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Abstract

Reported COVID-19 cases and deaths provide a delayed and incomplete picture of SARS-

CoV-2 infections in the United States (US). Accurate estimates of both the timing and mag-

nitude of infections are needed to characterize viral transmission dynamics and better

understand COVID-19 disease burden. We estimated time trends in SARS-CoV-2 transmis-

sion and other COVID-19 outcomes for every county in the US, from the first reported

COVID-19 case in January 13, 2020 through January 1, 2021. To do so we employed a

Bayesian modeling approach that explicitly accounts for reporting delays and variation in

case ascertainment, and generates daily estimates of incident SARS-CoV-2 infections on

the basis of reported COVID-19 cases and deaths. The model is freely available as the covi-

destim R package. Nationally, we estimated there had been 49 million symptomatic COVID-

19 cases and 404,214 COVID-19 deaths by the end of 2020, and that 28% of the US popula-

tion had been infected. There was county-level variability in the timing and magnitude of inci-

dence, with local epidemiological trends differing substantially from state or regional

averages, leading to large differences in the estimated proportion of the population infected

by the end of 2020. Our estimates of true COVID-19 related deaths are consistent with inde-

pendent estimates of excess mortality, and our estimated trends in cumulative incidence of

SARS-CoV-2 infection are consistent with trends in seroprevalence estimates from avail-

able antibody testing studies. Reconstructing the underlying incidence of SARS-CoV-2

infections across US counties allows for a more granular understanding of disease trends

and the potential impact of epidemiological drivers.
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Author summary

Because many COVID-19 infections go undetected, reported numbers of COVID-19

cases and deaths underestimate the true size of the epidemic. To address this problem, we

built a model to estimate the number of new SARS-CoV-2 infections over time in each U.

S. state and county. In this paper, we present time trends of infections and other disease

outcomes from the first reported case in the U.S. until January 1, 2021, for each state and

county. The time series of infection estimates suggest that the US epidemic is best

described a series of related epidemics, varying in their timing and intensity. We estimate

that over a quarter of the US population was infected with SARS-CoV-2 in 2020 and by

the end of 2020 0.12% of the population had died from COVID-19. State-level results

were consistent with external measures of disease burden, including estimates of SARS-

CoV-2 seroprevalence and excess mortality. Our findings help better understand the epi-

demic in the pre-vaccine era and demonstrate the feasibility of estimating SARS-CoV-2

infections at local levels using routinely reported case and death data.

Introduction

The numbers of newly diagnosed cases and confirmed COVID-19 deaths are the most easily

observed measures of the health burden associated with COVID-19 and have been widely used

to track the trajectory of the epidemic at the national, state, and local level.[1, 2] However,

there are at least three limitations of using reported cases and deaths for this purpose. First,

testing is primarily organized to identify symptomatic individuals, but a large fraction of

SARS-CoV-2 infections are asymptomatic, [3] leading to case counts that are substantially

smaller than the true incidence of infection. Second, the degree to which case counts under-

count infections is sensitive to the availability and utilization of diagnostic testing, which has

varied over time and geography.[4–6] For this reason, it can be difficult to distinguish true

trends from changes in testing practices. Third, case and death counts are lagging indicators of

the transmission dynamics of the pathogen, as they are affected by delays associated with the

incubation period, care-seeking behavior of symptomatic individuals, diagnostic processing

times, and reporting practices. Taken together, these limitations present challenges to analyses

that rely on these metrics as primary signals of SARS-CoV-2 spread.

A better indicator of changes in local transmission is the effective reproduction number

(Rt), which represents the average number of secondary infections caused by an individual

infected at some time t.[7] Rt can signal short-term changes in transmission in response to pol-

icy and behavioral changes. However, Rt is not a directly observable quantity and estimates of

Rt based on raw case reports become biased when reporting delays are incorrectly estimated,

[5] weakening their usefulness as a measure of transmission.

Unbiased estimates of COVID-19 cases and the Rt of SARS-CoV-2 can provide more accu-

rate insight into the size and scope of the United States (US) epidemic and inform current and

future COVID-19 control policies. A number of modeling approaches have been developed to

reconstruct the time series of infections and deaths over the course of the US epidemic. These

approaches typically do not allow for variability in case ascertainment and infection fatality

ratios (IFRs) across space and time, nor do they attempt to model SARS-CoV-2 infections or

COVID-19 deaths at fine spatial scales, such as at the county level.[8, 9]

Here, we present detailed estimates of viral dynamics for all US states and counties, based

on a Bayesian statistical model that combines multiple data sources to estimate SARS-CoV-2
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infection patterns from observed case notifications and death reports. We apply our model to

publicly available COVID-19 case and death data and report on the trajectory of the epidemic

from the first reported case (January 13, 2020) until January 1, 2021. The model is available on

GitHub (https://github.com/covidestim/covidestim/) as a package for the R programming lan-

guage (covidestim).

Results

Analytic overview

We developed a mechanistic model to back-calculate SARS-CoV-2 infections and subsequent

outcomes based on reported COVID-19 cases and deaths. In this model the natural history of

COVID-19 is represented using four health states: asymptomatic or pre-symptomatic SARS-

CoV-2 infection (Asymptomatic), symptomatic but not severe COVID-19 disease (Symptom-
atic), severe COVID-19 disease (Severe), and death from COVID-19 (Death). In each health

state (except Death) individuals either recover or transition to a more severe state after some

delay. Infected individuals can be diagnosed in the Asymptomatic, Symptomatic, or Severe
states, and we assume all diagnosed cases and all deaths among diagnosed individuals are

reported after a short delay. Fig 1 shows modeled health states and transitions. The model gen-

erates several outcomes of epidemiological importance, including Rt, total infections, symp-

tomatic cases, total deaths, and case ascertainment; we estimated these outcomes for each US

state and county from the start of the epidemic until January 1, 2021.

Main findings

Incidence and Rt. The SARS-CoV-2 epidemic in the US consisted of a series of related

outbreaks, which varied greatly in both the intensity of transmission and the extent of geo-

graphic spread (Fig 2). The March outbreak in New Jersey was the largest per population in a

single state; on April 4, we estimate that New Jersey had 732 (95% credible interval: 464, 1206)

infections per 100,000, and 16% (10%, 26%) of all infections in the US on that day. Local surges

Fig 1. A model schematic of the main health states: Asymptomatic (denoted “Asymp.”), Symptomatic (denoted

“Symp.”), Severe, and Death. The subscript “dx” indicates that individuals in that state have received a diagnosis of

COVID-19. Each transition (denoted with an arrow) has an associated probability and delay distribution. Solid arrows

denote disease progression; dotted arrows denote recovery; short dashed arrows denote diagnosis; long dashed arrows

denote reporting. All diagnosed cases and deaths are assumed to be reported after a given delay.

https://doi.org/10.1371/journal.pcbi.1010465.g001
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in infections during the fall and winter of 2020 rivaled New Jersey and New York’s spring out-

breaks in scale, but occurred in the context of a more generalized US epidemic. South Dakota,

for example, had its highest per capita infections of 2020 on November 8 (569 [365, 940] infec-

tions per 100,000), but accounted for just 1.2% (0.7%, 1.9%) of all US infections that day.

Forty-five states experienced the highest daily infections per capita in November or December

(Fig 3). Model fit to data can be found in S1 Fig.

While most states and counties had lower levels of transmission during the summer

months, few achieved established thresholds of low levels of community transmission, defined

as fewer than 20 confirmed cases per 100,000 per week. [10] We estimate that only four states

(Alaska, Montana, Vermont, and West Virginia) had fewer than 20 symptomatic cases per

100,000 inhabitants per week after transmission was established locally. Notably, Vermont

remained below this threshold from the week of May 11 until the week of September 28.

Estimates of Rt at the start of the epidemic varied greatly by state. The median state-level

estimate of Rt on the first day a case was reported in each state was 3.4 (range: 1.7 [1.5–2.0] in

Washington to 5.9 [4.3–8.2] in New York). Throughout April, Rt estimates dropped substan-

tially. Over the period May 1, 2020 to January 1, 2021, state-level estimates of Rt ranged from

0.7 (0.6, 0.8) to 1.5 (1.3, 1.7) (Fig 4).

Percent Ever-Infected with SARS-CoV-2. For each county, we calculated the percentage

of the population ever-infected as the sum of all estimated infections divided by county popu-

lation on January 1, 2021 (Fig 5). This cumulative infection estimate is distinct from reported

seroprevalence estimates, as seroprevalence measures may be affected by the lower immune

Fig 2. Panels 1–10: County-level infections per 100,000 population per day at 10 timepoints between April 1, 2020

and January 1, 2021. Panel 11: Time series of national SARS-CoV-2 infection estimates (orange line) and reported

COVID-19 diagnoses (blue bars) per 100,000 people per day from March 1, 2020 to January 1, 2021. Maps generated

using shapefiles from the alberusa package for the R programming language: https://github.com/hrbrmstr/albersusa.

https://doi.org/10.1371/journal.pcbi.1010465.g002

PLOS COMPUTATIONAL BIOLOGY Reconstructing the course of the COVID-19 epidemic over 2020 for US states and counties

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010465 August 30, 2022 4 / 19

https://github.com/hrbrmstr/albersusa
https://doi.org/10.1371/journal.pcbi.1010465.g002
https://doi.org/10.1371/journal.pcbi.1010465


response among individuals with mild/asymptomatic infection, possible waning of antibody

titers,[11, 12] and non-representativeness of sampled populations.[13] By January 1 2021, we

found that the percent of the population ever-infected exceeded 50% in 303 (9.7%) counties and

exceeded two-thirds of the population in 42 (1.3%) counties. Conversely, the percent ever-

infected was less than 10% in 144 (4.6%) counties and less than 5% in 37 (1.2%) counties. Based

on the sum of state estimates (posterior medians), we estimate that 28% of the US population had

been infected with SARS-CoV-2 by January 1, 2021. Across states, the percentage ever-infected

ranged from 6.5% (4.2%, 11.1%) in Vermont to 45.7% (30.7%, 67.1%) in Arizona (Fig 5).

On January 1, 2021, the US had reported 348,055 cumulative COVID-19 deaths.[14] Based

on the sum of state estimates (posterior medians), we estimate there were 404,214 cumulative

COVID-19 deaths as of January 1, 2021, 16.1% greater than cumulative reported deaths and

approximately 0.12% of the US population on January 1, 2020. Estimates of the size of the

infected population were sensitive to assumptions about the IFR, with higher IFR values pro-

ducing lower estimates of the infected population (S2 Fig). Other major epidemiological out-

comes (Rt, symptomatic cases, severe cases, COVID-19 deaths) had weak relationships with

the IFR (absolute rank correlations all<0.2). Alternative assumptions for how county-level

IFRs relate to state-level values had a modest impact on cumulative infection estimates (S4

Fig). Cumulative infection estimates and other epidemiological outcomes showed modest

changes under different assumptions regarding the time course of COVID-19 disease progres-

sion (S5A–S5C Fig) and reporting delays (S5D and S5E Fig).

Infection ascertainment. The probability that an infection is diagnosed changed substan-

tially over the course of the U.S. epidemic. Ascertainment was low in the months of March,

Fig 3. Incident infections per 100,000 residents per day for each US state from March 1, 2020 to January 1, 2021.

Shaded areas represent 95% credible intervals.

https://doi.org/10.1371/journal.pcbi.1010465.g003
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April, and May 2020. The national median state-level infection ascertainment (based on state-

level posterior medians) in this period was 13.2% (range: 3.2%, 39.7%). Infection ascertain-

ment improved steadily through November 2020, excluding a period of lower ascertainment

in July and August; the national mean probability of diagnosis fluctuated between 24% and

35% between September 1, 2020 and January 1, 2021. Infection ascertainment estimates varied

significantly across states, and state-level estimates were highly uncertain (Fig 6). Only 3 states

achieved greater than 50% ascertainment at any point in 2020 (based on posterior median).

State-level model estimates of infection ascertainment each day were negatively correlated

with the seven-day moving average fraction of tests that had a positive result[15] (Spearman

rank correlation (ρ) = -0.36, p< 0.001). From the introduction of SARS-CoV-2 in the US until

January 1, 2021, we estimate that 22.4% of infections were identified and reported. Infection

ascertainment estimates were sensitive to assumptions about the IFR, with higher IFR values

producing higher estimates of the fraction of infections identified and reported (S2 Fig). Ascer-

tainment estimates were also sensitive to the natural history delays (S5A–S5C Fig) and report-

ing delays (S5D and S5E Fig) assumed in the analysis.

Comparisons to External Covid-19 Burden indicators

We compared our estimates of the percent ever-infected with SARS-CoV-2 to U.S. Centers for

Disease Control (CDC) seroprevalence estimates drawn from commercial laboratory data,[16]

Fig 4. Rt estimates for each US state from March 1, 2020 to January 1, 2021. Background colors indicate whether Rt is

substantially greater than 1 (red), close to 1 (white), or substantially less than 1 (blue). Grey line indicates Rt = 1. Shaded

areas represent 95% credible intervals.

https://doi.org/10.1371/journal.pcbi.1010465.g004
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acknowledging previously noted differences between these outcomes. Derived from a conve-

nience sample of blood specimens collected for reasons unrelated to COVID-19, the seroprev-

alence estimates provide state-level evidence on SARS-CoV-2 antibody test positivity at

multiple time points (Fig 7). However, these estimates are incomplete in some states (e.g.

South Dakota), and the series of values declines over time in others (e.g. New York). Compar-

ing these estimates to other reported indicators of cumulative disease burden on December 31,

2020, the modeled estimates of the percent ever-infected were more strongly correlated with

cumulative hospitalizations (Spearman rank correlation (ρ) = 0.62) and cumulative reported

deaths (ρ = 0.82) than the CDC seroprevalence estimates (ρ = 0.41 and 0.37 for hospitalizations

and deaths respectively).

In addition, we compared model estimates of cumulative COVID-19 deaths (detected and

undetected) to state-level estimates of excess all-cause mortality, which reflect both COVID-19

deaths and deviations from expected levels and patterns in non-COVID-19 deaths, [6] (Fig 8)

at each weekly timepoint from March 7 to December 19, 2020. On average, modeled estimates

of cumulative COVID-19 deaths are less than or approximately equal to estimates of excess all-

cause mortality. Notably, three states (Alaska, Hawaii, Maine) have extended periods where

the estimated all-cause mortality did not exceed all-cause mortality from previous years (i.e.

excess mortality was negative); in periods where all-cause mortality is higher than expected,

our estimates of COVID-19 deaths correlate strongly with excess mortality estimates (Spear-

man rank correlation (ρ) = 0.95, p < 0.001). Additionally, model estimates of cumulative

COVID-19 deaths exceed estimates of excess all-cause mortality in four states (New Jersey,

North Dakota, Massachusetts and Rhode Island). Estimates of excess all-cause mortality were

not available for Connecticut, North Carolina, or West Virginia.

Fig 5. Percentage of the population ever-infected with SARS-CoV-2 as of January 1, 2021. Map generated using

shapefiles from the alberusa package for the R programming language: https://github.com/hrbrmstr/albersusa.

https://doi.org/10.1371/journal.pcbi.1010465.g005
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Discussion

We present detailed estimates of the dynamics of SARS-CoV-2 infections in US states and

counties through the end of 2020. We found that the viral dynamics are best described as a

series of related local and regional epidemics, differing in their timing and magnitude even

within individual states. This is evident in the large variation in state- and county-level esti-

mates of percent ever-infected as of January 1, 2021. As case ascertainment has also varied

over space and time, these estimates provide insights beyond those that can be inferred from

cumulative case counts alone. Ascertainment of infection improved markedly after the first

months of the US epidemic, but remained low nationally; we conclude that the reported cumu-

lative case count was approximately one-quarter of the true number of US infections at the

end of 2020.

Most notably, we found that model estimates of cumulative infections differ from seroprev-

alence estimates produce by the CDC. Our estimates of cumulative infections are more

strongly correlated with cumulative hospitalizations and deaths across states, potentially

reflecting biases in the empirical seroprevalence estimates. Seroprevalence studies have a num-

ber of known limitations, including the use of non-representative samples [13] and possible

reduced sensitivity associated with waning of antibody titers, as has been reported for some

tests. [11, 12] A comparison between model estimates and seroprevalence data therefore sug-

gests that this method provides valuable information about the incidence of infection over

time.

Fig 6. The probability that a person infected with SARS-CoV-2 on a given day will be diagnosed for each US state from

March 1, 2020 to January 1, 2021. Shaded areas represent 95% credible intervals. The red line represents a seven-day

moving average of the fraction of positive tests.

https://doi.org/10.1371/journal.pcbi.1010465.g006
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The Bayesian estimation approach used for this analysis makes a number of simplifying

assumptions. To reduce model complexity, we rely on fixed distributions to describe delays in

disease progression and detection. Because we anchor the analysis on death data (under the

assumption that deaths were more consistently reported than cases over the course of the epi-

demic), model estimates are sensitive to IFR estimates. These IFR estimates are themselves

uncertain, being derived from the comparison of death counts to seroprevalence estimates and

therefore inheriting the potential biases of these studies. [11–13] While we allow for variation

in IFR values at state- and county-level, this variation is based on proxy measures (differences

in the age distribution of COVID-19 deaths, differences in reported prevalence of risk factors

for severe disease), which may weaken the robustness of this approach. Moreover, it is likely

that the IFR has varied over time within each modeled geography due to changes in the age

distribution of infections, yet the limited reporting of age-stratified data means that these age-

based changes could not be represented in the model. We also allow for modest under-report-

ing of COVID-19 deaths, consistent with empirical studies of COVID-19 death reporting, [11,

17, 18] but this is an uncertain input to our analysis. For other modeling assumptions—in par-

ticular, the delay distributions quantifying the lag between infection and reporting—we

assumed consistent values across all locations, due to a lack of data on how these vary across

states and counties. Finally, we assume that a previously infected individual cannot be re-

infected with SARS-CoV-2. While waning antibody titers suggest that re-infection is possible

over time, we do not believe that our assumptions about re-infection meaningfully impact our

results. [19, 20]

Fig 7. Comparison of the estimated percent ever-infected with SARS-CoV-2 (purple line, shaded areas represent 95%

credible intervals) to CDC seroprevalence estimates from commercial laboratory data (red vertical line) and

cumulative reported cases (black line) for each US state from March 1, 2020 to January 1, 2021.

https://doi.org/10.1371/journal.pcbi.1010465.g007
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In addition, we used data that have been aggregated from state-level reporting mechanisms,

which are vulnerable to a number of potential sources of bias. States vary in their reporting cri-

teria (e.g. reporting the number of positive tests as opposed to number of individuals who have

tested positive) and the average delay between case detection and reporting. Data are also sub-

ject to occasional revisions, often implemented as a single-day change in the cumulative count

of cases or deaths. Taken together, these data irregularities lead to additional variance in the

reported data and a reduction in the precision of reported estimates. While line-list data would

likely improve the precision of model estimate [21], these data are not widely available in the

US. Despite these limitations, the method described here may represent an improvement over

similar modeling approaches that do not allow for case ascertainment rates and infection fatal-

ity ratios that vary over both space and time, [8, 9, 22, 23] or that estimate Rt using model out-

puts rather than as part of the modeling framework. [9, 21, 23] Furthermore, our approach

uses changes in case and death data to estimate changes in transmission, while others

approaches make use of more indirect data on mobility [8, 22] or similar proxies [23] to signal

changes in transmission. While mobility has a mechanistic relationship with disease transmis-

sion, the association between movement data and viral transmission is complex and variable

across time and space, possibly because of changes in mask use and other non-pharmaceutical

interventions. [24, 25]

In conclusion, the modeling approach described here provides a coherent framework for

simultaneously estimating the trend in SARS-CoV-2 infections and the fraction of the popula-

tion that has been infected previously, providing key information on the viral dynamics at

Fig 8. Comparison of cumulative COVID-19 deaths (blue) to cumulative excess all-cause mortality (red) for each US

state from March 7 to December 19, 2020. Shaded areas represent 95% credible intervals.

https://doi.org/10.1371/journal.pcbi.1010465.g008
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county- and state-levels. While the deployment of effective vaccines against the virus repre-

sents a great hope for the control of SARS-CoV-2 transmission, vaccine hesitancy and the

emergence of more transmissible variants [26] present an ongoing challenge to disease control

in the US. Understanding the course of the epidemic in the pre-vaccine era can help guide

decision making in a landscape with heterogenous vaccine coverage. Ongoing, local evidence

on trends in Rt and new and cumulative infections will continue to be important for both gov-

ernments and individuals.

Methods

We developed a mechanistic model that uses reported case and death data to back-calculate

the natural history cascade of SARS-CoV-2. The model estimates the expected number of

cases and deaths reported on a given day as the convolution of the time series of diagnosed

cases and deaths (among diagnosed individuals) and fixed reporting delay distributions; the

expected number of diagnoses on a given day is estimated with health-state specific and time-

varying probabilities of diagnosis. The model represents the natural history of COVID-19 as a

series of health state transitions with associated probabilities and delays (Fig 1). The model uti-

lizes delay distributions associated with health state progression, time-invariant probabilities

of transitioning from Asymptomatic to Symptomatic and from Symptomatic to Severe, and a

time-varying probability of transitioning from Severe to Death. The number of individuals

entering Asymptomatic is a function of the serial interval, the fraction of the population not yet

infected, and Rt; Rt is modeled using a log-transformed cubic b-spline.

Data

For every state and county in the United States, we extracted daily data on reported COVID-

19 cases and deaths from a repository compiled by the Johns Hopkins Center for Systems Sci-

ence and Engineering (CSSE) [14]. We calculated the time series of new cases and deaths as

the difference between cumulative counts reported on consecutive days. In instances in which

the reported cumulative count decreased from one day to the next, we assumed that there

were zero new cases or deaths on each day until the cumulative count exceeded the previous

maximum. In several instances the data reported by CSSE fail to capture the beginning of the

epidemic in early 2020, or exhibit irregularities during this period. To reconstruct the time

series for this period we used data compiled by the Covid Tracking Project. [15]

Mathematical model

We constructed a deterministic mathematical model relating reported cases and deaths to

unobserved COVID-19 natural history. A flexible function for Rt determines the number of

individuals infected on a given day, and the model then tracks the progression of the infected

cohort through health states of increasing disease severity, with modeled quantities—At

(Asymptomatic), St (Symptomatic), Vt (Severe), and Dt (Death)—reflecting the number of indi-

viduals entering a given health state on day t. From each health state, an individual can either

recover or progress to the next health state, with this transition governed by a defined delay

distribution. Ultimately, the model estimates an expected number of reported cases and deaths

on each day, which are fit to observed data via negative binomial likelihood functions.

New infections

We modeled the daily number of newly-infected individuals (At) entering the Asymptomatic
state. For each modeled location, we specified a random intercept (A0) 28 days before the first
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reported COVID-19 case, and calculated changes in At as a function of the effective reproduc-

tion number (Rt) and the mean serial interval (z), measured in days (derivation shown in sup-

plement).

Atþ1 ¼ AtR
1
z
t for t � 0 ð1Þ

We modeled the time trend in Rt using a log-transformed cubic b-spline (XR,t) with knots

every 10 days (S3 Fig), allowing flexibility in the evolution of the epidemic curve over time.

Penalties on first and second differences of the spline parameters were used to dampen oscilla-

tions not supported by the data. We assumed that individuals can only be infected once and

multiplied the spline by the fraction of the population (N) uninfected at each timepoint, penal-

izing Rt towards zero as the population ever-infected approaches 100%.

Rt ¼ XR;t 1 �

Pt
i¼0

Ai

N

� �

ð2Þ

Disease progression

We assumed that a fraction of individuals with asymptomatic disease (pS) progress to the

Symptomatic state. The delay from infection to symptoms was assumed to follow a Gamma

distribution, with ρS,i representing the fraction progressing between i and i+1 days after infec-

tion, among those progressing to the symptomatic state. We tested the sensitivity of model

outcomes to the choice of symptom onset delay (S5A Fig).

St ¼
Xt

i¼0
At� ipSrS;i ð3Þ

Similarly, a fraction of individuals in the Symptomatic state (pV) were assumed to progress

to the Severe state, with Gamma-distributed delay distribution ρV,i. A fraction of individuals

with severe disease (pD,t) die, with Gamma-distributed delay distribution ρD,i. We tested the

sensitivity of model outcomes to the choice of delay to severe disease (S5B Fig) and to death

(S5C Fig).

Vt ¼
Xt

i¼0
St� ipVrV;i ð4Þ

Dt ¼
Xt

i¼0
Vt� ipD;trD;i ð5Þ

With the exception of pD,t, disease progression parameters were not allowed to vary over

time. For pD,t we assumed higher values applied in early 2020, reflecting higher case fatality

among individuals with severe disease early in the epidemic due to later presentation and

lower effectiveness of treatment at that time. We modeled the time trend in pD,t as the product

of pD0 (the progression probability after early 2020) and ORpD;t
, an odds ratio describing the

elevated case fatality early in the epidemic (Eq 6). ORpD;t
was operationalized using a declining

sigmoid curve (1.0 minus the Normal cumulative distribution function F) with an inflection

point on May 1 2020 (Eq 7). In this equation, μ is equal to the number of days between the

start of the model (t = 0) and May 1st 2020, σ is equal to 21 days, and apD represents an uncer-

tain parameter for the additional mortality risk early in the epidemic. This formulation ensures

that ORpD;t
asymptotes toward 1.0 as t increases after May 1st 2020.

pD;t
1 � pD;t

¼
pD;0

1 � pD;0
ORpD;t

ð6Þ
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ORpD;t
¼ 1þ 1 � F

t � m
s

� �� �

apD ð7Þ

While vaccination would also affect disease progression probabilities, we assumed that vac-

cination coverage was insufficient to impact disease natural history during the study period.

Infection fatality ratio

We assumed that the infection fatality ratio (IFR) differs across states and counties, reflecting differ-

ences in the age distribution of the epidemic and differences in the prevalence of medical risk factors

for severe COVID-19 disease. First, we calculated the age distribution of infections for each state,

based on the reported age distribution of COVID-19 deaths [27] and published age-specific IFRs.

[28] Second, we used these age distributions to calculate an average IFR for each state, weighting the

age-specific IFRs by the fraction of the population in each age group. This produced a national aver-

age IFR of 0.35, which we believe to be implausibly low; we rescaled state-level values to produce a

national average IFR of 0.5%. [29] As the age-distribution of COVID-19 deaths was not available at

the county-level, we estimated county-level IFR values by multiplying the state-average IFR by the

prevalence of medical risk factors for severe COVID-19 disease in each county relative to the rest of

the state. [30] To test the impact of this assumption, we performed a sensitivity analysis with a sim-

pler approach that holds all county-level IFRs equal to the state level (S4 Fig). To understand the

implications uncertainty in the IFR for modeled estimates of the infected population, we plotted the

relationship between these two quantities in the fitted model outcomes.

Diagnosis

We assumed that infected individuals could be diagnosed from the Asymptomatic, Symptom-
atic, or Severe states, and that diagnosis would not affect disease progression. To reduce model

complexity, we assumed that diagnosis in the Asymptomatic state only occurs among individ-

uals who will not progress to the Symptomatic state. The daily number of these diagnoses is

denoted Ât (with the ^ used to indicate quantities related to diagnosis). The fraction of these

individuals diagnosed (qA,t) was assumed to vary over time, to allow for changes in case ascer-

tainment over the course of the epidemic. The delay to diagnosis was defined by r̂A;i, which is

described by a Gamma distribution.

Ât ¼
Xt

i¼0
At� iqA;t� ir̂A;ið1 � pSÞ ð8Þ

To estimate the number diagnosed from the Symptomatic state (Ŝt) we assumed a time-

varying probability of diagnosis qS,t and delay to diagnosis r̂S;i.

Ŝt ¼
Xt

i¼0
St� iqS;t� ir̂S;i ð9Þ

The number diagnosed from the Severe state (V̂ t), was calculated based on a time-invariant

probability of diagnosis (qV) and delay to diagnosis r̂V;i. These were applied after subtracting

individuals developing severe disease who had been previously diagnosed at Symptomatic
( �Vt).

�Vt ¼
Xt

i¼0
St� iqS;t� ipVrV;i ð10Þ

V̂ t ¼
Xt

i¼0
ðVt� i �

�Vt� iÞqV r̂V;i ð11Þ
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Time-varying diagnosis probabilities (qA,t, qS,t) were calculated as a function of qV:

qS;t ¼ qVXqS ;t
ð12Þ

qA;t ¼ qVXqS ;t
RRqA

ð13Þ

In Eqs 12 and 13, XqS ;t
is operationalized as a cubic b-spline that has been logit-transformed

to fall within the unit interval, with knots spaced 21 days apart, and with penalties on first and

second differences of the spline parameters. RRqA
is constrained to fall in the unit interval, so

that that qA,t�qS,t�qV for all t.

Reporting

We assumed that all diagnosed COVID-19 cases were reported. The number of diagnoses

reported on a given day ( _Ct, with the ‘�’ used to indicate quantities related to reporting) was

calculated as the sum of diagnoses from Asymptomatic, Symptomatic and Severe states, with

reporting delay _rC;i.

_Ct ¼
Xt

i¼0
ðÂt� i þ Ŝt� i þ V̂ t� iÞ _rC;i ð14Þ

The reported number of COVID-19 deaths ( _Dt) were calculated from the number of diag-

nosed individuals who subsequently died ðD̂tÞ: D̂t was calculated as the sum of deaths among

individuals diagnosed from the Symptomatic and Severe states, represented by the first and sec-

ond terms in Eq 15, respectively. We assumed that all deaths among diagnosed COVID-19

cases were reported, with reporting delay _rD;i.

D̂t ¼ ð
Xt

i¼0

�Vt� ipD;trD;iÞ þ ð
Xt

i¼0
ðVt� i �

�Vt� iÞqVpD;trD;iÞ ð15Þ

_Dt ¼
Xt

i¼0
D̂t� i _rD;i ð16Þ

We tested the sensitivity of model outcomes to the choice of reporting delays (S5D and S5E

Figs).

Data likelihood

We specified negative binomial likelihood functions to fit the model to observed cases (YC,t)

and death data (YD,t).

YC;t � NegBinð _Ct; �CÞ

YD;t � NegBinð _Dt; �DÞ

To account for variation in daily reported cases and deaths, we fit the likelihood function

using a seven-day moving average of input data. The negative binomial dispersion parameters

(ϕC, ϕD) were estimated simultaneously, allowing for additional variance in the observed time

series.

Model parameters

Model parameters are shown in Table 1. The distributions of delays from infection to symp-

tom onset, symptom onset to severe disease, and severe disease to death are used in the model
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as fixed inputs and can be found in Table 2. S6 Fig shows the comparison of prior and poste-

rior distributions for key parameters listed in Table 1.

Model implementation

The model was implemented in R using the rstan package. [41] The model initializes 28 days

before the first reported case or death. Given the delay from infection to death, we chose 28

days to allow the model to generate the necessary number of new infections to plausibly result

in a death early in the observed time series. The model is fit to data from each county or state

separately. For state-level results (including Washington, DC) we estimated outcomes using a

Hamiltonian Monte Carlo algorithm. [42] The model ran for 3000 iterations (2000 burn-in)

on 4 chains, and 3000 samples (across 3 chains) from the posterior were included in these

results. Counties were fit using an optimization routine that reports the maximum a posteriori

estimate, which represents an estimate of the mode of the posterior distribution of the model

parameters.

Covidestim package

The covidestim package is a package for the R programming language, suitable for public as

well as research use. It can accommodate a number of data inputs. Users may enter a vector of

Table 1. Model parameters.

Model Parameter Mean, std. Deviation Distribution Type Source

Log of New Infections At T = 0 (A0) 0,10 Normal(0,10) prior Assumed

XR,t Spline Parameters 0,3 Normal(0,3) prior Assumed

First Derivative of XR,t Spline Parameters 0,0.5 Normal(0,0.5) prior Assumed

Second Derivative of XR,t Spline Parameters 0,0.1 Normal(0,0.1) prior Assumed

Serial Interval 5.8, 0.5 Gamma(129.1, 22.25) prior [31]

Probability of Developing Symptoms If Infected 0.59, 0.16 Beta(5.14, 3.53) prior [3,32–34]

Probability of Becoming Severely Ill If Symptomatic 0.09, 0.06 Beta(1.89, 20.00) prior [35,36]

Probability of Death for All Infections (national average) 0.005, 0.001 Beta(15.9, 3167) prior [28,29]

Probability of Death for Severe Infections 0.15, 0.03 Beta(28.2, 162.3) prior [36]

Additional Risk of Mortality Prior to May 1 2020 (apD
) 1.34, 0.39 Gamma(12.03, 8.99) prior Assumed

Rate Ratio, Diagnosis at Asymptomatic Vs. Symptomatic 0.1, 0.07 Beta(2,18) prior Assumed

Rate Ratio, Diagnosis at Symptomatic Vs. Severe 0.5, 0.22 Beta(2,2) prior Assumed

Probability of Diagnosis at Severe 0.72, 0.16 Beta(20,5) prior Assumed

Dispersion Parameter for Reported COVID-19 Cases (1/σ)2 0.8, 0.6 Half-Normal(0,1) prior [37]

Dispersion Parameter for Reported COVID-19 Deaths (1/σ)2 0.8, 0.6 Half-Normal(0,1) prior [37]

Scaling Factor: Time to Diagnosis Relative to Time in Symptomatic State 0.5, 0.22 Beta(2,2) prior Assumed

Scaling Factor: Time to Diagnosis Relative to Time in Severe State 0.5, 0.22 Beta(2,2) prior Assumed

https://doi.org/10.1371/journal.pcbi.1010465.t001

Table 2. Delay Distributions.

Delay Mean, std. Deviation Distribution Source

Infected to Symptomatic (Days) 5.6, 3.1 Gamma(3.41, 0.61) [38]

Symptomatic to Severe (Days) 7.5, 5.8 Gamma(1.72, 0.22) [39]

Severe to Death (Days) 9.1, 6.3 Gamma(2.10, 0.23) [40]

Case Reporting Delay 2.2, 1.5 Gamma(2.2, 1) Assumed

Death Reporting Delay 2.2, 1.5 Gamma(2.2, 1) Assumed

https://doi.org/10.1371/journal.pcbi.1010465.t002
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daily case counts and/or daily death counts. These data sources can be used in combination, so

long as they are the same length and cover the same time period; days with no observed events

may be represented with zeroes.

The package contains default model priors for progression probabilities and delays, detec-

tion probabilities and delays, and reporting delays associated with each data type. Users have

the ability to override these defaults, though we recommend that they only specify priors for

reporting delays; we do not recommend that users change default priors on parameters related

to the natural history of COVID-19.

Covidestim.org and code repositories

We produce daily estimates of COVID-19 infections and the effective reproduction number of

SARS-CoV-2 at the state- and county-levels at https://covidestim.org. To allow for daily pro-

duction of model estimates for all U.S. counties and states, we developed several tools. The cov-
idestim Docker image is a container which allows for model execution in any HPC or cloud

environment, and is the easiest way to begin using the covidestim R package. The covidestim-
sources repository enables automated, version-controlled, reproducible data cleaning of four

different case/death data sources by leveraging Git’s submodules feature. Finally, the dailyFlow
repository uses the Nextflow workflow engine [43] to clean the data, orchestrate 3200+ model

runs within three supported execution environments (local, HPC, cloud), and export the

results for research use and for web consumption. These repositories can be found at https://

github.com/covidestim, and contain extensive documentation.
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