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Abstract: The active form of vitamin D, 1α,25-(OH)2D3, not only promotes intestinal calcium ab-
sorption, but also regulates the formation of osteoclasts (OCs) and their capacity for bone mineral
dissolution. Gal-3 is a newly discovered bone metabolic regulator involved in the proliferation,
differentiation, and apoptosis of various cells. However, the role of galectin-3 (gal-3) in OC formation
and the regulatory effects of 1α,25-(OH)2D3 have yet to be explored. To confirm whether gal-3
contributes to the regulatory effects of 1α,25-(OH)2D3 on osteoclastogenesis, osteoclast precursors
(OCPs) were induced by macrophage colony stimulating factor (M-CSF) and receptor activator
of nuclear factor κB ligand (RANKL). TRAP staining and bone resorption analyses were used to
verify the formation and activation of OCs. qPCR, Western blotting, co-immunoprecipitation, and
immunofluorescence assays were used to detect gene and protein expression. The regulatory effects
of gal-3 in OC formation after treatment with 1α,25-(OH)2D3 were evaluated using gal-3 siRNA.
The results showed that 1α,25-(OH)2D3 significantly increased gal-3 expression and inhibited OC
formation and bone resorption. Expression levels of OC-related genes and proteins, matrix metallo-
proteinase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), and cathepsin K (Ctsk) were also
inhibited by 1α,25-(OH)2D3. Gal-3 knockdown attenuated the inhibitory effects of 1α,25-(OH)2D3 on
OC formation, activation, and gene and protein expression. In addition, gal-3 was co-localized with
the vitamin D receptor (VDR). These data suggest that gal-3 contributes to the osteoclastogenesis
inhibitory effect of lα,25-(OH)2D3, which is involved in bone and calcium homeostasis.
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1. Introduction

OCs are derived from bone marrow mononuclear macrophages (BMMs) and are
the only cells capable of bone resorption in the body. They not only degrade the bone
organic and inorganic matrix but also cooperate with osteoblasts (OBs) to regulate bone
formation and reconstruction [1–3]. Overactive bone resorption by OCs in physiological
processes (such as aging and menopause) [4] and pathological processes (such as bone
metastasis and rheumatoid arthritis) [5,6] can lead to osteoporosis. OCPs, such as bone
marrow cells, splenocytes, and RAW264.7 macrophages, co-cultured with stromal cells,
OBs, or osteocytes in vitro can be induced into OCs by the parathyroid hormone (PTH),
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dexamethasone, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and 1α,25-
(OH)2D3, which regulate the expression of membrane-bound RANKL in OBs, stromal
cells, and osteocytes [1,7]. BMMs could also be induced into OCs directly by M-CSF and
RANKL [8]. M-CSF mainly promotes the proliferation and differentiation of OCPs, which
further differentiate into OCs under the action of RANKL [9,10].

The physiologically active form of vitamin D, 1α,25-(OH)2D3, regulates intestinal
calcium absorption and acts on bone cells directly and a series of cytokines or signaling
pathways in bone [11–13]. OB-lineage cells express vitamin D receptor (VDR) [14], and
1α,25-(OH)2D3 promotes OBs’ maturation and bone mineralization in vitro and in vivo via
VDR and reduces the formation of unmineralized osteoids [15]. However, bone tissue is in
a state of dynamic equilibrium, and over-mineralization or absorption is not conducive to
bone health. To prevent excessive bone mineralization, 1α,25-(OH)2D3 can enhance OC
formation indirectly by promoting the expression of RANKL in a concentration-dependent
manner [15,16]. OC formation can also be directly regulated by 1α,25-(OH)2D3. Although
mature OCs do not express VDR, OCPs do [17–19]. The mechanism by which it regulates
OC formation needs to be further clarified.

Gal-3 is a 29–35 kDa protein expressed in a variety of tissues and is a member of the
β-galactosyl-binding protein family [20]. It is a marker of chondrocyte and OB lineages in
bone and is also present in OCs and BMMs [21,22]. In proteomic studies, we found that
1α,25-(OH)2D3 activates gal-3 expression during OC formation in vitro [23,24]. Simon et al.
have also shown that gal-3 is a novel regulator of bone homeostasis directly or indirectly
by regulating the association between OBs and OCs. Accordingly, gal-3 plays an important
role in bone biology and is expected to be a potential target for the prevention of bone
diseases. However, its role in the regulation of OC formation by 1α,25-(OH)2D3 needs to
be further elucidated.

In this study, M-CSF and RANKL were used to induce osteoclastogenesis in mouse
OCPs in vitro. We aimed to investigate the role of gal-3 in osteoclastogenesis after treatment
with 1α,25-(OH)2D3. Our results provide insights into the mechanism underlying the
regulation of osteoclastogenesis by 1α,25-(OH)2D3.

2. Results
2.1. 1α,25-(OH)2D3 Had No Effect on Osteoclast Precursor Viability

We confirmed that 1α,25-(OH)2D3 upregulates VDR mRNA and protein expression in
OCPs [25]. In this study, we observed that adding 0.1, 1, and 10 nmol/L 1α,25-(OH)2D3 to
the medium had no effect on OCPs’ viability (Figure 1A). RANKL significantly inhibited cell
proliferation during OCs formation (p < 0.01). However, 1α,25-(OH)2D3 had no significant
effect on OCPs’ viability in the absence or presence of RANKL (Figure 1B).

2.2. 1α,25-(OH)2D3 Promoted Gal-3 Expression

To elucidate the effect of 1α,25-(OH)2D3 on gal-3 protein expression, 0.1, 1, and
10 nmol/L 1α,25-(OH)2D3 were added to the culture medium during OC formation in-
duced by 25 ng/mL M-CSF and 50 ng/mL RANKL for 3 days. 1α,25-(OH)2D3 upregulated
gal-3 protein expression in a dose-dependent manner (Figure 2). The 10 nmol/L 1α,25-
(OH)2D3 group had a higher level of gal-3 protein expression than that in the other groups.

To confirm the effect of 1α,25-(OH)2D3 on gal-3 protein expression at different time
points, OCPs induced by 25 ng/mL M-CSF and 50 ng/mL RANKL were treated with
10 nmol/L 1α,25-(OH)2D3 for 0, 1, 3, and 5 days. Anhydrous ethanol was used as a control.
Compared with the level in the control group, 1α,25-(OH)2D3 significantly increased gal-3
protein expression on days 3 and 5 (p < 0.01) (Figure 3). No significant difference was
observed between the control group and the 1α,25-(OH)2D3 group on day 1 (p > 0.05).
Compared with day 1, 10 nmol/L 1α,25-(OH)2D3 significantly increased gal-3 protein
expression on days 3 and 5 (p < 0.01). However, there was no significant change between
days 3 and 5 1α,25-(OH)2D3 groups (p > 0.05). These data indicated that 1α,25-(OH)2D3
promoted the protein expression of gal-3 at the same cultivation time.
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Figure 1. OCP viability was not affected by 1α,25-(OH)2D3. (A) Cell viability detected by CCK-8 24 h after treatment with 
different concentrations of 1α,25-(OH)2D3. (B) Cell viability detected by CCK-8 24 h after treatment with 10 nmol/L 1α,25-
(OH)2D3 in the absence or presence of 50 ng/mL RANKL. Data are shown as means ± SD. n = 6, ns, p > 0.05; ** p < 0.01. 
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Figure 2. The expression of gal-3 protein was upregulated by 1α,25-(OH)2D3 dose-dependently on 
day 3 as determined by Western blotting. Histograms show gray values of gal-3 protein. Data are 
shown as means ± SD. n = 5, * p < 0.05, ** p < 0.01. 
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observed between the control group and the 1α,25-(OH)2D3 group on day 1 (p > 0.05). 
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Figure 1. OCP viability was not affected by 1α,25-(OH)2D3. (A) Cell viability detected by CCK-8 24 h after treatment
with different concentrations of 1α,25-(OH)2D3. (B) Cell viability detected by CCK-8 24 h after treatment with 10 nmol/L
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To further confirm the effect of 1α,25-(OH)2D3 on gal-3 protein distribution, an im-
munofluorescence assay was performed. The gal-3 protein was visualized by green flu-
orescence, while F-actin was visualized in red on day 6 after treatment with 10 nmol/L
1α,25-(OH)2D3. Anhydrous ethanol was used as a control. Gal-3 mainly distributed in
the nuclei (cyan) and cell membranes (yellow) of OCs (large cells with more than three
nuclei marked by white triangles) and in the whole OCPs (small cells with one nucleus
marked by white arrow) (Figure 4). Compared with OCs, OCPs had a wider green fluores-
cence distribution of gal-3. These data confirmed that 1α,25-(OH)2D3 changed the protein
distribution of gal-3.
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and blue indicates nuclei. Bars = 25 µm.

To elucidate the effect of 1α,25-(OH)2D3 on the expression of Lgals3, which encodes
the gal-3 protein, 10 nmol/L 1α,25-(OH)2D3 was added to the culture medium during OC
formation induced by 25 ng/mL M-CSF and 50 ng/mL RANKL for 0, 1, 3, and 5 days.
Anhydrous ethanol was used as a control. The expression of Lgals3 first increased and then
decreased over time. Compared with control groups (without 1α,25-(OH)2D3), 10 nmol/L
1α,25-(OH)2D3 significantly increased Lgals3 expression on days 3 and 5 (p < 0.01). Com-
pared with day 1, 10 nmol/L 1α,25-(OH)2D3 significantly increased Lgals3 expression on
days 3 and 5 (p < 0.01). However, Lgals3 expression on day 5 was lower than day 3 in the
groups with or without 1α,25-(OH)2D3 (Figure 5).

2.3. Gal-3 Contributed to Osteoclasts Formation and Activation Regulated by 1α,25-(OH)2D3

We found that 1α,25-(OH)2D3 increased gal-3 expression at the mRNA and protein
levels. To confirm the role of gal-3 in 1α,25-(OH)2D3-mediated OC formation and bone
resorption, we constructed stable Lgals3 knockdown OCPs using gal-3 siRNA. Negative
control (NC) siRNA was used as the control. These OCPs were treated with 10 nM 1α,25-



Int. J. Mol. Sci. 2021, 22, 13334 5 of 15

(OH)2D3 in the presence of 25 ng/mL M-CSF and 50 ng/mL RANKL. Anhydrous ethanol
was used as a control.
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First, OC formation was detected by TRAP staining on day 6 after the treatment of
1α,25-(OH)2D3. In all groups, large cells with wine-red granules regarded as OCs were
found. In the NC group, the volume of OCs treated with 1α,25-(OH)2D3 and the number
and the size of OCs decreased significantly (p < 0.01). In the gal-3 knockdown group,
1α,25-(OH)2D3 had no significant effect on OC formation, but significantly decreased the
size of OCs. These data confirmed that gal-3 contributes to the regulation of OC formation
by 1α,25-(OH)2D3. Additionally, gal-3 knockdown significantly promoted OC formation
and average size (p < 0.01) (Figure 6A–C). This suggests that gal-3 is a negative regulator of
OC formation and average size.
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Gal-3 and OC-related proteins (NFATc1 and MMP-9) were investigated by Western
blotting on day 3 after treatment with 1α,25-(OH)2D3. Compared to the NC group, cells
with Lgals3 knockdown exhibited a significant decrease in gal-3 protein level (p < 0.01)
(Figure 7). In the NC group, the expression of NFATc1 and MMP-9 proteins were signifi-
cantly inhibited by 1α,25-(OH)2D3 (p < 0.01). In gal-3 knockdown groups, 1α,25-(OH)2D3
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Gal-3 knockdown significantly increased OC-related protein expression levels (p < 0.01)
(Figure 7). These findings further suggest that gal-3 is a negative regulator of OC formation.
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mRNA expression levels of OC-related genes, Ctsk, and Mmp-9 were evaluated by qPCR
on day 3 after treatment with 1α,25-(OH)2D3. In the NC group, Ctsk and MMP-9 levels were
significantly inhibited by 1α,25-(OH)2D3 (p < 0.01). In the gal-3 knockdown groups, 1α,25-
(OH)2D3 also inhibited Ctsk and MMP-9 expression. However, compared to levels in the
NC groups, the inhibitory effects of 1α,25-(OH)2D3 on Ctsk and MMP-9 were significantly
attenuated by gal-3 knockdown (p < 0.01). Additionally, gal-3 knockdown significantly
increased OC-related gene expression levels (p< 0.01) (Figure 8). These findings were
consistent with TRAP-positive OC formation and OC-related protein expression results.
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To evaluate the effects of gal-3 on bone resorption regulated by 1α,25-(OH)2D3, equal
number of BMMs were cultured on an osteoassay surface multiple-well plate for each
group. Bone resorption lacunae were observed using an inverted microscope on day 6
after the treatment with 1α,25-(OH)2D3. We observed bone resorption lacunae in each
group (Figure 9A, black arrow). Based on the area of bone resorption lacunae, in the
NC group, bone resorption was significantly inhibited by 1α,25-(OH)2D3 (p < 0.01). In
the gal-3 knockdown groups, 1α,25-(OH)2D3 had no effect on bone resorption activity.
Gal-3 knockdown significantly attenuated the inhibitory effect of 1α,25-(OH)2D3 on bone
resorption (p < 0.01). Additionally, gal-3 knockdown significantly increased OC bone
resorption (p < 0.01) (Figure 9B). These data confirmed that gal-3 is a negative regulator
of OC bone resorption and contributes to the inhibitory effect of 1α,25-(OH)2D3 on OC
bone resorption.
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2.4. Interaction between Gal-3 and VDR

To verify the relationship between gal-3 and VDR proteins, they were evaluated by
co-immunoprecipitation and immunofluorescence double staining. The expression of VDR
and gal-3 could be detected in the input group (Figure 10A). The expression of VDR and
gal-3 was also detected in the protein samples precipitated by the anti-VDR antibody
(Figure 10A). These results suggest that there is an interaction between gal-3 and the
VDR proteins.

The expression of gal-3 (green) and VDR (red) protein was also observed by confocal
fluorescence microscopy. OCPs (small cells marked by white arrows in Figure 10B) showed
high expression levels of gal-3 and VDR, while gal-3 and VDR expression levels were
low in OCs (large cells with multiple nuclei, marked by white triangles). Gal-3 and VDR
proteins were mainly co-localized (yellow) in the cell membrane (Figure 10B). The red and
green curves change in the same way, which suggests that gal-3 and VDR are co-located.
(Figure 10C). These results further supported the co-localization and possible interaction
between gal-3 and VDR.
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3. Discussion

OCPs from the bloodstream migrate to the bone surface, where they can form bone-
resorbing OCs under the influence of M-CSF and RANKL [26,27]. During OC formation,
RANKL induces the expression of NFATc1, a master transcription factor, which then acti-
vates the TRAP gene expression [28–30]. The formation of OCs on the bone surface can
secrete protons and cysteine proteases, leading to bone mineral dissolution and demineral-
ized collagenous matrix degradation [31]. Ctsk, which is mainly found in OCs, is the major
cysteine protease secreted by OCs [31]. In addition to Ctsk, MMP-9 is indispensable for OC
migration. MMP-9 inhibitors can reduce bone resorption [27]. Therefore, Ctsk and MMP-9
are regarded as functional proteins in OCs.

Vitamin D is known as the anti-rickets vitamin, and the active form 1α,25-(OH)2D3 is
involved in a variety of physiological processes. Among these physiological processes, the
most important function is the regulation of calcium homeostasis together with PTH. When
serum calcium is low, 1α,25-(OH)2D3 acts with PTH to increase calcium absorption from
the intestine. If normal calcium cannot be maintained by intestinal calcium absorption,
1α,25-(OH)2D3 will act with PTH to increase the reabsorption of calcium from the kidney
and increase calcium release from the bone stores [32]. Kitazawa et al. [33] also reported
that 1α,25-(OH)2D3 increases calcium release from bone stores. They confirmed that 1α,25-
(OH)2D3 can increase RANKL expression in stromal cells and support osteoclastogenesis
indirectly. In addition, 1α,25-(OH)2D3 can also act directly on OCPs and conversely
inhibit OC formation. Consistent with our previous results [34], we demonstrated that
1α,25-(OH)2D3 directly inhibited TRAP-positive OC formation. We also confirmed that
1α,25-(OH)2D3 inhibited the expression of OC-related genes and proteins, including Ctsk,
MMP-9, and NFATc1 expression. The bone resorption activity of OCs was also inhibited by
1α,25-(OH)2D3. These data are consistent with those previous studies. For example, Sakai
et al. [35] also found that 1α,25-(OH)2D3 inhibits OC formation by inhibiting the expression
of c-Fos and NFATc1. Kikuta et al. [36] confirmed that 1α,25-(OH)2D3 and its analogue
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eldecalcitol promoted OPCs migration and inhibited OC formation by regulating the
sphingosine1-phosphate (S1P) receptor system. Thus, we hypothesize that 1α,25-(OH)2D3
can both promote and inhibit OC formation under different circumstances to achieve bone
health equilibrium based on previous research. Therefore, the effect of 1α,25-(OH)2D3 on
bone health and its underlying mechanism should be further elucidated. In a previous
study, we found that gal-3 expression changes during OC formation in the presence of
1α,25-(OH)2D3 by chance [23]. Here, we further confirmed that 1α,25-(OH)2D3 increases
gal-3 expression at the protein and mRNA levels. We then used gal-3-knockdown OCPs
to evaluate OC formation, bone resorption, and the expression of OC-related genes and
proteins.

Gal-3 is the only member of chimera-type galectins and is structurally composed of
a large N-terminal domain and one carbohydrate recognition domain (CRD). It contains
three structurally distinct domains: (1) a short amino terminal consisting of 12 amino acids
with a serine phosphorylation site responsible for its translocation [37]; (2) a collagen-alpha-
like nearly 110 amino acid long structure rich in proline, alanine, and glycine; and (3) a
C-terminal domain with nearly 140 amino acids encompassing the CRD [38]. It participates
in a variety of cellular processes, such as proliferation, differentiation, migration, and
apoptosis, and has a variety of biological effects, especially in nephropathy, carcinoma,
and the quiescence of hematopoietic stem cells [39–41]. It is also an important regulator of
bone remodeling. Iacobini et al. [42] found that Lgals3−/− OBs and OCs showed impaired
terminal differentiation, reduced mineralization capacity, and resorption activity. They
confirmed that gal-3 is an essential factor in normal osteocyte differentiation and activity,
bone reconstruction, and biomechanical balance. Simon et al. [24] proved that extracellular
gal-3 inhibited OC formation and gal-3-deficient bone marrow cells displayed a higher
osteoclastogenic capacity. In the present study, we also found that gal-3-knockdown OCPs
showed a stronger OC formation capacity and bone resorption capacity than those of
normal OCPs. The expression levels of OC-related genes and proteins, including CTSK,
MMP-9, and NFATc1, increased after gal-3 knockdown. As reported previously [24], our
data also suggested that gal-3 is a negative regulator of OC formation and activation. In this
study, we also found that 1α,25-(OH)2D3 not only inhibited OC formation and activation
but also increased gal-3 expression in mRNA and protein levels. However, the mRNA
expression of gal-3 in day 5 is lower than that in day 3. This might be relative to mRNA
translation and characteristic of protein expression. It has been reported that some of
the gal-3 crossed the membrane and translocated into the intracellular vesicles and/or
directly onto the cell surface. Furthermore, cell surface-bound and extracellular gal-3 may
re-enter the cell by endocytosis and take part in a recycling loop, and is then found in
the vesicular non-cytosolic compartments [43]. This may be the cause of the inconsistent
expression of gal-3 protein and mRNA, which needs further investigation. When gal-3
expression was inhibited by small interfering RNAs, the inhibitory effect of 1α,25-(OH)2D3
on OC formation and activation was significantly alleviated. These data suggest that gal-3
contributes to 1α,25-(OH)2D3-mediated OC formation and activity. Immunoprecipitation
and immunofluorescence assays supported the interaction between gal-3 and VDR protein,
further demonstrating that gal-3 might participate in OC formation and activation via
interaction with VDR induced by 1α,25-(OH)2D3. However, Nakajima et al. [22] suggested
that intact gal-3 promotes OC formation, whereas cleaved gal-3 inhibits OC formation.
Therefore, the role of gal-3 in the regulation of OC formation and activation by vitamin D
remains to be elucidated. In any case, gal-3 is a potential new target for the prevention of
bone disease and maintenance of calcium homeostasis.

4. Materials and Methods
4.1. Isolation and Culture of Osteoclast Precursors

The isolation and culture of OCPs were based on our previously reported methods
with slight improvements [44]. C57BL/6 mice (5–6 weeks old) purchased from the Labora-
tory Animal Center of Yangzhou University were euthanized. The tibias and femurs were
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dislocated and the muscles were discarded. The protocol was approved by the Animal
Care and Use Committee of Yangzhou University (SYXK[Su] 2017-0044, July 20th, 2017)
and was carried out in accordance with the Guide for the Care and Use of Laboratory
Animals of the National Research Council. The tibias and femurs were cut longitudinally.
The bone cavities were flushed with serum-free α-MEM (Gibco, Carlsbad, CA, USA) until
they appeared empty. A 1 mL Pasteur pipette and 200 mesh sterile screen were used to
disperse any cell aggregates. The liquid was then centrifuged for 10 min at 300× g. The
cells that deposited at the bottom of the tube were collected, and red blood cells were
removed using ACK Lysing Buffer (Thermo Fisher Scientific, Asheville, NC, USA). Cells
were then suspended in α-MEM supplemented with 10% fetal bovine serum (FBS) (Gibco,
Carlsbad, CA, USA) and 25 ng/mL M-CSF (416-ML-050, R&D Systems, Minneapolis, MN,
USA). The cells were cultured overnight in an incubator at 37 ◦C under 5% CO2. The
supernatant of the culture medium was carefully collected and centrifuged at 500× g for
5 min to obtain BMMs. Then, BMMs were seeded in α-MEM supplemented with 10% FBS
and 25 ng/mL M-CSF. They were also incubated at 37 ◦C in 5% CO2. On day 3, suspended
cells were removed, and adherent cells were regarded as OCPs.

4.2. Cell Viability Detection by CCK-8

After the treatment with 25 ng/mL M-CSF for proliferation, 50 ng/mL RANKL
(462-TEC-010, R&D Systems) and different concentrations of 1α,25-(OH)2D3 (0.1, 1, and
10 nmol/L) (D5310, Sigma-Aldrich, St. Louis, MO, USA) were added to the culture medium.
Anhydrous alcohol was used as a control (0 nmol/L 1α,25-(OH)2D3). Cell viability was
determined using the Cell Counting Kit-8 (CCK-8) (Dojindo, Kumamoto, Kyushu, Japan).

4.3. Cell Transfection

For transfection experiments, mouse BMMs seeded in 6-well plates were pre-treated
with 25 ng/mL M-CSF for 2 days. They were then transfected with gal-3 or negative
control (NC) siRNA for 1 d according to the supplier’s protocol (sc-35443, 36869, Santa
Cruz Biotechnology, Santa Cruz, CA, USA) in the presence of 25 ng/mL M-CSF. The end
of transfection was regarded as time zero. At this point, 50 ng/mL RANKL was added
to 25 ng/mL M-CSF to induce OC formation in each group. The cells were divided into
four groups as follows (Figure 11): NC siRNA + anhydrous alcohol (solvent), NC siRNA +
1α,25-(OH)2D3, gal-3 siRNA + anhydrous alcohol, and gal-3 siRNA + 1α,25-(OH)2D3. The
medium was changed every 2 days.
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4.4. Formation and Identification of Osteoclasts

According to previously reported methods [45,46], 25 ng/L M-CSF and 50 ng/L
RANKL were used to induce OC formation. TRAP staining and bone resorption were
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observed to identify OC formation. OCPs were cultured in α-MEM supplemented with
10% FBS, 25 ng/mL M-CSF, and 50 ng/mL RANKL for 6 days. The cells were fixed in
4% paraformaldehyde solution for 10 min and washed with phosphate-buffered saline
(PBS). They were then stained using the TRAP Staining Kit (Sigma-Aldrich) following the
manufacturer’s instructions. Cells with more than three nuclei and wine-colored granules
in the cytoplasm were regarded as OCs. For bone resorption, PBS was used to repeatedly
wash the plates to remove the adherent cells from Corning Osteoassay Surface Multiple
Well Plates (Corning, NY, USA). Images were obtained using an inverted microscope (Leica,
Wetzlar, Hessen, Germany). Image-Pro Plus (JEDA Science Technology Development,
Nanjing, China) was used to calculate the bone resorption pit area.

4.5. Western Blotting

According to our previously described methods [46], OCs were lysed on ice for 30 min
using radio immunoprecipitation assay (RIPA) lysis buffer (Applygen, Beijing, China) with
protease inhibitor (Beyotime, Shanghai, China). The protein concentration in each sample
was measured using the BCA Protein Assay Kit (Beyotime) and normalized. Proteins were
separated by SDS-PAGE (NCM Biotech, Suzhou, China) and transferred to polyvinylidene
difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). Then, the PVDF membranes
were blocked with 5% bovine serum albumin (BSA) (Sigma-Aldrich) at room temperature
for 2 h and incubated with anti-gal-3 (Proteintech, Rosemont, IL, USA), anti-NFATc1 (Santa
Cruz Biotechnology), anti-MMP-9 (Abcam, Boston, MA, USA), anti-GAPDH, and anti-
β-actin (CST, Danvers, MA, USA) antibodies overnight at 4 ◦C. Secondary antibodies
with horseradish peroxidase (Jackson Laboratories, Bar Harbor, ME, USA) were added to
the PVDF, which was washed with Tris-buffered saline and Tween (TBST). Proteins were
visualized using a Tanon 5200 Electrochemiluminescence (ECL) Detection System (Tanon,
Shanghai, China). ImageJ (National Institute of Mental Health, Bethesda, MD, USA) was
used to analyze protein expression levels.

4.6. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA was extracted by TRIzol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized using HiScript QRT SuperMix (Vazyme, Nanjing, China), and then qPCR was
conducted using ChamQ SYBR qPCR Master Mix (Vazyme) according to the manufac-
turer’s instructions. Primer sequences were designed based on Ctsk, MMP-9, Lgals3, and
Gapdh gene sequences searched from NCBI of mouse and are shown in Table 1. Gapdh
expression was used as an internal control. The cycle reaction was set at 95 ◦C for 10 s and
60 ◦C for 30 s for 40 cycles.

Table 1. Sequences of PCR primers used in this study.

Genes Sequences

Lgals3 Forward (5′-3′) GTACAGCTAGCGGAGCGG
Reverse(5′-3′) CGGATATCCTTGAGGGTTTG

Ctsk
Forward (5′-3′) CGCCTGCGGCATTACCAA
Reverse(5′-3′) TAGCATCGCTGCGTCCCT

Mmp-9 Forward (5′-3′) GCCCTGGAACTCACACGACA
Reverse(5′-3′) TTGGAAACTCACACGCCAGAAG

Gapdh Forward (5′-3′) AAATGGTGAAGGTCGGTGTG
Reverse(5′-3′) TGAAGGGGTCGTTGATGG

4.7. Co-immunoprecipitation

Co-immunoprecipitation studies were performed using previously described methods,
with slight modifications [47]. Extracts of about 200 µg of protein per sample were pre-
cleared with protein A/G beads and then mixed with 2 µg of VDR antibody or control non-
immune rabbit Ig immobilized on protein A/G beads in an “immunoprecipitation buffer”
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supplemented with protease inhibitors. The reactions were then incubated overnight at
4 ◦C. After being washed three times with 0.1% PBS-Tween, proteins degenerated by SDS
buffer were resolved by SDS-PAGE and transferred onto PVDF membranes. The Western
blotting was then probed with antibodies against gal-3 at 4 ◦C overnight.

4.8. Immunofluorescent Staining of VDR and Gal-3

OCs cultured on sterile coverslips were washed with PBS. They were fixed with
a 4% paraformaldehyde solution. Triton X-100 (0.5%, Amresco, Solon, OH, USA) was
used for membrane permeabilization at room temperature. Cells were blocked with 5%
BSA and incubated with anti-gal-3 and anti-VDR antibodies overnight at 4 ◦C. An IgG
negative control was set. Phalloidin-iFluor 555 Reagent (Abcam) was used to detect F-
actin, and nuclei were visualized with DAPI (Beyotime) according to the manufacturer’s
instructions. Imaging was performed using a fluorescence microscope (Leica DMI3000B;
Wetzlar). Immunofluorescent co-located figures were analyzed by Leica software, and
a line segment from the top left to the bottom right (draw a line from the top left to
the bottom right crossing the interested area). The point in the upper left is the origin,
the x-axis represents the distance from the origin, and the y-axis represents the intensity
of fluorescence. The green line across OCs which fluorescence intensity presented in the
Figure 6B first figure, and the yellow line across OCPs which fluorescence intensity presents
in the Figure 6B second figure. The red curve represents VDR, the green curve represents
gal-3, and the blue curve represents the nucleus.

4.9. Statistical Analysis

Statistical analysis of all data was performed using GraphPad Prism 7 (GraphPad
Software). Each experiment was repeated at least three times in vitro. Statistical significance
was defined as p < 0.05.

5. Conclusions

In our study, we confirmed the regulatory effects of the 1α,25-(OH)2D3/VDR/gal-3
axis on the osteoclastogenesis potential of BMMs. OC formation and activation induced by
RANKL via gal-3 was inhibited by 1α,25-(OH)2D3, which is a negative regulator of OC
formation and activation. Figure 12 provides a visual overview of the detailed mechanism
underlying OC formation and activation revealed in our study.
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Figure 12. Schematic diagram of the role of gal-3 in OC formation and activation regulated by 1α,25-
(OH)2D3. Briefly, 1α,25-(OH)2D3 inhibited OC formation and activation induced by RANKL and
increased gal-3 expression. Gal-3, a negative regulator of OC formation and activation, colocalized
with VDR and contributed to the inhibitory effect of 1α,25-(OH)2D3 on OC formation and activation.
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