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a b s t r a c t

During the outbreak of emerging infectious diseases, information dissemination dynamics significantly
affects the individuals’ psychological and behavioral changes, and consequently influences on the disease
transmission. To investigate the interaction of disease transmission and information dissemination
dynamics, we proposed a multi-scale model which explicitly models both the disease transmission with
saturated recovery rate and information transmission to evaluate the effect of information transmission
on dynamic behaviors. Considering time variation between information dissemination, epidemiological
and demographic processes, we obtained a slow-fast system by reasonably introducing a sufficiently
small quantity. We carefully examined the dynamics of proposed system, including existence and stabil-
ity of possible equilibria and existence of backward bifurcation, by using the fast-slow theory and directly
investigating the full system. We then compared the dynamics of the proposed system and the essential
thresholds based on two methods, and obtained the similarity between the basic dynamical behaviors of
the slow system and that of the full system. Finally, we parameterized the proposed model on the basis of
the COVID-19 case data in mainland China and data related to news items, and estimated the basic repro-
duction number to be 3.25. Numerical analysis suggested that information transmission about COVID-19
pandemic caused by media coverage can reduce the peak size, which mitigates the transmission dynam-
ics during the early stage of the COVID-19 pandemic.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Emerging infectious diseases, including SARS(2003),H1N1(2009)
andCOVID-19, havealwaysbeena threat tohumanhealths, bringing
a great disaster to human survival and economic development
(Crossley et al., 2020; Khardori, 2009; Smith, 2006; COV, 2020;
Thompson et al., 2003). In the era of information development, the
spread of infectious diseases has been accompanied by the rapid
spread of information (globally/locally available information). On
the one hand, the disease-related information, can make people
moreunderstand the infectious diseases, including the transmission
routes, infectivity and possible prevention and control measures, so
as for individuals to take effective protectivemeasures. On the other
hand, it may also cause panic and bring some social problems
(Jansen et al., 2003). Therefore, the dissemination disease-related
information consequently induce individuals’ behavioural changes,
which greatly affects disease transmission (Schaller, 2011; Funk
et al., 2010b; Frederik et al., 2016).
A number of ordinary differential equation models are used to
analyze the impact of individuals’ behaviour changes, such as
wearing face masks, keeping social distancing, etc, in response to
the dissemination disease-related information. Basically, there
are two types of studies considering the transmission of the
disease-related information: One is to hypothesize that behavioral
changes lead to a reduction in infection rate or contact rate, such as
modeling the infection rate as a function of the number of infected
individuals (Cui et al., 2008b; Song and Xiao, 2017; Wang and Xiao,
2014; Xiao et al., 2015; Xiao et al., 2013; Zhang et al., 2004; Zhou
et al., 2019) or number of news items (Yan et al., 2016; Song et al.,
2019), where news items are considered as a separate compart-
ment. In particular, the reduction in infection rate may be deter-
mined by the payoff gains using game theory (imitation
dynamics) (Frank, 2020; Reluga and Bergstrom, 2010), and the
reduction in contact rate may be induced by government shut-
down policies as well as individuals’ adherence to non-
pharmaceutical intervention (Pcja et al., 2021). The other is to fur-
ther divide the population into two types of compartments with or
without disease-related information (Amaral et al., 2021; Shannon
et al., 2015; Funk et al., 2010a; Samanta and Chattopadhyay, 2014;
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Samanta et al., 2013; Zhao et al., 2020), and those who knowing
information may subconsciously protect themselves from the dis-
ease and consequently reduce the contact rates or transmission
probability. Note that the shift between the disease-aware group
and disease-unaware group was modelled and determined by the
payoff gains for changing behaviors or not (Amaral et al., 2021;
Zhao et al., 2020). The second modelling approach actually pro-
vides a scheme of the explicit modelling the transmission of infor-
mation, which inevitably increases the dimension of the system
and brings much difficulties in theoretical analysis. How to nest
the dynamics of information transmission dynamics to the disease
transmission, and theoretically analyze the dynamical behavior
remain unclear and fall with in the scope of this study.

The COVID-19 pandemic has been threatening the public health
and caused worrying concern amongst the public and health
authorities (Cohen and Normile, 2020; Crossley et al., 2020;
Winskill et al., 2020; COV, 2020). As early as the beginning of
2020 when the outbreak of COVID-19 infection was reported in
Wuhan, China, massive news coverage and fast information flow
significantly generated profound psychological/behavioural
impacts on the public, which may influence the implementation
of public interventions (Shannon et al., 2015; Xiao et al., 2015;
Zhou et al., 2020). Actually, Wise et al. (2020) has testified the
importance of risk perception in early interventions during large-
scale pandemic. Many researchers (Amaral et al., 2021; Frank,
2020; Pcja et al., 2021; Zhao et al., 2020) also analyzed the impact
of behavioral changes induced by disease-related information on
COVID-19 transmission from different aspects, which all show that
behavioral changes have potential to curb the transmission of
COVID-19 infection. Further, Amaral et al. (2021) and Frank
(2020) showed the occurrence of multiple outbreaks, which is
the synergy between infection prevalence and prevalence-
induced interventions and behaviour changes. These models sup-
pose that the spread of the epidemic and transmission of informa-
tion occurs at the same time scale. However, the dissemination of
information among individuals is fast compared to the disease
spread. Considering the very differential time scales between infor-
mation dissemination and disease spread through a mathematical
modeling framework falls within another scope of this study.

Main purpose of this study is to propose the multi-scale model
which explicitly models both the disease transmission with satu-
rated recovery rate and information transmission, and further
divide different classes based on epidemiological characteristics
into two subclasses with different infection rates. Considering
the very time scales between information dissemination and epi-
demiological and demographic processes, we introduced a suffi-
ciently small quantity which is determined by population death
rate and media wading rate, on this basis, the dynamical behaviour
of the proposed model was analyzed using the theory of the slow-
fast system (Cen et al., 2014; Feng et al., 2013; Feng et al., 2015).
Moreover, the similarity between the basic dynamical behaviors
of the slow system and that of the full system is confirmed through
theoretical and numerical analyses. Finally, we parameterized the
proposed model on the basis of the COVID-19 confirmed cases data
in mainland China and data on news items at early period of
COVID-19 infection, and estimated the transmission risk. The influ-
ence of information transmission about disease caused by media
coverage on the peak size of the infection during the early stage
of the COVID-19 outbreak was further investigated. We emphasize
that this model is not an empirical description of the current
COVID-19 evolution. Instead, this is a general theoretical frame-
work that merges disease transmission and information dissemi-
nation in a single compartmental model and take into account of
time variation between information dissemination, epidemiologi-
cal and demographic process.
2

2. The model

We take a classic SIR-type model to illustrate how to model dis-
ease and information transmission. For this purpose, we divide the
population into susceptible individuals Sð Þ, infectious individuals
Ið Þ and removed individuals Rð Þ. Taking into account the transmis-
sion of information and the individual’s response to the informa-
tion acquired, the population is further divided into two groups:
one group is disease-unaware group S1; I1;R1ð Þ, the other is
disease-aware group S2; I2;R2ð Þ who get information about the dis-
ease and make behavioral changes to reduce their contacts or
improve protection interventions. We assume that the susceptible
individuals are infected by infectious individuals with a rate of b,
and become infectious, and the infected individuals are recovered
with a saturated function c

1þhIi
; i ¼ 1;2ð ) given the limitation of

medical resources (Zhou and Cui, 2011; Xu and Liu, 2008; Cui
et al., 2008a; Jinliang et al., 2012).

Let the variable B be the average number of news items related
to the outbreak, with which the disease-unaware individuals will
become the disease-aware individuals at the rate a, where a repre-
sents the probability of an individual making behavior changes
after receiving disease-related information, and parameter b, the
transmission probability that a susceptible individual becomes
infected after contacting with an infected individual. The disease-
aware individuals can also change to the disease-unaware individ-
uals with rate of q. It is assumed that the changing rate of the aver-
age number of daily news items depends on the number of infected
individuals with rate of q, and parameter d represents the sponta-
neous disappearance rate of media reports(media wading rate).
The model flow diagram is shown in Fig. 1 and the model equations
are as follows.

dS1
dt ¼ l� bS1I1 � rIbS1I2 � lS1 � aBS1 þ qS2
dS2
dt ¼ �rSbS2I1 � rIrSbS2I2 � lS2 þ aBS1 � qS2
dI1
dt ¼ bS1I1 þ rIbS1I2 � cI1

1þhI1
� lI1 � aBI1 þ qI2

dI2
dt ¼ rSbS2I1 þ rSrIbS2I2 � cI2

1þhI2
� lI2 þ aBI1 � qI2

dR1
dt ¼ cI1

1þhI1
� lR1 � aBR1 þ qR2

dR2
dt ¼ cI2

1þhI2
� lR2 þ aBR1 � qR2

dB
dt ¼ q I1 þ hI2ð Þ � dB

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð2:1Þ

Here we assume that the birth balances the death with the rate of l,
and mortality due to disease is not considered. Therefore, Sj; Ij, and
Rj; j ¼ 1;2 can be considered as the corresponding population pro-
portion. Parameters rI and rS (0 < rI;rS < 1) represent the reduc-
tion factors in transmission rate when infection occurs between
disease-unaware group and disease-aware group. In particular,
when a susceptible individual (S2) is infected by an infected individ-
ual (I2), then the reduction factor becomes rIrS. Parameter h repre-
sent the adjustment factor of the changing rate of the average
number of daily news item depends on the number of aware
infected individuals.

It is obvious that the solution of system (2.1) initiating from the
non-negative data are non-negative.
3. Dynamical analysis

3.1. Establishment of slow-fast system

We know that awareness spreads much faster than population
growth. That is, the parameters in model (2.1) have different time
scales. So we can use the theory of the slow-fast system to analyze
this model. We then reasonably assume that the birth (or death)



Fig. 1. Flow diagram for a SIRB model that links the disease transmission to information transmission.
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rate of population, l, is much less than the infection wading rate d.
To reduce the number of parameters, we assume h ¼ 1. Making
e ¼ l

d, then 0 < e � 1. Let

~t ¼ lt; ~a ¼ a
d
; ~q ¼ q

d
; ~q ¼ q

d
; ~c ¼ c

l
; ~b ¼ b

l
; ð3:2Þ

and for the sake of simplicity, the parameters of subsequent models
are still recorded as the original parameters, then the system on the
slow time scale (3.3) is established:

e dS1
dt ¼ �aBS1 þ qS2 þ e 1� bS1I1 � rIbS1I2 � S1½ �

e dS2
dt ¼ aBS1 � qS2 þ e �rSbS2I1 � rIrSbS2I2 � S2½ �

e dI1
dt ¼ �aBI1 þ qI2 þ e bS1I1 þ rIbS1I2 � cI1

1þhI1
� I1

h i
e dI2

dt ¼ aBI1 � qI2 þ e rSbS2I1 þ rSrIbS2I2 � cI2
1þhI2

� I2
h i

e dR1
dt ¼ �aBR1 þ qR2 þ e cI1

1þhI1
� R1

h i
e dR2

dt ¼ aBR1 � qR2 þ e cI2
1þhI2

� R2

h i
e dB

dt ¼ q I1 þ I2ð Þ � B

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð3:3Þ

Applying the transformation of time s ¼ t
e, then the system on

the fast time scale (3.4) is established:

dS1
ds ¼ �aBS1 þ qS2 þ e 1� bS1I1 � rIbS1I2 � S1½ �
dS2
ds ¼ aBS1 � qS2 þ e �rSbS2I1 � rIrSbS2I2 � S2½ �
dI1
ds ¼ �aBI1 þ qI2 þ e bS1I1 þ rIbS1I2 � cI1

1þhI1
� I1

h i
dI2
ds ¼ aBI1 � qI2 þ e rSbS2I1 þ rSrIbS2I2 � cI2

1þhI2
� I2

h i
dR1
ds ¼ �aBR1 þ qR2 þ e cI1

1þhI1
� R1

h i
dR2
ds ¼ aBR1 � qR2 þ e cI2

1þhI2
� R2

h i
dB
ds ¼ q I1 þ I2ð Þ � B

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð3:4Þ
3.2. Dynamical analysis on the fast subsystem

First, we analyze the dynamical behavior of the fast subsystem.
Let e ! 0, system (3.4) becomes:
3

dS1
ds ¼ �aBS1 þ qS2
dS2
ds ¼ aBS1 � qS2
dI1
ds ¼ �aBI1 þ qI2
dI2
ds ¼ aBI1 � qI2
dR1
ds ¼ �aBR1 þ qR2

dR2
ds ¼ aBR1 � qR2

dB
ds ¼ q I1 þ I2ð Þ � B

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

; ð3:5Þ

Let S ¼ S1 þ S2; I ¼ I1 þ I2;R ¼ R1 þ R2, from system (3.5), we get
S0 ¼ R0 ¼ I0 ¼ 0, namely, in the sense of this fast system considering
only information transmission, S; I and R are all constants. Then,
system (3.5) can be reduced to the following four-dimensional
system:

dS1
ds ¼ �aBS1 þ q S� S1ð Þ
dI1
ds ¼ �aBI1 þ q I � I1ð Þ
dR1
ds ¼ �aBR1 þ q R� R1ð Þ
dB
ds ¼ qI � B

8>>>>><>>>>>:
; ð3:6Þ

We can prove that this system has a unique positive
equilibrium

E�
fast ¼ S�1; I

�
1;R

�
1;B

�� �
; ð3:7Þ

where S�1 ¼ qS
aqIþq ; I

�
1 ¼ qI

aqIþq ;R
�
1 ¼ qR

aqIþq ; B
� ¼ qI. The stability of E�

fast

can also be proved as follows. By checking the Jacobian matrix of
(3.6) at E�

fast we know that the positive equilibrium is locally asymp-
totically stable. Considering that system (3.6) is a competitive sys-
tem, the positive equilibrium is then globally asymptotically
stable, and hence we have the following theorem.

Theorem 1. The positive equilibrium E�fast of the fast subsystem (3.6)
is globally asymptotically stable.
3.3. Dynamical analysis on the slow subsystem

Then we analyze the dynamical behavior of the slow subsystem.
Similarly, let S ¼ S1 þ S2; I ¼ I1 þ I2;R ¼ R1 þ R2, according to sys-
tem (3.3), we have:
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e dS
dt ¼ e 1� b S1 þ rS S� S1ð Þð Þ I1 þ rII2ð Þ � S½ �

e dI
dt ¼ e b S1 þ rS S� S1ð Þð Þ I1 þ rI I2ð Þ � cI1

1þhI1
� c I�I1ð Þ

1þh I�I1ð Þ � I
h i

e dR
dt ¼ e cI1

1þhI1
þ c I�I1ð Þ

1þh I�I1ð Þ � R
h i

e dB
dt ¼ qI � B

:

8>>>>>><>>>>>>:
Substituting E�

fast into the above system, and then the last equation

of the above system is e dB
dt ¼ 0, so the B is constant in the sense of

the slow system (3.3). Besides, B doesn’t appear in the other equa-
tions, so we only need consider the first three equation of this
model. Dividing both sides of it by e, we can get that:

dS
dt ¼ 1� bSIf Ið Þ � S
dI
dt ¼ bSIf Ið Þ � cIg Ið Þ � I
dR
dt ¼ cIg Ið Þ � R

:

8><>: ð3:8Þ

where

f Ið Þ ¼ rIaqI þ qð Þ rSaqI þ qð Þ
aqI þ qð Þ2

; g Ið Þ

¼ q
aqI þ qþ hqI

þ aqI
aqI þ qþ ahqI2

:

Considering the variable R tð Þ does not feed back to the variables S tð Þ
and I tð Þ, we only need to consider the first two equations of system
(3.8):

dS
dt ¼ 1� bSIf Ið Þ � S
dI
dt ¼ bSIf Ið Þ � cIg Ið Þ � I

:

(
ð3:9Þ

We can testify that X ¼ S; Ið Þ 2 Rþ
2 : Sþ I � 1

� �
is an attraction

region of system (3.9), and this system always has disease-free
equilibrium E0 ¼ 1;0ð Þ. We firstly examine the local stability of E0.

Theorem 2. The disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1. The bifurcation at R0 ¼ 1 is
backward when Ms > 0; the bifurcation at R0 ¼ 1 is forward when
Ms < 0 , that is to say when R0 ¼ 1; E0 is locally asymptotically stable
if Ms < 0 and unstable if Ms > 0, where

R0 ¼ b
cþ 1

;

Ms ¼ a1 � b2 ¼ ch� 2� rI � rsð Þaqb
q

� b2: ð3:10Þ
Proof. By calculating the spectral radius of the next generation
matrix for model (3.9), we can define and calculate the basic repro-
duction number R0.

The Jacobian matrix concerned with the linearization of system
(3.9) at E0 is

JE0 ¼
�1 �b

0 b� cþ 1ð Þ

� �
:

Therefore the eigenvalue of JE0 are k1 ¼ �1 and k2 ¼ cþ 1ð Þ R0 � 1ð Þ.
Then, when R0 < 1, all eigenvalues are negative; when R0 > 1; JE0
has a positive eigenvalue. Thus the disease-free equilibrium E0 of
system (3.9) is unstable if R0 > 1, and E0 is locally asymptotically
stable if R0 < 1.

When R0 ¼ 1, the Jacobian matrix at E0 has a zero eigenvalue.
Hence E0 is a nonhyperbolic equilibrium, and the linearization
cannot determine its stability. Here, we use center manifold
(Andronov et al., 1973; Shim, 1991) to analyze its stability.

Let x ¼ I and y ¼ S� 1, system (3.9) is transformed to
4

dx
dt ¼ Q1 x; yð Þ
dy
dt ¼ Q2 x; yð Þ ;

(
ð3:11Þ

where, Q1 x; yð Þ ¼ b yþ 1ð Þxf xð Þ � cxg xð Þ � x and Q2 x; yð Þ ¼ �y�
b yþ 1ð Þxf xð Þ. So, the stability of E0 of system (3.9) is equivalent to
the stability of 0; 0ð Þ of system (3.11). After the coordinate transfor-
mation x ¼ X and y ¼ Y � bX, it becomes the standard form

dx
dt ¼ F x; yð Þ
dy
dt ¼ �yþ G x; yð Þ ;

(
ð3:12Þ

where F x; yð Þ ¼ �2 y� bxþ 1ð Þxf xð Þ � cxg xð Þ � x, G x; yð Þ ¼ bF x; yð Þ�
b y� bxþ 1ð Þxf xð Þ þ bx, and still writing it in terms of x and y just
for the sake of simplicity. Algebraic calculations show that

F 0;0ð Þ ¼ 0; DF 0;0ð Þ ¼ 0;
G 0;0ð Þ ¼ 0; DG 0;0ð Þ ¼ 0:

Besides, functions F x; yð Þ and G x; yð Þ are both second differentiable
in the first quadrant. According to the Center Manifold Theorem,
system (3.11) has a locally C2-class central manifold
y ¼ c xð Þ kxk < dð Þ. Since the stability of the zero solution of a system
is often determined by the lower order terms, we can just consider
the lower order terms of Q1 x; yð Þ;Q2 x; yð Þ and c xð Þ.

Expanding the functions F x; yð Þ and G x; yð Þ in the field of 0;0ð Þ
through Taylor expansion, and substituting them into system
(3.12), we get
dx
dt ¼ a1x2 þ 2bxyþ � r3

� �
dy
dt ¼ �yþ b1x2 þ b2xyþ � r3

� � ;(
ð3:13Þ

where

a1 ¼ 2ch� 2 2�rI �rsð Þ aqq � 2b2;b1 ¼ ba1 þ 2 b2 þ 2�rI �rsð Þ aqq
� 	

;

b2 ¼ 2b bþ 1ð Þ and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Similarly, y ¼ c xð Þ is expanded as

y ¼ c xð Þ ¼ c0 þ c1xþ x2x2 þ c3x3 þ . . . ¼ R1
k¼0ckx

k:

Applying the invariance of center manifold, we have

� bx� R1
k¼0ckx

k � b1x2 � bx R1
k¼0ckx

k
� �þ o r3

� �
By comparing the coefficients of the two ends of the above equation
to the same power, we can get c0 ¼ 0; c1 ¼ 0; c2 ¼ b1, that is

y ¼ c xð Þ ¼ b1x2 þ o x3
� �

:

Substituting it into the first equation of system (3.13), and we have

dx
dt

¼ 2Msx2 þ o x3
� �

where

Ms ¼ a1
2

¼ ch� 2� rI � rsð Þaqb
q

� b2:

So, the bifurcation at R0 ¼ 1 is backward when Ms > 0; the
bifurcation at R0 ¼ 1 is forward when Ms < 0 (Broer, 1995;
Castillo-Chavez and Song, 2004), that is to say, when R0 ¼ 1; E0 is
locally asymptotically stable if Ms < 0 and unstable if Ms > 0. This
completes the proof. h
3.3.1. Global stability on the slow subsystem (3.8) with linear recovery
term

Note that system (3.8) (or (3.9)) has high nonlinearity and it is
complicated to calculate the endemic state. Given the complexity,
we initially consider the special case where the recovery term is
linear (i.e., h ¼ 0).
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Theorem 3. Suppose h ¼ 0, the slow system (3.9) has a unique
positive equilibrium for R0 > 1, and further the unique positive
equilibrium is globally asymptotically stable for R0 > 1 and
rI þ rS >

1
2.
Proof. When h ¼ 0, if the slow system (3.9) has a positive equilib-
rium, denoted by S�; I�ð Þ, then we have

1� bS�I�f I�ð Þ � S� ¼ 0
bS�I�f I�ð Þ � cþ 1ð ÞI� ¼ 0

:

�
ð3:14Þ

From the second equation of (3.14), we have S� ¼ cþ1
bf I�ð Þ. Substituting

into the first equation of (3.14) and simplifying yield

f I�ð Þ ¼ 1
R0 � bI�

ð3:15Þ

Let G Ið Þ ¼ 1
R0�bI, if the functions f Ið Þ and G Ið Þ intersect at 0;1ð Þ,

there is a I� 2 0;1ð Þ that satisfies Eq. (3.15), that is to say, the slow
system (3.9) has a positive equilibrium. Algebraic analysis shows
that f Ið Þ decreases monotonically at 0;1½ �, and G Ið Þ increases mono-

tonically at 0; 1
cþ1

h 	
and 1

cþ1 ;1
� i

. Considering that f Ið Þ > 0 for

I 2 0;1½ �, and G Ið Þ > 0 for I 2 0; 1
1þc

h 	
but G Ið Þ < 0 for I 2 1

1þc

� i
, we

only need to analyze the intersection of function f Ið Þ and G Ið Þ at

0; 1
1þc

h 	
. We can testify that

f 0ð Þ < G 0ð Þ () R0 < 1;
f 0ð Þ ¼ G 0ð Þ () R0 ¼ 1;
f 0ð Þ > G 0ð Þ () R0 > 1:

Combining the monotonicity of f Ið Þ and G Ið Þ and
limI! 1

1þc
G Ið Þ � f Ið Þ ¼ þ1, we have that f Ið Þ and G Ið Þ have a unique

intersection at [0, 1] when R0 > 1; f Ið Þ and G Ið Þ have no intersection
at [0, 1] when R0 < 1; and when R0 ¼ 1, the abscissa of the only
intersection point of f Ið Þ and G Ið Þ is 0, i.e., I ¼ 0, which is not posi-
tive. So that, when h ¼ 0, if R0 > 1, the slow system has a unique

local equilibrium E1 ¼ S�; I�ð Þ ¼ 1
R0

1
f I�ð Þ ; I

�
� 	

, where I� is the only

intersection of f Ið Þ and G Ið Þ; if R0 � 1, there is no local equilibrium.
To prove the stability of the unique local equilibrium E1, we

consider a Lyapunov function

V S; Ið Þ ¼ S� S� ln
S
S�

þ I � I� ln Ið Þð Þ:

Then we have

dV
dt

¼ 1� S� S� � S�

S
� cþ 1ð ÞI þ bS�If Ið Þ � bSI�f Ið Þ þ cþ 1ð ÞI�:

Recalling that bS�I�f I�ð Þ þ S� ¼ 1 and cþ 1 ¼ bS�f I�ð Þ, we obtain

dV
dt

¼ bS�I�f I�ð Þ 3� S�

S
� S
S�

f Ið Þ
f I�ð Þ �

f I�ð Þ
f Ið Þ

� 

þ bS�I�f I�ð Þ If Ið Þ

I�f I�ð Þ �
I
I�
� 1þ f I�ð Þ

f Ið Þ
� 


þ 2S� � S� S�2

S
:

Let m Ið Þ ¼ If Ið Þ, we obtain

m0 Ið Þ ¼ rIrSa3q3I3 þ 3rIrSa2q2qI2 þ 2 rI þ rSð Þ � 1½ �aqq2I þ q3

aqI þ qð Þ3
> 0

for all I > 0 and rI þ rS >
1
2. Hence, we have

f I�ð Þ � f Ið Þ½ � I�f I�ð Þ � If Ið Þ½ � � 0;

where the equality holds only when I ¼ I�, thus
5

If Ið Þ
I�f I�ð Þ �

I
I�
� 1þ f I�ð Þ

f Ið Þ ¼ I
I�
� If Ið Þ
I�f I�ð Þ

� 

I�f I�ð Þ
If Ið Þ � 1

� 

� 0:

Furthermore, we have

S�

S
þ S
S�

f Ið Þ
f I�ð Þ þ

f I�ð Þ
f Ið Þ P 3; Sþ S�2

S
P 2S�

for all S; I > 0, because the arithmetic mean is greater then or equal
to the geometric mean. Therefore, dV

dt � 0 holds for S; I > 0. In addi-
tion, dV

dt ¼ 0 holds only when S ¼ S� and I ¼ I�, and E0 is the only
equilibrium of this systems on this plane. Therefore, the local equi-
librium E1 is globally asymptotically stable when h ¼ 0 and
rI þ rS >

1
2. This completes the proof. h
Theorem 4. Suppose h ¼ 0, the disease-free equilibrium E0 of system
(3.9) is globally asymptotically stable for R0 6 1, and it is unstable for
R0 > 1.
Proof. First, according Theorem 2, we have that the disease-free
equilibrium E0 is unstable if R0 > 1, and E0 is locally asymptotically
stable if R0 < 1. Especially, when R0 ¼ 1 and h ¼ 0, we have Ms < 0
holds true, which indicates E0 is also locally asymptotically stable
for R0 ¼ 1.

To prove global stability of E0 when R0 � 1 , let’s consider a
Lyapunov function
V ¼ I þ S� ln S:

In case of system (3.9), this Lyapumov function satisfies

dV
dt

¼ 2� Sþ 1
S

� �
þ cþ 1ð ÞI R0f Ið Þ � 1ð Þ:

Since the arithmetical mean is greater than or equal to the geomet-
rical mean, the function 2� Sþ 1

S

� �
is nonnegative for all S; I > 0.

Consider the monotonicity of f Ið Þ; f Ið Þ 6 f 0ð Þ ¼ 1, then
R0f Ið Þ � 1 � 0 for all 0 6 I 6 1. So that dV

dt � 0, for all S; Ið Þ 2 X.
Besides, dV

dt ¼ 0 holds only when S ¼ 1 and I ¼ 0, and E0 is the only
equilibrium of this systems on this plane. Therefore the disease-
free equilibrium E0 is globally asymptotically stable when R0 � 1.
This completes the proof. h

It can be seen from the above analysis that when the recovery
term is linear, the basic reproduction number actually act as the
threshold to distinguish whether the disease dies out or not for
the slow system.

3.3.2. Global stability on the slow subsystem (3.8) with nonlinearly
saturated recovery term

When the recovery term is nonlinearly saturated, that is h– 0,
with help of numerical studies we investigate the existence and
stability of positive equilibrium of system (3.9) (or (3.8)). Let

Ê1 ¼ bS;bI� 	
be a positive equilibrium of system (3.9). From system

(3.9), we can obtain

bS ¼
1þ cg bI� 	
bf bI� 	

and bI is a solution of the equation A Ið Þ ¼ B Ið Þ for 0 < bI < 1, where

A Ið Þ ¼ 1
1þ rg Ið Þ ; B Ið Þ ¼ 1

bf Ið Þ þ I:

Then A 0ð Þ ¼ 1
1þr ; B 0ð Þ ¼ 1

b ;A 1ð Þ ¼ 1
1þrg 1ð Þ < 1;B 1ð Þ ¼ 1

bf 1ð Þ þ 1 > 1. Let

H Ið Þ ¼ A Ið Þ � B Ið Þ, then H 1ð Þ ¼ A 1ð Þ � B 1ð Þ < 0.



Fig. 2. (a): The curves of functions A Ið Þ and B Ið Þ; (b): a partial magnification of the graph on (a), where a ¼ 7:8964;q ¼ 0:6786;h ¼ 20:6671; q ¼ 9:2084; c ¼ 8:3654;
rS ¼ 0:9312;rI ¼ 0:7287;b ¼ 8:1950.
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When R0 > 1, we get H 0ð Þ ¼ A 0ð Þ � B 0ð Þ ¼ 1
b R0 � 1ð Þ > 0. Comb-

ing H 1ð Þ < 0, according to the zero point theorem, we get that H Ið Þ
has at least one zero point on 0;1½ �, i.e., the slow system (3.9) has at
least one endemic equilibrium.

When R0 < 1;H 0ð Þ < 0. Denote Hmax ¼ max
06I61

H Ið Þf g. When

Hmax < 0, equation A Ið Þ ¼ B Ið Þ has no solution on 0;1½ �, so the slow
system (3.9) has no positive equilibrium. For Hmax > 0, there must

be a eI 2 0;1ð Þ, such that H eI� 	 > 0, so H 0ð ÞH eI� 	 < 0 and

H eI� 	H 1ð Þ < 0. According to the zero point theorem, H Ið Þ has at

least two zero point, one is in the interval of 0;eI� 	
and the other

in eI;1� 	
, i.e., the system has at least two positive equilibriums.

From what has been shown above, we have the following
results.

Theorem 5. When R0 < 1, the slow subsystem (3.9) has at least two
positive equilibria for Hmax > 0; there is no positive equilibrium for the
slow subsystem (3.9) for Hmax < 0. When R0 > 1, the slow subsystem
(3.9) has at least one positive equilibrium.

We numerically plot the curve of functions A Ið Þ and B Ið Þ with
respect to I as shown in Fig. 2. It shows that there are two intersec-
tion points of functions A Ið Þ and B Ið Þ, which indicates this system
has two positive equilibriums, that is a case of Theorem 5 for
R0 < 1, and Hmax > 0. Further, we have the following dynamic
behavior of the slow system in this case.

Theorem 6. When R0 < 1 and Hmax < 0, the disease-free equilibrium
E0 is globally asymptotically stable.
Proof. Let’s consider a Lyapunov function

V ¼ I þ Sþ
Z I

0

1
bsf sð Þds:

In the case of system (3.9), this Lyapumov function satisfies

dV
dt ¼ 1� 1þ cg Ið Þ½ �I � 1þcg Ið Þ

bf Ið Þ

¼ 1þ cg Ið Þ½ � 1
1þcg Ið Þ � I þ 1

bf Ið Þ

� 	h i
:

6

If Hmax < 0, then we have 1
1þcg Ið Þ < I þ 1

bf Ið Þ for I 2 0;1½ � , indicating
dV
dt � 0. And dV

dt ¼ 0 holds only when S ¼ 1 and I ¼ 0. Moreover, we
know that E0 is locally asymptotically stable for R0 < 1, then we
can get the disease-free equilibrium E0 is globally asymptotically
stable. That completes proof. h

To numerically show the dynamic behaviors, we plot solutions
of the slow system (3.9). Fig. 3(a) shows solutions of the slow sys-
tem (3.9) for R0 < 1 and Hmax > 0, which illustrates that the solu-
tions with lower initial values I 0ð Þ converge to E0, whereas the
solutions with larger initial values I 0ð Þ converge to a positive equi-
librium. Fig. 3(c) shows that if there is only one positive equilib-
rium for R0 > 1, solutions with arbitrary initial values I 0ð Þ
converge to the positive equilibrium.

Remark 1. When h– 0;R0 is no longer the threshold to distin-
guish whether the disease dies out or not. And the slow subsystem
(3.9) may occur backward bifurcation according to Theorem 2.
However, Ms, (3.10), is related to information transmission
parameters, and

@Ms

@rI
> 0;

@Ms

@rS
> 0;

@Ms

@q
> 0

@Ms

@a
< 0;

@Ms

@q
< 0;

so Ms may decrease to below 0 by increasing a or q, or decreasing
rI;rS or q. That indicates we can increase the information transmis-
sion rate, the changing rate of the coverage number of daily news
items, or decrease the adjustment factors of transmission rate, the
rate of loss consciousness to avoid the occurrence of backward
bifurcation.

It is also known that the dynamics of the fast and slow subsys-
tem are useful to gain insights into the dynamics of the full system
by applying tools in perturbation theory (Fenichel, 1979; Gandolfi
et al., 2015).

4. Dynamical analysis of the full system

In this chapter, we begin by analyzing the dynamic behaviors of
the full system (2.1) and examine the similarities between these
dynamic behaviors of the full system and the slow system (3.8)
(or (3.9)). Since variables R1 and R2 are decoupled with the other



Fig. 3. (a): Solutions to the slow system (3.9),where a ¼ 7:8964;q ¼ 0:6786;h ¼ 20:6671; q ¼ 9:2084; c ¼ 8:3654;rS ¼ 0:9312;rI ¼ 0:8287; b ¼ 8:2950 and R0 ¼ 0:8857. (b):
Solutions to the full system (4.16),where d ¼ 0:0934;l ¼ 0:0072, the value of other parameters after parameter transformation (3.2) is the same as the value of (a), and
R0f ¼ 0:8857;Rhf ¼ 0:1480. (c): Solutions to the slow system (3.9), where a ¼ 8:5316;q ¼ 0:7068;h ¼ 21:1662; q ¼ 9:7470; c ¼ 6:8296;rS ¼ 0:9501;rI ¼ 0:7330;b ¼ 8:6402
and R0 ¼ 1:1035. (d): Solutions to the full system (4.16), where d ¼ 0:0949;l ¼ 0:0077, the value of other parameters after parameter transformation (3.2) is the same as the
value of (c) and R0f ¼ 1:1035 > 1;Rhf ¼ 0:1671.
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five equations of model (2.1), we only need to consider the follow-
ing model:

dS1
dt ¼ l� bS1I1 � rIbS1I2 � lS1 � aBS1 þ qS2
dS2
dt ¼ �rSbS2I1 � rIrSbS2I2 � lS2 þ aBS1 � qS2
dI1
dt ¼ bS1I1 þ rIbS1I2 � cI1

1þhI1
� lI1 � aBI1 þ qI2

dI2
dt ¼ rSbS2I1 þ rSrIbS2I2 � cI2

1þhI2
� lI2 þ aBI1 � qI2

dB
dt ¼ q I1 þ I2ð Þ � dB

8>>>>>>>><>>>>>>>>:
ð4:16Þ

We can testify that the feasible region of model (4.16) is

C ¼ S1; S2; I1; I2;Bð Þ 2 R5
þ : 0 < S1 þ S2 þ I1 þ I2 6 1; 0 < B 6 q

d

n o
;

which is a positively invariant set. A disease-free equilibrium
E0f ¼ 1; 0;0;0; 0ð Þ is always feasible. By calculating the spectral
radius of the next generation for model (4.16), we get the basic
reproduction number of this model is R0f ¼ b

lþc, where R0f is the

expected number of secondary cases produced, in a completely sus-
ceptible population, by a typical infective individual (Dreessche and
Watmough, 2002).

Similarly we can investigate the stability of the disease-free
equilibrium E0f , the bifurcation at E0f for R0f ¼ 1, and we can also
7

analyze the persistence of the full system (4.16) for R0f > 1. In
the following we only give the main conclusions and the detailed
proof processes are given in Appendix A.

Theorem 7. If R0f < 1, the disease-free equilibrium E0f of system
(4.16) is locally asymptotically stable; if R0f > 1, the disease-free
equilibrium E0f is unstable. The bifurcation at R0f ¼ 1 is backward if
Mf > 0, and the bifurcation is forward if Mf < 0, where

Mf ¼ hc� b2

l

 !
d
q
lþ qð Þ bþ qð Þ

� 2� rI � rSð Þqþ 1� rIð Þlþ 1� rIrSð Þb½ �ab: ð4:17Þ
Further, if R0f < Rhf , the disease-free equilibrium E0f of system (4.16) is

globally asymptotically stable, where Rhf ¼ l 1þhð Þþc
lþcð Þ 1þhð Þ.
Theorem 8. When R0f > 1, system (4.16) is uniformly persistent, that
is, there is a constant g > 0, and for all initial values

S1 0ð Þ; S2 0ð Þ; I1 0ð Þ; I2 0ð Þ; B 0ð Þð Þ 2 Int R5
þ

� 	
, the solution of the system

satisfies

lim inf
t!1

S1 tð Þ; S2 tð Þ; I1 tð Þ; I2 tð Þ;B tð Þð Þ > g;g;g;g;gð Þ:
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It is worthy noticing the similarity between the dynamic behav-
iors of the slow system (3.9) and the full system (4.16). The basic
reproduction number R0f of the full model (4.16) and R0 of the slow
model (3.9) are equivalent, because the parameters in model (3.9)
are obtained by parameter transformation (3.2). On the basis of
Theorems 2 and 7, we can conclude that the locally stability of
disease-free equilibrium E0 of the slow subsystem (3.9) is equiva-
lent to the locally stability of disease-free equilibrium E0f of the full
system (4.16) except the situation R0 ¼ R0f ¼ 1, where bifurcation
may occur, which will be discussed later.
Fig. 4. (a):The reported cumulative number of confirmed cases and the average daily num
January 15 to 29, 2020. The circles in (b) and (c) represent the cumulative number of
respectively. The curves are the best fitting curves of model (4.16) to these data.

8

When the recovery term is linear, the basic reproduction num-
ber actually act as the threshold to distinguish whether the disease
dies out or not for the slow system and the full system on the basis
of Theorem 4 and Theorem 7. When h– 0, the basic reproduction
number R0 (or R0f ) is no longer the threshold to distinguish
whether the disease dies out or not for the slow system (or the full
system). The full system occurs backward bifurcation at E0f for
R0f ¼ 1 and Mf > 0 on the basis of Theorem 7; the slow system
occurs backward bifurcation at E0 for R0 ¼ 1 and Ms > 0 on the
basis of Theorem 2. It is interesting to notice that the conditions
ber of media items from January 10 to 29. (b) and (c): Data fitting for the data from
confirmed cases, the average daily number of media items, from January 10 to 29



Table 1
Estimated initial values of variables and parameters for system (4.16).

Variables Description Initial value Resource

S1 0ð Þ Unconscious susceptible population 0.9999 LS
S2 0ð Þ Conscious susceptible population 739=11081000 Zhou et al. (2020)
I1 0ð Þ Unconscious infected population 1:0000� 10�5 LS

I2 0ð Þ Conscious infected population 41=11081000 Data
B Media items 16.3 Data

Parameters Description Value Resource
l Natural death rate/Birth rate 0 Assumed
b Probability of transmission from I1 to S1 0.4555 LS
a Propagation rate of consciousness 2:0981� 10�5 LS

q The rate of losing consciousness 0.0010 LS
c Recovery rate of infected individuals 0.1400 LS
q Media reporting rate of number of infected population 5:1753� 106 LS

h The adjustment factor of media reporting rate of number of I2 1 Assumed
d The spontaneous disappearance rate of media reports 0.5000 LS
h Non-negative parameter 4:9891� 10�12 LS

rI the reduction factors in transmission rate when infection occurs between I2 and S1 0.2398 LS
rS the reduction factors in transmission rate when infection occurs between I1 and S2 0.2398 LS
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for branching in the slow system (3.9) (Ms > 0) and the full system
(4.16) (Mf > 0) are also equivalent on the basis of the time varia-
tion between information dissemination and epidemiological and
demographic process (e ¼ l

d � 1). Especially, Mf is related to infor-
mation transmission parameters, and

@Mf

@rI
> 0;

@Mf

@rS
> 0;

@Mf

@a
< 0;

and

@Mf

@q
< 0;

@Mf

@q
> 0

for Mf > 0, so we may also decrease Mf to below 0 by increasing a
or q, or decreasing rI;rS or q, which are similar with the situations
of the slow system (3.9) on the basis of Remark 1. See Appendix B
for details. Again we can increase the information transmission rate,
the changing rate of the coverage number of daily news items, or
decrease the adjustment factors of transmission rate, the rate of loss
of consciousness to avoid the occurrence of backward bifurcation.

The disease-free equilibrium E0 of the slow system (3.9) is glob-
ally asymptotically stable for R0 < 1 and Hmax < 0 on the basis of
Theorem 6. The disease-free equilibrium E0f of the full system
(4.16) for R0f < Rhf is globally asymptotically stable on the basis
of Theorem 7. It is easy to testify that if R0f < Rhf , we can conclude
Hmax < 0 holds true. In fact, if R0f < Rhf , and applying the parameter
transformation (3.2) on this, similarly, the parameters of subse-
quent models are still recorded as the original parameters, we

can get b
1þc <

1þc 1
1þh

1þc , then 1
b >

1
1þc 1

1þh
. Since both f Ið Þ and g Ið Þ are mono-

tonically decreasing in 0;1½ �, we get

H Ið Þ ¼ A Ið Þ � B Ið Þ ¼ 1
1þ cg Ið Þ �

1
bf Ið Þ þ I
� 


6 1
1þ cg 1ð Þ �

1
bf 0ð Þ

¼ 1
1þ cg 1ð Þ �

1
b
<

1
1þ cg 1ð Þ �

1
1þ c 1

1þh

:

Due to 1
1þh < g 1ð Þ, we have H Ið Þ < 0 for I 2 0;1½ �, which implies

Hmax < 0. However, Hmax < 0 does not necessarily mean R0f < Rhf

holds true. Moreover, we only obtained the uniform persistence
for R0f > 1, we do not know the existence of endemic states for
Rhf < R0f < 1, which indicates that we got the relatively strict/
strong condition under which the disease-free equilibrium of the
full system is globally asymptotically stable. This comparison
implies that based on fast-slow system theory we can obtain the
detailed dynamics of the slow system, which represents the dynam-
9

ics of the full system, while for the full system, it is challengeable to
examine the complex and rich dynamics due to high dimension.
Hence, it is reasonable to examine the dynamics of the slow system
rather than directly investigating the full system.

Numerical simulations are used to further illustrate the similar-
ity of dynamic behavior between the full system (4.16) and the
slow system (3.9). To illustrate the existence of the backward
bifurcation for the full system and the slow system, we plot solu-
tions of the slow system and the full system with equivalent
parameters for Rhf < R0f ¼ R0 < 1 and Hmax > 0, shown in Fig. 3(a)
and (b). It shows that solutions with relatively low initial values
of I 0ð Þ converge to 0, whereas solutions with relatively large initial
values of I 0ð Þ converge to a similar positive level of infection pro-
portion both for the slow system and the full system. It’s worth
noting that solutions of two systems converge with very different
convergent speed. In particular, solutions of the slow subsystem
quickly converge to the equilibrium, while solutions of the full sys-
tem slowly converge. Moreover, Fig. 3(c) and (d) show that for
R0f > 1 (or R0 > 1), both solutions of the slow system and the full
system converge to almost the same positive equilibrium but with
very different convergent speed.
5. A case study

In this subsection we tried to parameterize the proposed model
with surveillant data and news items data on early stage of COVID-
19 infection in mainland China, and numerically investigate the
media impact of COVID-19 infection. We obtained the reported
cumulative number of confirmed COVID-19 cases in China from
the National Health Commission of the People’s Republic of China
(Data). Although the first case was reported in December 2019, a
new confirmed case was not reported until 10 January 2020, we
used data from 10 January to 29 January, 2020, as shown in Fig. 4
(a). The case data was released and analyzed anonymously. We
also obtained daily weighted average number of media items from
7 major websites during January 10–29, 2020, as in Zhou et al.
(2020), which is shown in Fig. 4(a).

In the initial stage of the epidemic, we assume that the total
population is Wuhan residents, the conscious susceptible popula-
tion is the isolated susceptible population, the conscious infected
population is the reported confirmed population and no individual
was recovered. We further assume l ¼ 0 because of the short epi-
demic time scale in comparison to the demographic time scale. We
used the Least Square Method to fit the parameters in model (4.16)
to study the effects of information transmission about disease
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caused by media coverage on COVID-19 infection. The fitting
results are shown in Fig. 4(b) and (c), and the estimated parameter
values with sources of other parameters are given in Table 1. Based
on the above-mentioned parameter estimations, we then calcu-
lated R0f as 3.25. Note that this estimation agrees with those esti-
mations based on likelihood-based methods (Imai et al., 2020; Li
et al., 2020), while it is less than those estimated levels based on
the dynamic models without considering media impact (Tang
et al., 2020; Ying et al., 2020). This implicitly indicates information
transmission greatly leads to the new infections decline by influ-
encing individuals’s behaviour changes.

To further examine the possible impact of information trans-
mission on disease infections, we plotted the prevalence
(I1 tð Þ þ I2 tð Þ) with different values of a; q;rI and q, as shown in
Fig. 5 and the contour plots of the peak size of the outbreak
(I1 tð Þ þ I2 tð Þ) with respect to a;q and rI and q, as shown in Fig. 6,
to examine the dependence of the peak size of the infection on
information transmission. Those all show that the larger a or q is
(or the smaller q or rI is), the lower the peak size is. It indicates
that increasing the information transmission rate (a), the strength-
ening the intensity of media report (q), or decreasing the loss rate
of consciousness (q), the adjustment factor for transmission rate
(rI), will effectively reduce the peak size. This illustrates that infor-
Fig. 5. Variation in the total number of infected individuals (I1 tð Þ þ I2 tð Þ) with parameter
shown in Table 1.
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mation transmission can mitigate the COVID-19 transmission,
which calls for the importance of media coverage when facing
the outbreak of emerging infectious diseases like COVID-19
pandemic.

Note that directly fitting the proposed model to data may
induce a bias since our model does not consider the infection
induced by the asymptomatic infected individuals, which were
proven to be extremely important for epidemiology of COVID-19
(Amaral et al., 2021; Castro et al., 2020). We then simply extend
our model by including a compartment of asymptomatic infected
individuals (see detailed model equations in C) and data fitting
gives the similar parameter estimations and a slightly great basic
reproduction number as 3.30. This indicates that ignoring asymp-
tomatic individuals may underestimate the COVID-19 infection.
We mention here that the inclusion of asymptomatic individuals
leads to a higher dimensional system, which is difficult to analyze
theoretically, and we leave this for further study.
6. Conclusion and discussion

Media coverage has great influence on both information trans-
mission about disease and the propagation of the infectious dis-
ease. It’s important to understand the effects of information
s a (a), q (b), rI (c) and q (d), respectively. The corresponding parameter values are



Fig. 6. Contour plots of the peak size of the outbreak I1 tð Þ þ I2 tð Þ with respect to a
and p (a), and rI and q (b), respectively. The corresponding parameter values are
shown in Table 1.
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transmission caused by the media coverage during epidemic, so as
to propose public health communication strategies and disease
mitigation measures. To investigate the interaction of information
transmission and disease transmission, we proposed the multi-
scale model which explicitly models both the disease transmission
with saturated recovery rate and information transmission and
used the theory of the slow-fast system to analyze this model.
When the recovery term is linear, we obtained the conditions for
the existence and stability of a positive equilibrium theoretically,
and analysed the impact of disease transmission on the prevalence
of infection through numerical simulation. When the recovery
term is nonlinearly saturated, R0 is no longer the threshold to dis-
tinguish whether an outbreak takes out or not, and our model may
occur a so-called backward bifurcation.

Especially, we establish slow-fast system by introducing a suffi-
ciently small quantity (ld � 1), which is determined by death rate
and media wading rate, on the basis of slow dynamics of demo-
graphic process (associated with relatively small value of l) and
fast dynamics of information dissemination (associated with rela-
tively large value of d), which is more natural and reasonable com-
pared with the method in literature (Samanta and Chattopadhyay,
11
2014), introducing an infinitely small quantity directly. Besides, in
this paper, the dynamic behaviors of the slow system and the full
system are both analyzed, which are similar, but the convergent
speed towards the equilibrium is different. This indicates that,
for this multi-scale model (if complicated), the basic dynamic
behavior can be obtained just by simulating the slow system with
data, which can save calculational costs and obtain the relatively
detailed theoretical results.

In this paper, through analyzing the existence and stability of
positive equilibriums and the existence of backward bifurcation,
we confirmed that when the recovery term is linear, the informa-
tion transmission does not change the outbreak of disease, but
affects the prevalence of infection; when the recovery term is non-
linearly saturated, backward bifurcation may occur, but the back-
ward bifurcation can be avoided by controlling information
transmission. Further, we parameterized the proposed model on
the basis of the COVID-19 case data and data on news items in
mainland China, and estimated the basic reproduction number to
be 3.25. Numerical analyses suggest improving information trans-
mission about disease induced by media coverage is an effective
way to mitigate COVID-19 infection by reducing peak size during
the early stage of the COVID-19 pandemic. It is worth noting that
although the proposed nonlinear recovery function can describe
the saturated effect due to the limitation of medical resources, it
may not represent the case that people would die more likely once
the health care system gets overwhelmed (say SARS-CoV-2 infec-
tion in some country). We then need to extend it by further
proposing the piecewise smooth function to represent, say, there
is a threshold for the number of infected individuals Ic such that
saturated recovery function is feasible for I tð Þ < Ic , while linear
recovery function is satisfied for otherwise. The piecewise smooth
function will bring the difficulties in analyzing the global dynamics
of the system and we leave this for future work.
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Appendix A. The proof of all Theorem in Section 4

A.1. The proof of Theorem 7

Proof. By checking the Jacobian matrix at E0f , we can examine the
local stability of the disease-free equilibrium E0f .

Then we analyze the bifurcation at R0f ¼ 1. Let

X ¼ S1; S2; I1; I2;Bð ÞT ¼ x1; x2; x3; x4; x5ð ÞT , where :ð ÞT is the transpose
of the matrix, so model (4.16) can be denoted as
_X ¼ F ¼ f 1; f 2; f 3; f 4; f 5ð ÞT .

The linearization matrix of model (4.16) around E0f when
R0f ¼ 1 is
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JE0f ¼

�l q �b �rIb �a
0 �l� q 0 0 a
0 0 0 rIbþ q 0
0 0 0 �c� l� q 0
0 0 q q �d

0BBBBBB@

1CCCCCCA:

It is clear that 0 is a simple eigenvalue of JE0f , and all other eigenval-

ues are negative, so E0f is the non–hyperbolic equilibrium point. The
left and right eigenvalues of JE0f are denoted as v and w respectively,

where v ¼ v1;v2;v3; v4;v5ð ÞT ;w ¼ w1;w2;w3;w4;w5ð ÞT . Algebraic
calculations show that

v1 ¼ 0; v2 ¼ 0;v3 ¼ cþ lþ q
rIbþ q

v4; v5 ¼ 0;

w1 ¼ � bd
ql

þ a
lþ q

� �
w5;w2 ¼ a

lþ q
w5;w3 ¼ d

q
w5;w4 ¼ 0;

where, w5 > 0. One can choose w5 and v4 satisfy:

v4w5 ¼ cþ lþ q
rIbþ q

d
q

� ��1

> 0;

such that vw ¼ 1.
Let ĉ ¼ b� l and / ¼ ĉ� c, then R0 < 1 if and only if / < 0.

According to Theorem 4.1 in Castillo-Chavez and Song (2004), the
local dynamic behavior near R0f ¼ 1 is determined by the following
constants a and b:

a ¼
X5
i;j;k¼1

vkwiwj
@2f k
@xi@xj

E0f ; 0
� �

;

b ¼
X5
i;k¼1

vkwi
@2f k
@xi@/

E0f ;0
� �

:

In terms of a and b, we just have to find the nonzero partial deriva-
tive of f 3 and f 4 at E0f when R0f ¼ 1 and / ¼ 0. Algebraic calcula-
tions show that

@2f 3
@x1@x3

E0f ;0
� � ¼ b;

@2f 3
@x1@x4

E0f ;0
� � ¼ rIb;

@2f 3
@x3@x5

E0f ; 0
� � ¼ �a;

@2f 3
@2x3

E0f ;0
� � ¼ 2hc;

@2f 4
@x2@x3

E0f ; 0
� � ¼ rSb;

@2f 4
@x2@x4

E0f ;0
� � ¼ rSrIb;

@2f 4
@x3@x5

E0f ;0
� � ¼ a;

@2f 4
@2x4

E0f ;0
� � ¼ 2hc;

@2f 3
@x3@/

E0f ;0
� � ¼ 1

h2 ;
@2f 3
@x4@/

E0f ; 0
� � ¼ 1

h2 :

All other partial derivative of f 3 and f 4 are zero. So, we can get that

b ¼ 1

h2 v3w3 ¼ 1

h2

d
q
cþ lþ q
rIbþ q

v4w5 > 0;
a ¼ v3 2bw1w3 � 2aw3w5 þ 2hcw2
3

� �þ v4 2rsbw2w3 þ 2aw3w5ð Þ ¼ 2
d

q rIbþ qð Þ lþ qð Þv4w2
5

hc� b2

l

 !
d
q
lþ qð Þ bþ qð Þ � 2� rI � rSð Þqþ 1� rIð Þlþ 1� rIrSð Þb½ �ab

( )
¼: 2 d

q rIbþ qð Þ lþ qð Þv4w2
5Mf :
We have that if Mf > 0, then a > 0; if Mf < 0, then a < 0. So we
get the bifurcation at R0f ¼ 1 is backward when Mf > 0; the bifur-
cation at R0f ¼ 1 is forward when Mf < 0. Especially, when
h ¼ 0;Mf < 0 must hold, so the bifurcation at R0f ¼ 1 is forward
when h ¼ 0.
12
To testify the globally stability of E0f , let’s consider a continuous
differentiable and positive definite Lyapunov function

V ¼ I1 þ I2:

So the derivative along system (4.16) is:

dV
dt

¼ b S1 þ rSS2ð Þ I1 þ rII2ð Þ � rI1
1þ hI1

� rI2
1þ hI2

� l I1 þ I2ð Þ

6 I1 þ I2ð Þ lþ cð Þ R0f �
lþ c 1

1þh

lþ c

 !
¼ I1 þ I2ð Þ lþ cð Þ R0f � Rhf

� �
:

Then, if R0f < Rhf ;
dV
dt � 0. In addition, dV

dt ¼ 0 holds only when
I1 ¼ I2 ¼ 0, so the maximum compact invariant subset of set
dV
dt ¼ 0 in feasible region C is I1; I2ð Þ ¼ 0;0ð Þ. According to LaSalle’s
invariant set principle, when t ! 1, we have I1 tð Þ; I2 tð Þð Þ ! 0; 0ð Þ.

Since limt!1I1 tð Þ ¼ 0 and limt!1I2 tð Þ ¼ 0, for sufficiently small
e, there are constants T1 and T2, so that when t > T1; I1 tð Þ 6 e and
t > T2; I2 tð Þ 6 e. According to the last equation of model (4.16), we
get that dB

dt 6 q eþ heð Þ � dB when t > max T1; T2f g. Then from the
comparison principle and non-negativity of solutions, we have
limt�!1B tð Þ ¼ 0.

Similarly, limt!1S2 tð Þ ¼ 0; limt!1S1 tð Þ ¼ 1.
So, if R0f 6 Rhf , the solution from C for model (4.16), approaches

E0f as t ! 1. That is, when R0f < Rhf ; E0f is globally asymptotically
stable. That completes the proof. h
A.2. The proof of Theorem 8

Proof. Define the set

X ¼ S1; S2; I1; I2;Bð ÞjS1 P 0; S2 P 0; I1 P 0; I2 P 0;M P 0f g;

X0 ¼ S1; S2; I1; I2;Bð ÞjS1 P 0; S2 > 0; I1 > 0; I2 > 0;M > 0f g;

@X0 ¼ X n X0:

Then X is the positive invariant set of X0, and X0 is relatively closed
in X. Since the attracting domain C ¼ S1; S2; I1; I2;Bð Þ 2f
R5
þ : 0 < S1 þ S2 þ I1 þ I2 6 1;0 < B 6 p

dg is a positive invariant set,
system (4.16) is point dissipative. Define

M@ ¼ S1 0ð Þ; S2 0ð Þ; I1 0ð Þ; I2 0ð Þ;B 0ð Þð ÞjS1 tð Þ; S2 tð Þ; I1 tð Þ; I2 tð Þ;B tð Þf
satisfy system 4:16ð Þ; S1 tð Þ; S2 tð Þ; I1 tð Þ; I2 tð Þ;B tð Þð Þ 2 @X0;8 P 0g:

Let’s prove M@ ¼ S1; 0;0;0; 0ð ÞjS1 P 0f g.
Supposing u0 ¼ S1 0ð Þ; S2 0ð Þ; I1 0ð Þ; I2 0ð Þ;B 0ð Þð Þ 2 M@ and there is

t0 P 0, such that at least one of the terms in S2 tð Þ; I1 tð Þ; I2 tð Þ;B tð Þ is
greater than 0 at t ¼ t0. If I1 t0ð Þ > 0; S2 t0ð Þ ¼ I2 t0ð Þ ¼ B t0ð Þ ¼ 0, then
B0 t0ð Þ ¼ qI1 t0ð Þ > 0, that is to say that there is t1 > 0, such that
I1 tð Þ > 0;B tð Þ > 0 when t0 < t < t0 þ t1. So S1 tð Þ; S2 tð Þ; I1 tð Þ;ð
I2 tð Þ;B tð ÞÞ R @X0, which contradicts u0 2 M@ . The same can be
proved in other cases, so M@ ¼ S1;0;0;0;0ð ÞjS1 P 0f g. If the initial
value w0 2 M@ ;[w02M@
x w0ð Þ ¼ E0 since there is only one equilib-

rium E0 in M@ . Thus, E0 is the compact isolated invariant set of M@

over the initial value w0.
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Then we will prove that there is a positive constant d0
(0 < d0 < 1

2
lþc
bþa R0f � 1
� �

), such that for any solution u t; x0ð Þ; x0 2
X0; lim supt!1ku t; x0ð Þ � E0k P d0, that is, WS E0ð Þ \ X0 ¼ Ø, where

WS E0ð Þ is the stable manifold of E0. Let’s prove it by proof by
contradiction. Let’s say for any d0 > 0, we have
lim supt!1ku t; x0ð Þ � E0k < d0, i.e., there is a positive constant g0,
for any t > g0, such that

1� d0 6 S1 tð Þ 6 1þ d0;0 6 S2 tð Þ; I1 tð Þ; I2 tð Þ; B tð Þ 6 d0:

So, when t > g0, we have

dI1
dt

> b 1� d0ð ÞI1 � cI1 � lI1 � ad0I1 >
1
2
lþ cð Þ R0f � 1

� �
I1;

then limt!1I1 tð Þ ¼ 1, which contradicts the hypothesis. Thus, E0 is
an isolated invariant set in set X, and WS E0ð Þ \ X0 ¼ £.

In conclusion, each of the forward orbital in M@ converges to E0,
and E0 is aperiodic in M@ . By the persistence theorem in Hale and
Waltman (1989), system (4.16) is uniformly persistent when
R0f > 1.That completes the proof. h
Appendix B. The proof of the equivalence of Ms and Mf and the
correlation between information transmission parameters and
Mf

Now let’s look for the relationship between Ms (3.10) and Mf

(4.17). We can get Ms > 0 if and only if

h > 2� rI � rSð Þaqb
qc

þ b2

c
¼: hs: ðB:1Þ

and Mf > 0 if and only if

h >
b2

cl
þ q

d
b
c

a
lþ qð Þ bþ qð Þ

� 2� rI � rSð Þqþ 1� rIð Þlþ 1� rIrSð Þb½ �: ðB:2Þ
Applying the parameter transformation (3.2) on (B.2), similarly, the
parameters of subsequent models are still recorded as the original
parameters, we have

h >
b2

c
þ aqb

qc
q

ebþ q

� 2� rI � rSð Þqþ 1� rIð Þeþ 1� rIrSð Þbe
beþ q

¼: hf ; ðB:3Þ

where e ¼ l
d. Then we have hf ! hs as e! 0, which means that the

condition for branching in the slow system (3.9) and the full system
(4.16) are also equivalent on the basis of the huge variation in time
between information dissemination and epidemiological and demo-
graphic process.

Recalling

Mf ¼ hc� b2

l

 !
d
q
lþ qð Þ bþ qð Þ

� 2� rI � rSð Þqþ 1� rIð Þlþ 1� rIrSð Þb½ �ab;
it is easy to testify that

@Mf

@rS
> 0;

@Mf

@rI
> 0;

@Mf

@a
< 0:

When Mf > 0; hc > b2

l and hc� b2

l

� 	
d
q > ab 2�rS�rIð Þqþ 1�rIð Þlþ 1�rIrSð Þb

lþqð Þ bþqð Þ
must hold. So

@Mf

@q
¼ � lþ qð Þ bþ qð Þ hc� b2

l

 !
1
q2 < 0;
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and

@Mf

@q
¼ d
q

hc� b2

l

 !
lþ bþ 2qð Þ � ab 1� rIrSð Þ

> ab
2� rS � rIð Þqþ 1� rIð Þlþ 1� rIrSð Þb

lþ qð Þ bþ qð Þ lþ bþ 2qð Þ

� ab 2� rI � rSð Þ

¼ ab 2� rI � rSð Þ q2 � lb
lþ qð Þ bþ qð Þ þ ab 1� rIð Þl lþ bþ 2qð Þ

lþ qð Þ bþ qð Þ

þ ab
1� rIrSð Þb
lþ qð Þ bþ qð Þ lþ bþ 2qð Þ

> ab 1� rIð Þ l aþ 3qð Þ
lþ qð Þ bþ qð Þ þ ab 1� rSð Þ q2 � lb

lþ qð Þ bþ qð Þ

þ ab 1� rIrSð Þ b lþ bþ 2qð Þ
lþ qð Þ bþ qð Þ

> ab 1� rIð Þ l aþ 3qð Þ
lþ qð Þ bþ qð Þ þ ab 1� rSð Þ q

2 þ b2 þ 2bq
lþ qð Þ bþ qð Þ > 0:
Appendix C. A model considering the infection induced by the
asymptomatic infected individuals

Note that directly fitting the proposed model to data may
induce a bias since our model does not consider the infection
induced by the asymptomatic infected individuals, which were
proven to be extremely important for epidemiology of COVID-19
(Amaral et al., 2021; Castro et al., 2020). We then simply extend
our model by including a compartment of asymptomatic infected
individuals. The corresponding equations are

dS1
dt ¼l�bS1 I1þrI I2ð Þ�wbS1 A1þrAA2ð Þ�lS1�aBS1þqS2
dS2
dt ¼�brSS2 I1þrI I2ð Þ�wbrSS2 A1þrAA2ð Þ�lS2þaBS1�qS2
dI1
dt ¼ k bS1 I1þrI I2ð ÞþwbS1 A1þrAA2ð Þ½ �� cI I1

1þhI1
�lI1�aBI1þqI2

dI2
dt ¼ k brSS2 I1þrI I2ð ÞþwbrSS2 A1þrAA2ð Þ½ �� cI I2

1þhI2
�lI2þaBI1�qI2

dA1
dt ¼ 1�kð Þ bS1 I1þrI I2ð ÞþwbS1 A1þrAA2ð Þ½ ��cAA1�lA1�aBA1þqA2

dA2
dt ¼ 1�kð Þ brSS2 I1þrI I2ð ÞþwbrSS2 A1þrAA2ð Þ½ ��cAA2�lA2þaBA1�qA2

dR1
dt ¼ cI I1

1þhI1
þcAA1�lR1�aBR1þqR2

dR2
dt ¼ cI I2

1þhI2
þcAA2�lR2þaBR1�qR2

dB
dt ¼q I1þhI2ð Þ�dB

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
ðC:1Þ

where k is the ratio of symptomatic infection, w is the relative trans-
mission probability of A1 compared with I1, parameters rA

(0 < rA < 1) represent the reduction factors in transmission rate
when infection occurs between disease-unaware group S1 and
disease-aware group A2, and cI and cA are recovery rates of symp-
tomatic and asymptomatic infected individuals respectively.

We can testify that the feasible region of model (C.1) is

C ¼ S1; S2; I1; I2;A1;A2;R1;R2;Bð Þ 2 R9þ : 0 < S1; S2; I1; I2;A1;A2;R1;R2 6 S1
n

þS2 þ I1 þ I2 þ A1 þ A2 þ R1 þ R2 6 1;0 < B 6 q
d

�
:

which is a positively invariant set. A disease-free equilibrium
E0 ¼ 1;0; 0;0;0; 0;0;0;0ð Þ is always feasible. By calculating the
spectral radius of the next generation for model (C.1), we get the
basic reproduction number of this model is

R0 ¼ k
b
cI

þ 1� kð Þwb
cA

: ðC:2Þ

In the initial stage of the epidemic, we still assume that the total
population is Wuhan residents, the conscious susceptible popula-
tion is the isolated susceptible population, the conscious infected
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population is the reported confirmed population and no individual
was recovered. We also assume l ¼ 0 because of the short epi-
demic time scale in comparison to the demographic time scale.
We used the Least Square Method to fit the parameters in model
(C.1) to study the effects of information transmission about disease
caused by media coverage on COVID-19 infection as well. Data fit-
ting gives the similar parameter estimations and a slightly great
basic reproduction number as 3.30. This indicates that ignoring
asymptomatic individuals may underestimate the COVID-19 infec-
tion. We mention here that the inclusion of asymptomatic individ-
uals leads to a higher dimensional system, which is difficult to
analyze theoretically, and we leave this for further study.
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