proteoglycan showed a two- to three- 
fold increase in neutral salt-resistant specific 125I-bFGF 
binding in comparison to cells transfected with only re- 
ceptor or cells cotransfected with receptor and anti- 

syndecan-4. Exogenous heparin enhanced the specific 
binding and affinity cross-linking of 125I-bFGF to 
FGFR1 in receptor transfectants that were not cotrans- 
fected with proteoglycan, but had no effect on this 
binding and decreased the yield of bFGFR cross-links 
in cells that were cotransfected with proteoglycan. Re- 
ceptor-transfectant cells showed a decrease in glyco- 
phorin A expression when exposed to bFGF. This sup- 
pression was dose-dependent and obtained at 
significantly lower concentrations of bFGF in pro- 
teoglycan-cotransfected cells. Finally, complementary 
cell-free binding assays indicated that the affinity of 
125I-bFGF for an immobilized FGFR1 ectodomain was 
increased threefold when the syndecan-4 ectodomain 
was coimmobilized with receptor. Equimolar amounts 
of soluble syndecan-4 ectodomain, in contrast, had no 
effect on this binding. We conclude that, at least in 
K562 cells, syndecans and glypican can support bFGF- 
FGFR1 interactions and signaling, and that cell-surface 
association may augment their effectiveness. 

T 
HE signaling pathways that are activated by the 
binding of various FGFs, Vascular Endothelial 
Growth Factor (VEGF) and Heparin-Binding 

EGF-like growth factor to their cognate receptors have 
been qualified as "heparin dependent." This contention is 
based on the failure of these signaling systems in cells that 
are defective in the synthesis of heparan sulfate (HS) 1 and 
on the ability to restore the activity of these pathways in 
these cells by providing an exogenous source of heparin- 
like polysaccharide. In the case of basic FGF (bFGF or 
FGF-2), heparin restores the high affinity binding of the 
growth factor to the tyrosine kinase receptor proteins, and 
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1. Abbreviat ions used in this paper: bFGF, basic fibroblast growth factor; 
FGFR, fibroblast growth factor receptor; GpA, glycophorin A; GPI, gly- 
cosyl phosphatidylinositol; HS, heparan sulfate; HSPG, heparan sulfate 
proteoglycan. 

restores the biological effects of this growth factor on cell 
differentiation and proliferation (Yayon et al., 1991; Rap- 
raeger et al., 1991). The primary defect in the HS-deficient 
cells appears to be situated at the level of the initiating 
event, with the growth factor failing to occupy a binding 
site on the receptor and to induce a receptor configuration 
that leads to signaling. Different models that have been 
proposed as explanations for this HS requirement and the 
pharmacological effects of heparin (reviewed by Mason, 
1994) include: a heparin-induced fit, whereby the gly- 
cosaminoglycan allows the growth factor to adopt a con- 
formation that is appropriate for receptor engagement 
(Yayon et al., 1991), the need for HS to participate in the 
formation of a multimolecular signaling complex, whereby 
it binds simultaneously to both ligand and receptor (Nu- 
gent and Edelman, 1992; Kan et al., 1993; Guimond et al., 
1993; Pantoliano et al., 1994), and indirect effects of hep- 
arin on the receptor dimerization that is required for sig- 
naling, by promoting the formation of ligand dimers (Or- 
nitz et al., 1992; Spivak-Kroizman et al., 1994). On the 
other hand, these concepts have also been challenged or 

© The Rockefeller University Press, 0021-9525/96/04/405/12 $2.00 
The Journal of Cell Biology, Volume 133, Number 2, April 1996 405416 405 



amended, whereby heparin was shown to only moderately 
increase the affinity of the growth factor for its receptor 
(two- to threefold increase) and heparin or HS were pro- 
posed only to be needed at low concentrations of ligand 
(Roghani et al., 1994). In all models, the direct binding in- 
teractions between the growth factor and heparin-like gly- 
cosaminoglycan are proposed as essential for the activa- 
tion of the signaling pathway. 

bFGF binds preferentially to exon IIIc-containing forms 
of the FGF receptors (FGFRs) 1-3, which are predomi- 
nantly mesenchymally expressed (Dionne et al., 1990; 
Johnson et al., 1991; Keegan et al., 1991; Miki et al., 1992; 
Yayon et al., 1992; Werner et al., 1992; Chellaiah et al., 
1994). In vitro the affinity of bFGF for the IIIc splice vari- 
ant of FGFR1 is increased by about one order of magni- 
tude when heparin is added (Pantoliano et al., 1994), and 
in HS-expressing cells, the affinity of bFGF for the recep- 
tors (10-1°-10 -11 M) is about two orders of magnitude 
higher than the affinity of the growth factor for cell-sur- 
face H S  (10  - 8 -  10 -9  M )  (Moscatelli, 1987; Wennstrrm et 
al., 1991). Clusters of IdoA(2-OSO3)ctl,4GIcNSO3 units 
have been identified as bFGF-binding sequences in HS 
chains derived from human skin fibroblasts (Turnbull et 
al., 1992) and bovine aortic muscle cells (Habuchi et al., 
1992). Heparin-derived penta- or hexasaccharides of simi- 
lar structure effectively bind to bFGF and inhibit bFGF 
binding to cell surface HS proteoglycans (HSPGs), but fail 
to promote FGFR binding (Tyrrell et al., 1993; Maccarana 
et al., 1993). The minimal structural requirements to en- 
hance bFGF binding to its receptor and to support bFGF- 
induced mitogenesis appear to be realized in a dodecasac- 
charide containing the bFGF-binding site and additional 
6-0  sulfated groups (Ishihara et al., 1993; Guimond et al., 
1993; Walker et al., 1994). 

The ability of cells to generate HS of a defined sequence 
complexity varies during ontogenesis (David et al., 1992a; 
Kato et al., 1994), and some observations directly imply 
that part of the cellular controls on signaling by FGF-like 
growth factors may occur at the level of the expression of 
the required HS cofactor/receptor sequences (Nurcombe 
et al., 1993). The possibility of PG specificity in this respect 
is supported by the observation that, in vitro, some hep- 
arins and whole PG extracts from human lung fibroblasts 
were able to induce the binding of bFGF to an immobi- 
lized recombinant FGFR-alkaline phosphatase fusion pro- 
tein, whereas some specific PG forms, such as syndecans 1 
and 2, that were purified from these cell extracts were in- 
active and even inhibited the effect of the active heparin 
fraction (Aviezer et al., 1994a). In subsequent studies, the 
major activating component of these PG extracts was 
identified as perlecan, the large extracellular matrix (base- 
ment membrane) PG (Aviezer et al., 1994b). These obser- 
vations, together with indications that overexpression of 
syndecan-1 inhibits the bFGF-induced growth promotion 
of 3T3 cells (Mali et al., 1993), have lead to the suggestion 
that the local expression of active perlecan and the syner- 
gies and balances between activating and nonactivating 
classes of PGs will determine the degree and extent of 
bFGF-induced cellular responses (Aviezer et al., 1994b). 

Our investigations were aimed at identifying cell sur- 
face-associated HSPGs that might promote bFGF binding 
and receptor activation. Using a cell system in which we 

were able to express independently the IIIc variant of 
FGFR1 and four types of PG (i.e., syndecans 1, 2, 4, and 
glypican), as well as a cell-free system in which we used 
6xHis-tailed recombinant forms of receptor and PG to 
mimic their colocalization at the cell surface, we demon- 
strate that all these cell-surface HSPGs can support the 
bFGF-receptor interaction. 

Materials and Methods 

Plasmid Isolation and Construction 
Clones for bFGF and FGFR1 were isolated from a human embryonic lung 
fibroblast XZAPII phage library using oligolabeled PCR-derived probes 
for bFGF and FGFR1 and standard screening procedures (Sambrook et 
al., 1989). 

The bFGF clones were used as PCR templates. The primer set 5'-GGT- 
G T C G A C A T C G A A G G T A G A C C C G C C T F G C C C  G A G G A T G  G C- 3' 
and 5 ' -GGCCTGCAGTCAGCTCITAGCAGACAT-3 '  used for the am- 
plification reaction (Saiki et al,, 1988) was designed to introduce unique 
restriction sites flanking the coding sequence and a Factor Xa cleavage 
site at the amino-terminal end. The PCR products were sequenced using 
an automated fluorescent sequencer (Pharmacia Biotechnology Benelux, 
Roosendaal, The Netherlands) and cloned into the prokaryotic expression 
vector pQE-9 (Qiagen, Chatsworth, CA), which introduces a 6xHis tag at 
the amino-terminal end of the encoded protein. 

One FGFR1 clone, identified as the two Ig-like domain isoform (Ig II/ 
IIIc) (Eisemann et al., 1991), was restricted with PstI to remove 370 bp of 
the 5' untranslated sequence and cloned into the eukaryotic expression 
vector pcDNA/Neo (Invitrogen, Leek, The Netherlands), using the HindIII 
and NotI sites from the multiple cloning sites of the vectors. 

The cDNAs for human syndecan-4 (David et al., 1992b), syndecan-2 
(Marynen et al., 1989), and syndecan-1 (Mali et al., 1990) were cloned into 
the KpnI and NheI sites of the episomal expression vector pREP4 (Invi- 
trogen). The cDNA for glypican (David et al., 1990) was released with 
HindIII and NotI, and cloned into the corresponding sites of pREP4. A 
630-bp fragment containing the complete coding sequence of syndecan-4 
was antisense cloned into the HindIII and BamHI sites of the same vector. 

Plasmids coding for 6xHis-tagged ectodomains of FGFR1 and synde- 
can-4 were constructed by PCR. A 300-bp fragment of FGFR1 was ampli- 
fied using the primer set 5 ' -GACCCGCAGCCGCACATCCAGTGG-3 '  
and 5 ' -CCGCTCGAGTCAGTGATGGTGATGGTGATGCTCCAG-  
GTACAGGGGCGAGGTCATCACTGCC-3 ' ,  digested with BfrI and 
XhoI, and cloned into the corresponding restriction sites of the FGFR1 
plasmid, replacing the sequences that code for the transmembrane and cy- 
toplasmatic domains. The resulting insert, FGFRIe,  was cloned into 
pMEP4 via HindIIl and XhoI. A sequence coding for a 6xHis-tagged 
ectodomain of syndecan-4 was constructed using the primers 5 ' -GCAAT- 
TAACCCTCACTAAAGGG-3 '  and 5 ' -CGCGTCGACTCAGTGATG-  
G T G A T G G T G A T G C T C C G T r C T C T C A A A G A T G T F G C r G C C C T G C  - 

3'. The PCR fragment was restricted with Bglll and SalI, and cloned in the 
corresponding sites of the syndecan-4 plasmid. The resulting insert, syn4e, 
was released with SpeI and XhoI, and cloned into the NheI and XhoI sites 
of the vector pMEP4. All constructs were sequenced to exclude mis- 
matches. 

Purification and Characterization of 
Recombinant bFGF 
Nondenaturing purification of the recombinant 6xHis-bFGF was carried 
out according to standard protocols (Seno et al., 1990). In short, Escheri- 

chia coli M15 containing the appropriate pQE-9 construct plus the repres- 
sor plasmid pREP4 were induced with 1 mM IPTG at an OD of 0.9. Before 
sonication for 3 min on ice in the presence of 10 mM 13-mercaptoethanol, 
the harvested cells were incubated for 1 h at 4°C in 50 mM NaH2PO4, 10 
mM Tris, 300 mM NaC1, 15% sucrose, 0.1 mg/ml lysozyme, and 1 mM 
PMSF. After centrifugation, the bacterial lysate was applied to an Ni- 
NTA resin column (Qiagen), equilibrated at pH 8.0 (50 mM NaH2PO4, 
300 mM NaC1), and eluted at pH 4.5 (50 mM NaH2PO4, 500 mM NaCI) 
(Hochuli et al., 1987). After readjustment to pH 8.0, this eluate was ap- 
plied to Heparin-Ultrogel (IBF Pharmindustrie, Villeneuve-la-Garenne, 
France), washed with 1 M NaC1, and eluted with 2 M NaC1. Total yield 
was ~4  mg purified bFGF per liter of culture (20 g of cells), as determined 
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by colorimetric assay. The purified protein migrated as a 18-kD peptide in 
Tricine-SDS-PAGE (Sch~igger and von Jagow, 1987), and was detectable 
with an anti-bovine bFGF mAb on Western blot. Stimulation of thymi- 
dine incorporation in serum-starved Swiss 3"1"3 fibroblasts, induced with 2 
ng/ml 6xHis-bFGF for 18 h, confirmed the biological activity of this recom- 
binant product. 

Extraction and Purification of Cell-surface PGs 
Cell surface PGs were extracted with a Triton X-100 buffer in the pres- 
ence of proteinase inhibitors, concentrated on a DEAE-Trisacryl M col- 
umn (IBF Pharmindustry, Villeneuve-la-Garenne, France), and further 
purified by ion exchange chromatography on MonoQ in Triton-urea-Tris 
buffer (Lories et al., 1987). [mmunopurification was carried out with core 
protein-specific mAbs immobilized on CNBr-activated Sepharose 4B 
(Lories et al., 1989). 

Purification of Recombinant FGFRI and 
Syndecan-4 Ectodomains 
Recombinant 6xHis-tagged ectodomains of FGFR1 (FGFRle)  and synde- 
can-4 (Syn4e) were isolated from the conditioned culture media of K562 
cells that were transfected with the corresponding episomal plasmid con- 
structs. Serum-free media from pMEP4-transfected cells were harvested 
12-16 h after induction with 5 I~M CdC12. FGFRle  was purified by two 
consecutive absorptions on Ni-NTA resin (see above). Syn4e was first ab- 
sorbed on DEAE-Trisacryl M and then purified by metal chelate chroma- 
tography. The final eluates were concentrated by ultrafiltration (Centri- 
con 30; Amicon, Inc., Beverly, MA), and the quantity (~400 ILg/liter 
medium) and purity (>90%) of the product were estimated by SDS- 
PAGE. 

Western Blotting 
Heparitinase and chondroitinase ABC-digested PG were fractionated by 
SDS-PAGE and blotted on Z probe membranes. The blots were first in- 
cubated with the designated mAbs, and then with alkaline phosphatase- 
conjugated second antibodies, and finally developed with AMPPD (Tropix, 
Bedford, MA) for chemiluminescence and autoradiography. 

Analysis of the GAG Compositions 
Free glycosaminoglycan side chains were obtained by proteinase K diges- 
tion of purified 3sso3-1abeled PGs. The G A G  chains were either sub- 
jected to the low pH nitrous acid procedure (Shively and Conrad, 1976) or 
digested with chondroitinase ABC. Both preparations and an untreated 
control were precipitated with cetyl pyridinium chloride and then col- 
lected on glass filter papers. The HS content was calculated as (cpm~nu~t~d 

- cpmrlNO2/Cpmuntreated), the chrondroitin sulfate (CS) content was calcu- 
lated as (epmuntreate d - CpmABCase[Cpmuntreated). All analyses were per- 
formed in duplicates. 

Affinity Chromatography of HSPG on Chelate 
Complex-bound bFGF 
Purified 6xHis-bFGF was reapplied to an Ni-NTA column at a concentra- 
tion of 50--100 p,g/ml gel (~1/100 of the maximal binding capacity), 
washed with assay buffer (50 mM Na2HPO4, pH 7.5, 0.1% Triton X-100, 
20 p~g/ml BSA) and increasing NaC1 concentrations (0-2 M), and reequili- 
brated with assay buffer. No bFGF leakage could be detected during the 
wash. Immunopurified HSPGs were dialyzed against the assay buffer and 
applied to aliquots of bFGF-Ni-NTA resin. Bound HSPGs were eluted 
with a NaC1 step gradient (0-2 M). Every chromatographic experiment 
was repeated at least once, with similar results. 

Cell Transfections 
K562 cells (ATCC CCL 243) were routinely grown in DME F12 medium 
supplemented with 10% FCS and L-glutamine. For transfection, K562 
cells were prewashed with Ca + +- and Mg + +-free PBS and incubated for 10 
min at 4°C (107 cells/ml Ca/Mg-free PBS) with 30 ~g linearized FGFR1- 
pcDNA/Neo, or pcDNA/Neo, before electroporation at 240 V and 960 p,F 
with a gene pulser (Bio Rad Laboratories, Richmond, CA). Selection was 
started 48 h later with 500 p,g/ml G418. Stable transfection was achieved af- 
ter 12 d, and subclones were established by two consecutive limited dilu- 

tion procedures. Individual clones were characterized for specific 12sI- 
bFGF binding. The tfansfections with the episomal replicons pREP4[-] ,  
pREP4[Synl], pREP4[Syn2], pREP4[GIyp], pREP4[Syn4], and pREP4 
[antiSyn4] were performed in similar ways. Selection with 200 p~g/ml of 
hygromycin over 2 wk resulted in stable cell populations that were not fur- 
ther subcloned. 

125 I-bFGF-binding Assays 
Iodinated bFGF (specific activity = 800-1,200 Ci/mmol) was purchased 
from New England Nuclear (Boston, MA), aliquoted directly upon ar- 
rival, and stored at -70°C. For the cellular binding assays the K562 trans- 
feetants were grown for 72 h in a serum-free medium (DME F12) contain- 
ing 1 g/liter BSA, 8 mg/1 transferfin, and 4 mg/l of insulin, or in Ham's  F12 
medium supplemented with 30 mM NaC103 (to suppress the sulfation of 
the G A G  chains) and the same additives. Samples of 200,000 cells were in- 
cubated for 90 rain at 4°C in 200 pd DME F12 supplemented with 1 mg/ml 
BSA, 25 mM Hepes, pH 7.5, and 10 ng/ml 125I-bFGF, in the absence or 
presence of 1 p.g/ml unlabeled bFGF and with or without 100 ng/ml hep- 
arin. The cells were then washed two times with cold PBS and once with 
2 M NaCI, 50 mM NaHzPO4, pH 7.5. The radioactivities of the salt washes 
and the cell pellets were counted separately. The values obtained in the 
presence of 100-fold excess of unlabeled bFGF were considered unspecific 
binding and were substracted from the total counts, The data are dis- 
played as the means and SDs of three independent experiments. 

In the cell-free binding assay, increasing amounts of 12SI-bFGF were 
combined with FGFRle  (6 ng) in the presence or absence of Syn4e (0.8 
ng), trypsinized Syn4e (0.8 rig), or heparin (100 ng/ml), in 500 p~l of assay 
buffer (50 mM NaH2PO4, pH 7.5, 150 mM NaC1, 2 mg/ml gelatin, and 
0.5% Tween 20). Control mixtures consisted of increasing lzSI-bFGF or 
I~I-bFGF and heparin concentrations in assay buffer. All mixtures were 
supplemented with 20 ixl of Ni-NTA resin and incubated on a roller 
shaker at room temperature for 2 h. Bound label was recovered by centrif- 
ugation, washing of the beads in PBS, and discarding of the supernatant. 
Specific ~25I-bFGF binding was measured by substracting the amounts of 
label bound in control mixtures from the counts associated with the beads 
in test mixtures. This experiment was carried out three times with two dif- 
ferent batches of 125I-bFGF. The data were transformed into concentra- 
tion equivalents and analyzed as Scatchard plots (Scatchard, 1949) using a 
computer program for linear curve fitting. 

Covalent Cross-linking of u5I-bFGF to FGFR1 
Wild-type K562 cells and FGFRl-transfected K562 cells were prepared and 
incubated with lZSl-bFGF, as in the other bFGF-binding studies. After 
washing with 2 x 1 ml of cold PBS, the cells were incubated with 100 ~g/ 
ml (0.27 mM) disuceinimidyl suberate (Pierce, Rockford, IL) in PBS at 
15°C for 45 min. The reaction was quenched with 20 mM Tris, pH 7.4, in 
PBS. The cell samples were boiled for 5 min in 2% SDS, 10% glycerol, 20 
mM Tris pH 6.8, 1 mM EDTA,  and 0.005% bromophenol blue, and were 
applied on 6-20% polyacrylamide gradient gels. After running, the gels 
were stained with Coomassie brilliant blue and dried for autoradiography. 
Quantitative analysis of the intensity of the bFGF-FGFR1 band was per- 
formed with an ImageQuant personal densitometer (Molecular Dynam- 
ics, Sunnyvale, CA). Reference bands in the Coomassie-stained gels were 
also measured to exclude differences in loading. 

Immunofluorescence Cytometry 
Immunocytofluorometry was performed with a FACSort ® (Becton Dickin- 
son & Co., Mountain View, CA), and data were analyzed with the pro- 
gram Lysis If. For indirect immunofluorescence staining, K562 cells were 
incubated with the designated mouse mAbs at a concentration of 10 I~g/ml 
for 30 min, washed 2×,  and then incubated with FITC-labeled goat anti-  
mouse Ab (Nordic Immunology, E1 toro, CA). Nonreactive, isotyped- 
matched mouse mAbs were used to measure background fluorescence. 
FITC-labeled anti-glycophorin A (GpA) mAb (clone JC159; Dako Glos- 
trup, Denmark) and R-phycoerythrin-labeled anti-CD14 mAb (clone 
T!SIK4; Dako) were incubated together and used at the concentration pro- 
posed by the manufacturer. Background was determined with correspond- 
ingly labeled isotyped-matched mAbs (Dual Colour Reagent; Dako). The 
relative mean fluorescence intensity (rMFI) for GpA was calculated as: 

MFlopA-t~ated cells -- MFlbackground treated cells 
GpA rMFi = 

- MFI  b MFlopA-unrreated cells ackgmund untreated ceils 
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Figure 1. Transfection strategy. K562 cells were first transfected 
with the integratable vector pcDNA/Neo containing an FGFR1 
eDNA or no insert. Two stable subclones, referred to as clone R 
for the FGFR1 transfection and clone V for the vector transfee- 
tion, were then transfected with the episomal vector pREP4, ei- 
ther as such or provided with eDNAs coding for syndecans 4, 2, 1, 
or glypican (R-0, R-Syn4, R-Syn2, R-Glyp, R-Synl, and corre- 
sponding V cells). In addition, clone R was transfected with an 
antisense syndecan-4 construct (R-antiSyn4 cells). The cotrans- 
fection was realized using the two different selection markers, 
G418 for pcDNA/Neo and hygromycin for pREP4. 

All experiments were performed at least twice; SEM for all MFI values 
was <4%. 

Results 

Cell-surface PG Expression in K562 Cells 

The transfection strategy that was adopted to study the 
FGFR system is illustrated in Fig. 1. Wild-type K562 cells, 
which do not bind bFGF in specific ways (Partanen et al., 
1991), lack any transcriptional message for FGFR1 (Arm- 
strong et al., 1992; our own unpublished data), and express 
only low levels of cell-surface HS (see below), were first 
transfected with an integratable pcDNA/Neo vector pro- 
vided with eDNA for FGFRI( I I Ic )  or without insert. One 

Figure 2. HSPG expression in K562 cells. Triton X-100 extracts 
of transfected K562, normalized for cell number, were purified by 
ion exchange chromatography and fractionated by SDS-PAGE 
after digestion with heparitinase. The Western blot was devel- 
oped with mAb 3G10, which recognizes the terminal desaturated 
glucuronate that caps the HS stubs after heparitinase digestion, 
to detect all proteins substituted with HS, and as an assessment of 
the number of HS chains that were expressed. Detection was per- 
formed by chemiluminescence. Film exposure was given 1 min 
(first six lanes) or 5 min (last two lanes). PG-transfected K562 
populations expressed high numbers of HS chains, which were 
readily detected after 1 rain of exposure, on a single core protein. 
HS expression was barely detectable in wild-type and R-0 cells af- 
ter 1 min, but bands of 120 kD, 50 kD, and mostly 35 kD were vis- 
ible after the longer exposure. The stronger 35-kD band in these 
cells reacted with the syndecan-4-specific mAb 8G3 (not shown). 

stable subclone from the receptor transfection that 
showed specific binding of 125I-bFGF (further referred to 
as clone R) and one subclone from the control transfection 
(further referred to as clone V) were then further trans- 
fected with the episomal vector pREP4, either as such or 
provided with cDNA inserts coding for syndecans 4, 2, 1, 
or glypican to enhance the levels of HS in these cells. 
Clone R was also transfected with a syndecan-4 antisense 
construct, since this syndecan seems to account (at least in 
part) for the small amounts of endogenous HS expressed 
by K562 cells. Several approaches were then used to evalu- 
ate the effect of these transfections on the expression of 
HS by K562 cells. 

After heparitinase digestion, any protein that is substi- 
tuted with HS can be traced by mAb 3G10, since this anti- 
body recognizes the A-glucuronate that caps the HS stubs 
(David et al., 1992a). In Western blots of PG extracts, this 
antibody detected several weak bands in wild-type and in 
R-0 cells (mainly ~35-kD bands visible after more pro- 
longed exposures), and strong ~35-, 48-, 64-, and 85-kD 
bands in the R-Syn4, R-Syn2, R-Glyp, and R-Synl trans- 
fectants, respectively (Fig. 2). These proteins were posi- 
tively identified as the expected transfectant proteins with 
the core protein-specific mAbs 8G3 (syndecan-4), 10H4/ 
6G12 (syndecan-2), S1 (glypican), and 2E9 (syndecan-1) 
(not shown). 

Analysis of the amount of HS expressed at the surface 
of the transfectants, by quantitative immunofluorescence 
flow cytometry using the HS-specific mAb 10E4 (David et 
al., 1992a), revealed marked (5-10-fold) increases in cell- 
surface HS in all R-PG transfected cell populations (Fig. 3, 
a and b). The expression of the 10E4 epitope at the surface 
of R antisense transfectants, in contrast, was reduced by 
,--~50% in comparison with R-0 cells (Fig. 3 c). Similar anal- 
yses with protein-specific antibodies confirmed the cell- 
surface expression of the transfectant PGs in transfectant 
cells, the cell-surface expression of endogenous syndecan-4 
in wild-type cells, a >10-fold increase of the cell-surface 
expression of the syndecan-4 core protein in R-Syn4 cells, 
and the decrease (by 80%) of the cell-surface expression 
of this syndecan in the syndecan-4 antisense transfectants 
(not shown). Very similar PG expressions were also achieved 
in V-PG cotransfection experiments (data not shown). 

All R transfectants were also metabolically labeled with 
[35S]sulfate for 24 h. PG was extracted from the cells with 
Triton X-100, and then further purified by ion exchange 
chromatography on D E A E  and MonoQ, as shown for the 
R-0 and the R-Syn4 transfectants in Fig. 4 a. Extracts from 
R-PG cells yielded two to fourfold more label per cell than 
the R-0 cell extract. The amount of [35S]syndecan-4 recov- 
ered by immunoprecipitation from R-Synl,  R-Syn2, or 
R-Glyp extracts, in contrast, was identical or slightly lower 
than the amount of [35S]syndecan-4 recovered from R-0 
cells (not shown). Both the R-PG and R-0 materials eluted 
as a broad early peak (0.45-0.65 M; peak A) and a more 
distinct later peak (0.70--0.85 M, peak B). All PG transfec- 
tions lead to increases in both peak A and B materials, but 
the A/B peak ratio was always higher in R-PG extracts 
than in the R-0 extract. Qualitatively similar elution pro- 
files were obtained for immunopurified PG (not shown). 
Endogenous syndecan-4 immunopurified from R-0 cells 
mimicked the profile obtained for the total PG extract 
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Figure 3. Cell-surface expression of HS in K562 cells. Cell-sur- 
face HS was measured by quantitative immunofluorescence cy- 
tometry using the HS-specific mAb 10E4. The background fluo- 
rescent signal (solid line) and the cell-surface HS expression in R-0 
cells (dotted line), R-Synl cells (narrow dotted line), and R-Syn2 
cells (dashed line)• (b) The background fluorescence and the cell- 
surface HS expression in R-0 cells, R-Glyp (narrow dotted line), 
and R-Syn4 (dashed line) cells• (c) The background fluorescence 
and cell-surface HS expression in R-0 cells (dotted line) and 
R-antiSyn4 cells (dashed line)• 

from these cells (prominent B peak), whereas the recom- 
binant PGs and also the endogenous syndecan-4 immu- 
nopurified from R-PG cells eluted like total R-PG extracts 
(more prominent A peak). 

Early (A peak) and late (B peak) eluting materials from 
total extracts were collected as separate pools and used for 
the further immunopurification of endogenous and/or 
transfectant PG on the corresponding antibody• Similar 
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Figure 4. Ion exchange chromatography of the K562 PGs. 35S-labeled 
PGs produced by the various transfectants were extracted with 
detergent and subjected to ion exchange chromatography. (a) 
The MonoQ elution profiles obtained for the total extracts from 
the R-0 and the R-Syn4 transfectant• The elution profiles ob- 
tained for the other PG transfectants were qualitatively similar to 
the one obtained for R-Syn4. The profile obtained for the R-anti- 
Syn4 transfectant was similar to that obtained for R-0 cells• (b) 
The elution profiles obtained for the endogenous syndecan-4 im- 
munopurified from R-0 and R-Syn2 cells after digestion with 
chondroitinase ABC to remove the CS-substituted forms. 

pools were also made for the eluted immunopurified PGs. 
Analysis of the G A G  chain compositions of these immu- 
nopurified PGs revealed that the syndecans 1, 2, and 4 iso- 
lated from the corresponding transfections contained [35S]HS 
as well as [35S]CS. This was observed for both A and B 
peak-derived PGs (with a tendency for a higher HS con- 
tent in B peak than in A peak materials, 40-60% versus 
20-50%). This was also the case for the endogenous syn- 
decan-4 expressed by R-0 cells. Glypican isolated from ei- 
ther the A or the B peak of the R-Glyp extract, on the 
other hand, carried almost exclusively HS (>90%)• The 
fractionation of intact, heparitinase-, chondroitinase-, and 
doubly digested immunopurified PG samples by SDS- 
P A G E  analysis and Western blotting indicated that in all 
instances (except for syndecan-1), the HS and CS chains 
were present on separate coreprotein populations, with lit- 
tle evidence for hybrid PG (shown for syndecan-4 from 
R-Syn4 extracts in Fig. 5). 

Gel filtration chromatography indicated that the sizes of 
the protein-free HS chains were nearly invariant (~-,14 
kD), whether isolated from different immunopurified PGs 
or from peak A or B materials (not shown)• Ion exchange 
chromatography indicated that protein-free HS chains de- 
rived from A peaks were less anionic than chains derived 
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Figure 5. GAG chain composition of the K562 PGs. Immunopu- 
dried syndecan-4 derived from the corresponding transfectant 
(R-Syn4) was left untreated ( - )  or subjected (+) to heparitinase 
(Hase), chondroitinase ABC (Case), or both enzymes. The di- 
gests were fractionated by SDS-PAGE, blotted, and incubated 
with the syndecan-4 core protein-specific mAb 8G3 or the anti- 
A-HS mAb 3G10. Comparison of the banding patterns after com- 
bined and single enzyme digestions indicated that the majority of 
syndecan-4 molecules were substituted with HS and a smaller 
proportion were substituted with CS, with little or no evidence 
for hybrid molecules. Similar results were obtained for the synde- 
can-2. Syndecan-1 materials contained higher amounts of CS, in 
part as true hybrids. Glypican carried almost exclusively HS 
chains. 

from B peaks, but no differences in charge density were 
observed between HS chains from corresponding peaks 
derived from different PGs (not shown). Finally, sizing of 
the different immunopurified cell-surface PGs by SDS- 
PAGE (after a treatment with chondroitinase ABC to re- 
move the CS-substituted forms) indicated that the more 
anionic forms of each HSPG species (B peak) were signifi- 
cantly more retarded than the less anionic forms (A peak). 
Yet, after heparitinase, A and B peak PGs yielded core 
proteins of similar sizes, indicating increasing numbers of 
HS-side chains per core protein in the more anionic PGs 
(not shown). 

In another series of experiments, the 35S-labeled R-0 and 
R-PG transfected cells were surface biotinylated immedi- 
ately before the detergent extraction, subjected to ion ex- 
change chromatography, and PG was immunopurified as 
described above. Early (A peak) and late (B peak) eluting 
fractions of each PG were then incubated with streptavi- 
din beads to isolate the surface-exposed forms of these 
PGs. The percentage of streptavidin-bound label did not 
differ among A and B fractions, indicating that the various 
forms of a particular PG were equally well represented on 
the cell surface. This percentage ranged from 60 to 80% 
for syndecans or glypican isolated from the corresponding 
PG-transfected cells, but was only ~30% for syndecan-4 
isolated from R-0 cells (data not shown). From the total la- 
bel, the HS content, and the size of the biotinylated frac- 
tion, it was calculated that the PG transfections resulted in 
five- to sevenfold increases in cell surface [35S]HSPG. 

Altogether, these data demonstrated that overexpres- 
sion of various cell-surface PGs in K562 cells lead to 
marked enhancements in cell-surface HS expression. This 
enhancement was most pronounced for the lesser sulfated 
forms of this glycosaminoglycan that were present on PGs 

Figure 6. K562 PG binding to immobilized bFGF. Immunopuri- 
fled, 35S-labeled PGs isolated from peak A and peak B fractions 
(see Fig. 4) were applied to a bFGF column and eluted with a salt 
step gradient (up to 2 M NaCI). Glypican eluted as nearly one 
peak (at 1.2 M), the syndecans eluted as two major peaks, one at 
0.3 M and a second at 1.2 M NaC1. The low salt eluates (fall 
through, 0.1, 0.3, and 0.6 M) contained ~70% CS, and the high 
salt eluates (0.9, 1.2, 1.5, and 2 M) contained ~90% HS. 

of low chain valency, and it occurred at the detriment of 
the glycanation of the endogenous cell-surface PG (lower 
average HS sulfation and chain valency). The latter was 
confirmed by the immunopurification of endogenous syn- 
decan-4 from R-0 and R-PG cells, digestion of the PG with 
chondroitinase ABC, and analysis of the HS-substituted 
syndecan-4 by ion exchange chromatography over MonoQ 
(Fig. 4 b). These findings indicated that the effects of the 
transfections on HS and HSPG synthesis were not simply 
additive, but also competitive, somewhat analogous to the 
effect of 13-xylosides on the synthesis of CS (stimulation) 
and CSPG (inhibition) by cells. They also underscored the 
conclusion that the gain in cell-surface HS in the transfec- 
tants is driven by the transfectant PG. 

Cell-surface PGs from K562 Cells Bind bFGF 

To evaluate the bFGF-binding properties of the cell sur- 
face PGs, the various forms were immunopurified from 
the corresponding R-PG transfectants and allowed to bind 
to biologically active recombinant bFGF that was immobi- 
lized on Ni-NTA agarose via an aminoterminal 6xHis-tag. 
After equilibration, the column was eluted with an NaC1 
step gradient (Fig. 6). Syndecans (isolated from A or B 
peaks) eluted as two major peaks, one at 0.3 M and a sec- 
ond at 1.2 M NaCI. Analysis of the G A G  compositions of 
the eluted syndecan fractions indicated that the pool of the 
first four fractions (nonbound, and eluting ~<0.6 M NaC1) 
contained mainly CS (~70%),  whereas the pool of the 
four last fractions (eluting ~>0.9 M) contained almost ex- 
clusively HS chains (N90%). Glypican, which contained 
only HS, eluted as nearly one peak at 1.2 M NaC1. These 
data indicate that only HS-carrying forms of the PGs bind 
significantly to bFGF, and they confirm that most synde- 
can cores expressed in K562 cells display either HS or CS 
chains rather than a combination of both. 

Heparin Sensitivity of  the Binding of  bFGF to FGFRI in 
K562 Cells 

We then measured the binding of 1251-bFGF to PG- and 
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Figure 7. Binding of bFGF to FGFR1 in K562 cells. Aliquots, of 
200,000 cells each, were incubated with 10 ng/ml of 125I-bFGF for 
90 min at 4°C in the absence or presence of 1 }xg/ml of unlabeled 
bFGF and with or without 100 ng/ml of heparin. The bars indi- 
cate the amounts of iodinated bFGF that remained specifically 
bound after a neutral 2-M NaC1 wash of the cells. Results are 
shown for receptor-transfected cells (a), chlorate-treated, recep- 
tor-transfectant cells (b), and for non-receptor-transfected cells 
(c). The values for receptor-transfectant cells are given as the 
means and SDs of three independent experiments. 

non-PG-transfected V and R cells, as well as the effect of 
exogenous heparin on this binding (see Materials and 
Methods). Compared to non-PG transfectants, the V-PG 
and the R-PG transfectants showed similar (near 10-fold) 
increases in label in the neutral salt washes of the cells, and 
this label could barely be displaced by a 100-fold excess of 
unlabeled bFGF (not shown). All R-PG transfectants 
showed an increase in specific salt-resistant binding of 1251- 
bFGF when compared with the R-0 and the R-antiSyn4 trans- 
fectants (Fig. 7 a). Adding soluble heparin at a concentra- 
tion of 100 ng/ml doubled specific bFGF binding to RO cells 
and tripled specific bFGF binding to R-antiSyn4 cells, but 
had no effect on specific bFGF binding by the R-PG trans- 
fectant cells (Fig. 7 a). The specific bFGF binding in the 
presence of heparin was roughly constant for all R cell 
populations (excluding differences in the number of FGFR1 

receptors per cell among the various transfectants), and 
was calculated to correspond to ,'-~30,000 binding sites per 
cell. Chlorate treatment of all R transfectant cell populations 
resulted in a decrease of the specific binding to 15-25% of 
the value obtained in the presence of 100 ng/ml of heparin 
(Fig. 7 b). Neither wild-type K562 cells nor any of the PG 
transfectants of the V clone revealed significant levels of 
specific 125I-bFGF binding, demonstrating that the assay 
was measuring FGFRl-related bFGF binding only (Fig. 7 c). 

Heparin Sensitivity of  the Affinity Cross-linking of  
bFGF to FGFR1 in K562 Cells 

The participation of the cell-surface HS in the bFGF-recep- 
tor interaction was also investigated by affinity cross-link- 
ing experiments. Covalent cross-linking of 125I-bFGF to the 
various R-transfectants demonstrated a putative bFGF- 
FGFR1 complex with an apparent molecular mass of ~140 
kD. The formation of this labeled complex was inhibited 
by adding an excess of cold bFGF, and it did not occur in 
wild-type K562 cells. Quantitative densitometric analysis 
of the bFGF-FGFR1 complexes in the various transfec- 
tants, formed in the presence and in the absence of exoge- 
nous heparin, gave the following results: 100 ng/ml of hep- 
arin increased the yield of labeled bFGFR cross-links by 
26% for R-0, by 40% for R-antiSyn4, and eightfold for 
chlorate-treated R-0 cells; the same heparin concentration 
decreased ligand cross-linking by 33% for R-Syn4, 46% for 
R-Syn2, 58% for R-Glyp, and 23% for R-Synl (Fig. 8). In- 
creased yields of specific growth factor-receptor com- 
plexes in non-PG transfectants and sulfate-starved cells 
when heparin was added, were consistent with the results 
from the binding experiments that had revealed an en- 
hancement of the bFGF-FGFR1 interaction by heparin in 
these cells (Fig. 7). Negative effects of heparin on the yield 
of growth factor-receptor cross-links in PG transfectants, 
where heparin did not affect the extent of the specific 
binding of the growth factor (Fig. 7), suggested modal dif- 
ferences between heparin- and PG-mediated specific 
bFGF-FGFR1 interactions. 

FGFRI and HS Dependency of  the bFGF-induced 
Block in Erythroid Differentiation ofK562 Cells 

K562 cells are multipotential malignant hematopoietic cells 
that spontaneously differentiate into recognizable progen- 
itors of the erythrocytic, granulocytic, and monocytic se- 
ries. A treatment with hemin or the tyrosine kinase inhibitor 
herbimycin A reduces the intracellular tyrosine phosphor- 
ylation in K562 cells and stimulates their erythroid differ- 
entiation (Richardson et al., 1987; Honma et al., 1989). 
Exposure of K562 cells to 10 -9 M PMA, in contrast, results 
in a reduced expression of erythroid-specific proteins, 
along with a weak myelomonocytic induction (Papayan- 
nopoulou et al., 1983). Erythroid differentiation of the 
K562 transfectants in the presence of growth factor was 
therefore measured as a test for the functionality of the 
FGFR1 and to evaluate the possible contributions of cell- 
surface PG in receptor-mediated growth factor effects. 

For these experiments, PG- and receptor-transfected 
K562 cells were grown in a defined serum-free medium 
(see Materials and Methods). After 72 h of growth under 
these conditions, bFGF was added in concentrations of 
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Figure 8. Cross-linking of 
bFGF to FGFR1 in K562 
cells. For affinity cross-link- 
ing, the various cell popula- 
tions were incubated with 
12SI-bFGF, following the 
same procedures as de- 
scribed in the legend to Fig. 
7. After washing off free la- 
bel, cell-bound bFGF was 
cross-linked with 0.27 mM 
freshly dissolved DSS. The 
cells were then boiled in SDS 

buffer and fractionated by SDS-PAGE. After autoradiography, the intensities of the ~140-kD bFGF-FGFR1 bands were measured 
with a densitometer. 100-fold excess of unlabeled bFGF eliminated the formation of a labeled bFGF-FGFR1 complex in all receptor- 
transfected cells. Heparin potentiated receptor cross-linking in non-PG-transfected populations (by 26% in R-0 cells, by 40% for 
R-antiSyn4 cells) and most strikingly in chlorate-treated R-0 cells (eightfold increase). Wild-type K562 cells lacked any specific recep- 
tor cross-linked band. Heparin, on the other hand, decreased the cross-linking of ligand to the receptor in the PG-transfected cell pop- 
ulations (by 33% for R-Syn4, 46% for R-Syn2, 58% for R-Glyp, and 23% for R-Synl). 

0.5-10 ng/ml, and 72 h later, the GpA and CD14 expres- 
sions were measured by immunofluorescence flow cytom- 
etry. A dose-dependent suppression of GpA was obtained 
in all these cells (Fig. 9 a). At the high concentration of 10 
ng/ml of bFGF, the mean GpA level in all R transfectants 
was suppressed to approximately one third of the control 
value (without bFGF), but at lower bFGF concentrations, 
the PG-transfected R cells were more responsive than the 
R-0 and the R-antiSyn4 cells. At a bFGF concentration of 
10 ng/ml, the CD14 expression was increased by ~50% for 
all six R transfectants (data not shown). When treated with 
chlorate, the same cell populations were nearly unrespon- 
sive to bFGF, but the effect of bFGF on the GpA expres- 
sion could largely be restored by the addition of heparin 
(Fig. 9 b). Neither wild-type K562 cells nor any V transfec- 
tant showed a change in GpA or CD14 expression when 
exposed to bFGF, with or without heparin (Fig. 9 c). Yet, 
these cells and the R cell populations showed similar de- 
creases in GpA expression in response to 10 -9 M PMA af- 
ter 72 h (shown only for wild-type cells in Fig. 9 c). The 
interpretation that stimulation of FGFR1 increased intra- 
cellular tyrosine phosphorylation and consequently blocked 
erythroid differentiation was supported by the reverting 
effect of tyrosine kinase inhibitors. In R cells that were 
preincubated with 30 p~M of genistein for 2 h before the 
addition of 10 ng/ml of bFGF, the GpA and CD14 expres- 
sions remained largely unchanged (data not shown). 

Binding of bFGF to Surface-bound FGFR1 and 
HSPG Ectodomains 

Finally, to exclude possible contributions by non transfec- 
tant PGs or other membrane-anchored molecules, we also 
measured the effect of HSPG on the binding of bFGF to 
its receptor under cell-free conditions. In this assay, we 
used recombinant F G F R l e  and Syn4e provided with 
COOH-terminal 6xHis tags that bind with high affinity 
(K d = 10 -13) (Hochuli et al., 1987) to Ni-loaded beads 
(Fig. 10 a). The affinity of bFGF for the ectodomains was 
calculated from the label coprecipitated with the Ni-NTA 
beads versus the free label at various bFGF concentrations 
(Fig. 10 b). The dissociation constant for the interaction of 

bFGF with Syn4e in the absence of F G F R l e  was 2.7 nM 
(not shown). The calculated dissociation constant for the 
direct b F G F - F G F R l e  interaction in the absence of any 
source of HS in this assay was 1.8 nM, threefold higher 
than the dissociation constant for the interaction of bFGF 
with the combination of F G F R l e  and Syn4e (0.6 nM) or 
the combination of F G F R l e  and chondroitinase A B C -  
treated Syn4e (not shown). In contrast, the affinity of 
bFGF for the combination of F G F R l e  and heparitinase- 
treated Syn4e was identical to its affinity for FGFRle .  The 
addition of soluble heparin (100 ng/ml) to bFGF slightly 
increased the affinity of the growth factor for FGFRle  (Kd 
= 1.1 nM), whereas trypsin-treated Syn4e added at similar 
concentrations as Syn4e had no effect on the binding ( K  d 

= 1.7 nM). For the combination of F G F R l e  and Syn4e, 
the concentrations of the ectodomains were chosen such 
that the maximal number of bFGF-binding sites contrib- 
uted by each component were individually similar. Yet the 
maximal number of binding sites obtained for the combi- 
nation of FGFRle  and Syn4e did not differ from the maximal 
number of binding sites obtained for these ectodomains 
tested individually. This suggested a simultaneous binding 
of bFGF to both ectodomains, as a ternary complex that 
has greater stability than that mediated by soluble heparin. 

Discussion 

Our results demonstrate that three different syndecans 
and glypican can promote the binding and activation of a 
specific kinase receptor form, i.e., the IIIc splice variant of 
the FGFR1, by a specific member of the FGF family, i.e., 
bFGF (FGF2), when expressed with the FGFR1 as core- 
ceptor pairs in transfectant K562 cells. All the forms that 
were tested boost the expression of cell-surface HS in 
these hematopoietic cells, facilitating the saturation of the 
receptor with growth factor and increasing the sensitivity 
of the cells to low doses of the growth factor that inhibit 
their erythroid differentiation, We conclude that cell-sur- 
face PGs can function as partners for the tyrosine kinases 
in a dual FGFR system, and that several different forms of 
this category of cell-surface components can provide the 
source of HS that is required for effective FGF-FGFR bind- 
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Figure 9. Effect of bFGF on GpA expression in K562 cells. The 
various K562 cell populations were cultured for 72 h in serum- 
free medium supplemented with BSA, transferrin, and insulin. 
After exposure to the indicated concentrations of bFGF for an 
other 72 h in this medium, the cell-surface GpA expression was 
measured by quantitative immunofluorocytometry. The dis- 
played relative mean fluorescence intensity values were calcu- 
lated as indicated in Materials and Methods. Receptor-trans- 
fected cell populations (a) responded with a dose-dependent 
decrease in GpA expression. At  the maximal concentration of 10 
ng/ml of bFGF, the GpA was reduced by 60-70% in all transfec- 
tants. PG-transfected clones, however, responded at significantly 
lower bFGF concentrations than R-0 and R-anti-Syn4 cells, e.g., 
at bFGF concentrations as low as 0.5 ng/ml R-Glyp still showed a 
27% suppression, and R-anti-Syn4 cells showed only a 9% sup- 
pression. Chlorate-treated R cells (b) were nearly unresponsive 

ing interactions. A low incidence of active HS sequences in 
these PGs may be compensated by their membrane anchor- 
age and concentration at the cell surface. 

K562 Cells as a Model for Studying CeU-surface HS 

K562 cells were selected for these studies because a survey 
of a large panel of cells with the HS-specific mAbs 10E4 
and 3G10 had indicated that these cells were able to syn- 
thesize authentic HS, a minimal requirement to potentially 
support bFGF-receptor  interactions, but in low and possi- 
bly insufficient amounts to support these interactions effi- 
ciently. The aim was to test whether transfections with 
cDNAs coding for cell-surface PGs could compensate for 
this relative HS deficiency. The results show that after 
these transfections, K562 cells are capable of expressing 
~5-10-fold higher levels of cell-surface HS, and that the 
endogenous and transfectant cell-surface PGs that account 
for this HS can be fractionated in distinctive charge and 
size classes that result from the intrinsic variability of the 
posttranslational modifications of these proteins. Compar- 
ative quantitative immunocytofluorometry indicated that 
the HS expression in the K562 transfectants reached simi- 
lar levels as in human lung fibroblasts (not shown), sug- 
gesting that these transfectants provide relevant models 
for the display of cell-surface HS in constitutive high ex- 
pressors. It may be significant, however, that the gain of 
HS in these cells is more pronounced for the PG fractions 
that elute early from MonoQ (substituted with fewer and 
less sulfated chains) than for those that elute later in the 
salt gradient (substituted with more and more highly sul- 
fated chains) (Fig. 4). Together with the reduced levels of 
HS glycanation of the endogenous syndecan-4 in the trans- 
fectants, these results suggest that in K562 cells, individual 
core proteins compete with each other for a limiting HS 
glycanation machinery, and that in high expressors, a 
smaller proportion of the PGs therefore reaches the most 
extensive levels of substitution and modification. These 
findings are reminiscent of results obtained for the synthe- 
sis of antithrombin Ill-binding HS sequences in transfec- 
tant endothelial and fibroblastic cells, where several con- 
secutive transductions of a syndecan-4 expression vector 
progressively enhanced the production of core protein and 
total HS in these cells, but reduced the levels of antithrom- 
bin Ill-binding HS present on transfectant and endoge- 
nous PG (Shworak et al., 1994). This suggests that the pro- 
duction of defined HS sequences can be saturated and that 
the specific activities of the PGs in terms of these se- 
quences depend at least in part on the core protein expres- 
sion levels. In the K562 PG transfectants, the transfectant 
cores drive the synthesis of ~90% of the cell-surface HS, 
but these expression levels still appear compatible with the 
production of fully modified forms of PG and the produc- 

to bFGF, but the effect of bFGF could be restored with exoge- 
nous heparin (added at 100 ng/ml). Exposure of the wild-type or 
the non-receptor-transfected cell populations (c) to bFGF in 
combination with or without heparin did not result in significant 
changes in GpA mean fluorescence intensity. Treatment of K562 
cells with the phorbol ester PMA (2 nM, over 72 h) induced an 
80% loss of GpA expression (shown only for wild-type cells in c). 
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Figure 10, Coimmobilized HSPG increases the affinity of bFGF 
for the eetodomain of FGFR1. Plasmids coding for COOH-ter- 
minal 6xHis-tailed forms of the ectodomain of FGFR1 (FGFRle) 
and syndecan-4 (Syn4e) were expressed in K562 cells. These 
6xHis tags bind with high affinity (K d = 10 -t3) to Nidoaded beads 
(a). Binding of radiolabeled bFGF to Ni-NTA=immobilized 
FGFRte in the presence or absence of Syn4e, trypsinized Syn4e 
(which lacks the 6xHis tag and therefore can not bind to the Ni- 
NTA resin), or heparin was measured at varying concentrations 
of growth factor (b). The affinity of the binding was calculated 
from the specifically bound versus free radiolabel at various 
bFGF concentrations. The data are depicted as Scatchard plots. 
The concentrations of FGFRle and Syn4e used were such that 
the maximal number of bFGF-binding rites provided by each 
oamponent individually (as determined from separate binding ex- 
periments) were identical. 

tion of the sequences required for bFGF binding and acti- 
vation. It is conceivable, however, that similar transfec- 
tions in cells that express large near-saturating amounts of  
endogenous HSPG could have adverse effects on the syn- 
thesis or  colinearity of  the sequences that are required for 
bFGF activation, and that this competition might explain 
how the expression of  syndecan-t in 3T3 cells suppresses 
the growth response of  these cells to bFGF (Mali et  al., 
1993.). 

Facilitation o f  bFGF-Receptor Binding by 
Cell-surface HS 

The effects of chlorate on the binding of bFGF to R trans- 
fectants and.of heparin on chlorate-treated R transfectants 
were consistent with the observations of several other in- 
vestigators, suggesting a clear HS-dependency of the spe- 
dfic binding of bFGF to FGFRI(IIIc)  and indicating that 
K562 cells were able to produce the HS sequences that are 
required for the stimulation of this binding. Heparin, how- 
ever, also enhanced the levels of  specific bFGF binding in 
R-0 cells that were not treated with chlorate, indicating 
lack of receptor saturation in these cells despite normally 
saturating concentrations of added growth factor, possibly 
caused by P G  receptor imbalances in these receptor-over- 
expressing cells. The saturation of the receptor in the R-PG 
transfectants confirms this interpretation and indicates 
that all the different cell-surface PGs tested can comple- 
ment for the relative HS deficiency of these cells. Reduced 
levels of receptor saturation in R-anti-syndecan-4 transfec- 
tants in comparison to R-0 cells support the contention 
that cell-surface PGs contribute to receptor binding in 
K562 cells, in apparent discrepancy with previous sugges- 
tions that these forms are inactive or  even inhibitory in 
this respect (Aviezer et al., 1994a). Distinctive PG require- 
ments for activation of the receptor in c/s- and trans- 
modes, or  unique activities of the PGs in these cells, could 
account for this discrepancy. 

Our cell-free assay demonstrates that bFGF binds to the 
ectodomain of the two-Ig domain form of human FGFR1 
in the absence of  heparin, and that heparin moderately en- 
hances the affinity of  this binding interaction, which agrees 
with the results reported by several other investigators 
with similar constructs (Kiefer et al., 1991; Bergonzoni et 
al., 1992; Roghani et al., 1994). In this assay, a syndecan 
ectodomain made by K562 cells that could be coimmobi- 
lized with receptor proved to be an effective strengthener 
~f  the binding interaction, whereas the same ectodomain 
provided in equimolar amounts, but in soluble form, had 
no detectable activity. The failure of these soluble ectodo- 
mains is in agreement with previous binding results ob- 
tained for receptor-reporter fusion proteins and soluble 
cell-surface PG in cell-free assays (Aviezer et  al., 1994a) 
and for the activation of  receptor in HS-deficient cells by 
exogenously added PG (Aviezer et  al., t994b), whereby 
several of the cell-surface PGs that were studied here were 
proven to be ineffective. All together, these findings sug- 
gest that cell-surface PGs are not intrinsically ineffective, 
but that membrane-imbedded and solubilized forms of  the 
PGs from a particular cell differ in their activities on 
bFGF-receptor binding in that the former lead to higher 
effective concentrations of  reactants with higher apparent 
binding affinities as a result. 

The  results from the affinity cross-linking experiments 
are also consistent with a role for cell-surface HS in the re- 
ceptor-ligand interaction. They show specific receptor 
binding in R cells and an increase in receptor--cross-linked 
tz~I-bFGF for the R-O and chlorate-treated R-PG cell pop- 
ulations upon the addition of  heparin, consistent with the 
stimulatory effect of  heparin on receptor occupancy in 
these cells. Somewhat surprisingly, since heparin did not 
promote or  decrease receptor occupancy in R-PG trans- 
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fectants, heparin very consistently decreased the cross- 
linking efficiency in all R-PG cells. This difference .in re- 
ceptor-=ligand cross-linking efficiency between PG-mediated 
and (in the presence of a large excess of heparin) probably 
heparin-mediated receptor-ligand complexes suggests the 
formation of distinctive receptor--ligand complexes in the 
two situations. Cross-linking likely involves sites within 
the bFGF-receptor complex other than those directly in- 
volved in the binding interaction, and depends on the con- 
figuration of the complex, the realized approximations, 
and the stability of  the complex. Conformational changes 
induced by exogenous heparin, but not by HS, that may be 
irrelevant for binding might disturb bFGF cross-linking. 
The finding that ternary complexes mediated by surface- 
immobilized ectodomains are more stable than heparin- 
mediated complexes might also be relevant and relate to 
the reduction in FGFR-FGF cross-links in the presence of 
heparin. The observation at least suggests that exoge- 
nously added heparin does not exactly reproduce the pro- 
cess of PG-mediated binding and ¢,annot be used as the 
sole model to define .the molecular requirements for re- 
ceptor occupancy by growth factor and activation. 

Receptor Activation by CeU-surface HS 
The fact that K562 cells that expressed high levels of cell- 
surface HS, (R-PG cells) responded more dearly ~o low 
bFGF concentrations than low expressors, (R4) and R-anti- 
Syn4 cells) further supports the contention that, at tow 
doses of growth factor, {igand-induced FGFR stimulation 
and signaling depend on the availability of sufficient and 
appropriate sources of HS at the cell surface (Roghani et 
al., 1994). Our data show that :several different cell-surface 
PGs originating from separate molecular families are able 
to provide this source, at least .for the bFGF-FGFR1 inter- 
action, in cells ~vith the appropriate HS~synthesizing ma- 
chinery, and when expressed at the cell surface of ~he re- 
ceptor-expressing cells. Relatively tow specific activities of 
the cell surface PGs with respect to the fostering ,of recep- 
tor-growth factor interactions may be compensated by 
this membrane association, essentially limiting the activity 
of these PG-s to the c/s mode. Considering the relative inef- 
Iectiveness of the soluble PG ectodomains as promoters of 
the bFGF--receptor interaction, it may be significant that 
all syndecans have conserved a putative protease cleavage 
site in their ectodomain, and that glypicans are tinked to 
the cell surface by phospholipase-susceptible bonds. Syn- 
decan shedding is known to occur, at least under in vitro 
conditions, and phospholipase D activities that release sol- 
uble bFGF--HSPG complexes have recently been identi- 
fied in HeLa cell and bone marrow stromal cell cultures 
(Metz et al., 1994). From our results, we would predict that 
at low concentrations of growth factor, protease- and li- 
pase-induced sheddings of the cell~sufface P,Gs will lead to 
a dilution of the reactants, dissociation of the recePtor 
complexes, and downregulation of the signaling pathway, 
unless other PGs with possibly unique trans-activation po- 
tentials, such as ~he pedecan synthesized by cultured fetal 
lung fibroblasts (A~/iezer et al., 1994b), can compensate 
for this ]oss. This leads to the speculation that PG ~hedding 
may provide means for,acute regulation of c/s-activated hep- 
arm-dependent pathways, next to possibly slower regula- 

tions via controls on the synthesis of the core proteins and 
the required HS sequences. 
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