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ABSTRACT: Battery failure has traditionally been a major concern for electric vehicle
(EV) safety, and early fault diagnosis will reduce many EV safety accidents. However,
the short-circuit signal is generally very weak, so it is still a challenge to achieve a timely
warning of battery failure. In this paper, an initial microfault diagnosis method is
proposed for the data of electric vehicles in actual operation. First, a robust locally
weighted regression data smoothing method is proposed that can effectively remove
noisy data and retain fault characteristics. Second, an ordinary-least-squares-based
voltage potential feature extraction method is proposed, which can effectively capture
the small fault features of battery cells and achieve early warning. Third, a reference cell
selection method based on K-means clustering is proposed, which can effectively
reduce the false alarms caused by the inconsistency of each cell. Fourth, the Frećhet
algorithm is introduced into the field of battery pack fault diagnosis and combined with
thresholds for battery pack fault diagnosis and localization to accomplish the diagnosis
and early warning of minor faults. Finally, the fault diagnosis method is validated by three actual running electric vehicles to verify
the effectiveness, reliability, and robustness of the method.

1. INTRODUCTION
The rapid development of electric vehicles in the world has
made lithium-ion batteries a popular development as clean
energy in the coming years.1−3 Compared with traditional fuel
vehicles, electric vehicles use rechargeable and dischargeable
batteries as the power system, which can reduce the environ-
mental pollution caused by fuel consumption. However, while
electric vehicles are commonly used, often some car safety
accidents are caused by battery failure, which greatly affects
driving safety.4 Battery failure is generally caused by mechanical
abuse, electrical abuse, and thermal abuse, which in serious cases
can trigger thermal runaway and lead to spontaneous
combustion.5 Therefore, realizing early warning of battery
failure can effectively decrease safety accidents and bring a safer
driving environment for drivers.

The current research on battery for electric vehicles has been
mentioned in many types of literature, such as battery fault
diagnosis, estimation of remaining useful life for batteries, state
of the health estimation, etc.6−12 And the research approaches in
the literature about fault diagnosis can be broadly classified into
three categories: knowledge-based, model-based, and data-
driven fault diagnosis approaches.13−18 Among them, the
knowledge-based fault diagnosis method uses some historical
and empirical knowledge of the battery to design some
diagnostic rules for fault diagnosis.19 The model-based approach
is to establish a physical model of the battery, which is generally
capable of accurately calculating the values of the parameters of
the battery. This value is subsequently compared with the

collected battery parameters. If their difference exceeds a
threshold value, a fault is considered to have occurred.20 Data-
driven approaches based on data generally start with the
collection of data, extraction of the features of the data, and
performing fault diagnosis using algorithms such as outlier
detection.4 For example, in ref 21, authors connect a constant
voltage source in parallel with the battery to be detected and
then observe the current direction between the battery and the
constant voltage source. Based on the current flow direction, it
can be determined whether the battery is malfunctioning or not.
However, the constant voltage source is sometimes difficult to
add and is very inconvenient for real-time monitoring of electric
vehicles. In ref 22, a partial-differential-equation (PDE) method
was proposed to detect and estimate the severity of battery
thermal faults in real time. However, it is sometimes difficult to
apply the method in practice because of the difficulty in
collecting the battery temperature of electric vehicles in actual
operation. The authors utilized an observer based on an
electrochemical model and a fuzzy logic algorithm that can be
implemented in real time. A battery internal fault diagnosis
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method was developed using the relationship of residuals, which
can reliably detect various faults inside lithium-ion batteries.23

However, the method requires a large amount of historical fault
data for rule building and fewer fault data in actual operation. A
battery fault diagnosis method was developed in ref 24 using
LSTM networks in combination with a battery equivalence
model. The method was studied based on actual operational
data and can effectively identify faulty monoliths. However, the
method is sometimes difficult to train the model and requires a
large amount of historical data. The authors in ref 25 performed
fault diagnosis based on a battery with a ring topology and were
able to locate the faulty battery using a recursive least-squares-
based approach. However, the portability of the method is poor.
The authors in ref 26 use the Kernel Principal Component
Analysis (KPCA) approach to train a nonlinear data model for
internal short-circuit detection of lithium-ion batteries. How-
ever, the method requires a large amount of historical data for
offline training. The authors in ref 27 calculate the correlation
coefficients of adjacent cells within a cell group and are able to
quickly locate cells with abnormal fluctuations in voltage data.
However, this method has low robustness, is easily affected by
noisy data, and is difficult to define the threshold value. The
authors in ref 28 use a correlation coefficient for faulty monomer
detection of battery packs. The method first estimates the SOH
parameters of the battery using the extended Kalman filter.
Then, the SOH correlation between the cells is calculated and
the faulty monomer number is determined using the threshold
method. This method has difficulty in SOH estimation and is
difficult to implement in real vehicles. A feature that most of the
internal short-circuit faults have a larger SOC variance is
proposed in ref 29. A mutual information method for fault cell
identification is proposed for this feature. However, this method
requires high model accuracy, and the SOC accuracy in actual
operation is sometimes difficult to meet. The authors in ref 30
estimated the battery and system parameters for fault diagnosis
and proposed a fuzzy clustering method for fault diagnosis.
However, the model of this method is sometimes difficult to
calculate, and the actual operating electric vehicle data cannot
satisfy the algorithm.

In summary, many of the current methods are fault
diagnostics studied in a laboratory environment and are difficult
to apply on actual vehicles. In addition, the fault diagnosis
algorithm developed based on the model has high requirements
for hardware and additional equipment when applied on actual
operating vehicles due to the high requirements for model
accuracy. The fault diagnosis algorithm developed based on
knowledge needs a large amount of fault data support, and the
lack of fault data in practical applications is therefore difficult to
establish model rules. Therefore, it is difficult to be applied to the
battery management system (BMS). The data-driven approach,
on the other hand, can directly start from the more easily
collected voltage data and perform fault diagnosis by the change
characteristics of the voltage data. Therefore, this paper develops
a data-driven early warning algorithm for lithium-ion batteries
based on data driven for minor faults.

Based on the voltage data, this paper develops a fault warning
algorithm for electric vehicle lithium-ion battery packs based on
K-means and the Frećhet algorithm. And the actual collected EV
driving data are used to verify. First, due to the noise of the EV
data collected in actual operation, it will affect the accuracy of the
diagnosis algorithm. Robust locally weighted regression
algorithm (R-Lowess) is proposed for data cleaning. Second, it
is difficult to be detected in the BMS because the fault

characteristics of the faulty battery are very slight. Therefore,
ordinary least squares (OLS) is proposed for extracting trend
components and potential features of voltage data and
normalizing them. Third, there may also be inconsistencies
between batteries of the same model due to errors in the
manufacturer’s production process, which can affect the
diagnostic accuracy of the algorithm. To solve this problem, a
K-means-based clustering method is proposed to select a
reference cell to represent the current process operation. Finally,
to achieve automatic fault detection and localization, the
discrete Frećhet algorithm is proposed, and the extracted new
features are used as the input to the algorithm. And adaptive
thresholds are set for the detection and localization of faulty
cells. To the best of our knowledge, the discrete Frećhet
algorithm is presented for the first time in the field of faulty
detection of battery packs.

The remainder of this paper is organized as follows. In Section
2, the fault diagnosis algorithm is introduced in detail, including
the data cleaning process, feature extraction process, reference
cell selection process, fault detection process, etc. In Section 3,
three actual operational vehicles are selected to validate our fault
diagnosis algorithm. Section 4 is the summary and outlook.

2. PRINCIPLE AND STRUCTURE FOR FAULT
DIAGNOSIS ALGORITHM
2.1. Real-World Vehicle Data Description. The real

vehicle data used in this paper comes from the big data
management platform for new energy vehicles, which currently
serves more than 200,000 vehicles and can collect more than 10
million pieces of data a day. In this paper, as shown in Table 1,

we select one vehicle #C1 that did not show any fault during
driving and two vehicles #C2 and #C3 that showed short-circuit
fault for algorithm experimental verification. The vehicles are
described as follows.

Vehicle #C1 is a normal vehicle with no faults as of the latest
data collection moment. Figure 1 shows the unprocessed
discharge process data of normal vehicle 1. The experimental
data were selected as the last voltage data of the discharge
process transmitted to the big data platform. Vehicle #C1
consists of 95 battery cells connected in series, so each cell has a
different voltage value, while the current value is the same.
Vehicle #C1 had a sudden voltage drop at the 10th sampling
point for #Cell 1−23 at the starting moment due to a sensor
anomaly. This phenomenon is not brought about by the failure
of the battery cells but is data noise, which is not part of the fault
range and requires data cleaning.

In Figure 2, Vehicle #C2 was a failed vehicle with a power
supply system consisting of 95 battery cells connected in series
to form a power battery pack. #Cell 47 in the battery pack
showed a sudden voltage drop at the 425th sampling moment,
which was confirmed to be caused by a weak internal short
circuit in the battery cell. However, due to the equalization
mechanism of the battery pack and other factors, the voltage
drop in the cell did not produce a large fluctuation after the
occurrence in the microshort circuit but showed a similar trend

Table 1. Parameters on the Three Vehicles

no. vehicle type faulty cell cell number sample interval (s)

#C1 normal 95 10
#C2 potential fault #47 95 10
#C3 potential fault #31 96 10
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in other normal cells. Until the 900th, 1100th, and other
sampling moments, the evolution of the internal short circuit of
the monomer intensifies, the voltage drops suddenly again, and a
more noticeable voltage difference appears. Eventually, the
battery management system (BMS) alarmed.

Similar to vehicle #C2, Figure 3 shows that vehicle #C3 is an
electric vehicle that has experienced a failure with a battery pack
of 96 battery cells. At the 350th sampling moment, battery #Cell
31 experienced a weak internal short circuit and a sudden voltage
drop. Subsequently, #Cell 31 had a worsening internal short
circuit at the 1960th sampling moment and the voltage dropped
again. Eventually, the BMS alarm was raised. And at the 3600th
sampling point, the cell showed a sudden voltage increase due to
a sensor acquisition error, which was not part of the cell failure
and was a data acquisition error.

2.2. Data Cleaning Based on R-Lowess. Different from
laboratory-collected data, there is a large amount of noise in the
real vehicle data. And often this type of noise can greatly affect
the detection results of the algorithm. In addition, the weak
internal short-circuit features of the battery are small and usually
hidden in this type of noise and cannot be detected. Therefore,
there is a need to retain the characteristics of battery failure while
data noise reduction is an issue that must be solved. Also, data
cleaning can improve data quality and reduce algorithmic false
positives.

In this paper, we introduce a data smoothing method based on
R-Lowess, which is very effective for outlier removal and
preserves fault features. R-Lowess is proposed by Cleveland,
which is based on the improvement of locally weighted
regression and has strong robustness.31,32

Figure 1. Normal vehicle #C1 discharge process raw data.

Figure 2. Faulty vehicle #C2 discharge process raw data.
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Strongly locally weighted regression is for each point xi, on all
data points within a window of k. The weights ωk(xi) are
obtained from the weight function, and a polynomial fit xi is
performed using the weighted least-squares method with the
right values to obtain yi. Then, the residual δ between the
estimated and actual values is determined, and δωk(xi) is used to
estimate again to get the new fitted value. The procedure is

repeated several times to obtain the final ŷi, which is the final

smoothed value.
The weight function is defined as follows.
When we set the weight function to W (c), the weight function

generally is of (o, p) type, and there are also other weight

functions, which are not listed here

Figure 3. Faulty vehicle #C3 discharge process raw data.

Figure 4. Discharge process feature extraction flow chart.
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where c = ei/6S, ei denotes the residual of the ith voltage value fit
and S denotes the median value of the residual.

Using R-Lowess, voltage data with noise can be cleaned and
the data quality is improved. R-Lowess has a weighting
mechanism that effectively corrects the anomaly to a value
similar to the surrounding points, thereby eliminating the noise
voltage. When data collected due to external factors such as
sensor errors is noisy data, the anomaly is transient and will
return to normal values at subsequent sampling points, while
when an internal battery failure occurs, the anomaly is persistent
in character and will not return to normal in a short period of
time. Therefore, when R-Lowess processes noisy data, a smaller
weight is given to the noisy point to remove it since it is
surrounded by normal. And if the subsequent data has a
continuous voltage drop, the weight of that point will be
enhanced and therefore retained. That is, it is insensitive to that
fault point, which will reduce algorithm underreporting and
improve the diagnostic accuracy of the algorithm.
2.3. Fault Feature Extraction Based on OLS. The fault

characteristics of the voltage data collected by the big data
platform are generally small and easily hidden among the normal
fluctuations of the voltage, which is not conducive to the
detection of fault diagnosis algorithms. Generally, when a fault
occurs, such as a short circuit in a cell, the cell will show a
decreasing trend in the voltage value compared to other normal
cells. Therefore, using the OLS method to fit the cell voltage
curve and extract this change trend feature can effectively
highlight the fault characteristics in this cell. The least-squares
method was proposed by French scientist Adrien-Marie
Legendre in 1806 and is widely used in parameter estimation,
optimization problems, and other fields.33−35

The feature extraction process is shown in Figure 4.
We assume that there are n collected data (x1,y1), (x2,y2),···,

(xn−1, yn−1),(xn,yn), where x denotes the independent variable of
the function and y denotes the dependent variable.

We substitute the above observed data points into the
function to be fitted

= + + ··· +y r x r x( ) ( )m m0 1 1 (2)

The calculation gives

+ + ··· +

= ···

y r x r x

i n

( ) ( ),

1, 2, 3, ,
i i m m i0 1 1

(3)

The objective of OLS curve fitting is to determine the value of
α0, α1, α2,···,αn It is an optimization-seeking problem whose
objective function is

··· =
y ymin ( )

i

k

i i, , , , 1

2

n0 1 2 (4)

This process of finding the solution to eq 4 is known as the
OLS curve fitting of the function y.

The least-squares-based feature extraction process is as
follows.

The voltage data in this process is first used to construct the
voltage matrix U′
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Data cleaning by the R-Lowess method in Section 2.2 is
performed, U′, to form the new voltage matrix U
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Curve fitting is performed in the voltage matrix U using least
squares for each discrete sequence of cell voltages v with a sliding
window win. To facilitate feature extraction and computational
speed, this method utilizes linear function fitting

= +Y AX B (5)

The slope value of each cell under each window is saved and
the slope characteristic matrix A is constructed
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Finally, the slope characteristic matrix A is normalized to obtain
the final feature matrix
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2.4. Reference Cell Selection Method Based on K-
Means Clustering. The voltage data of electric vehicles in
actual operation generally consist of batteries of the same type
connected in series and have similar physical properties at the
factory. However, in an actual application, every single cell
exhibits inconsistent performance, such as inconsistent voltage,
inconsistent SOH, etc., due to external temperature, internal
temperature, internal resistance, material properties, process
flow, and other factors.36−38 As a result, the voltage data
gathered from every single cell may also behave differently under
normal conditions. Therefore, the inconsistency of each cell
within the battery pack needs to be reduced before fault
detection. Otherwise, the algorithm will show some false alarms
due to inconsistency.
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To address this problem, this paper proposes a K-means
clustering-based method to select reference cells in a battery
pack to represent the current operation of the battery pack in the
process. The specific process is as follows. The reference cell
selection process is shown in Figure 5.

First, the feature data extracted by the current process are
obtained, either for the first n moments or for all sampling points
of the current process. Now, we assume that with k cells
composing the power pack of an electric vehicle, a feature matrix
is constructed using the feature data

= [ ]L l l l l, , ... , ,n k k1 2 1

where lk′ denotes the feature data of the kth cell and Ln′ denotes
the feature matrix consisting of k cells with n sampling moments.

Second, the cluster center point cj among k cells at the jth
moment is found using the K-means clustering method

= [ ]c LK means( )j n
T

(7)

where T denotes transposition.
The computed results of K-means clustering are constructed

into a cluster center matrix C.
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where cj denotes the cluster center value of the kth cell at the jth
moment.

Finally, the cell that is closest to the cluster center value at
each moment is calculated; so, first, it is necessary to set an
interval radius e and let the cluster center range matrix C′ be
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In the feature matrix Ln′, the cells belonging to C′ at moment j are
found

L Cn

All eligible cell numbers N at moment j are recorded

= [ ···]N n n, ,1 2

= [ ··· ]M m m m m, , , ,k k1 2 1

where M denotes the number of times the cell is counted in
moment j. The cell number with the highest number of times in
M is selected and averaged, which is the reference cell Ure for this
process. The formula is as follows

= =U
l

p
i
p

i
re

max i

(8)

2.5. Fault Detection Based on the Frećhet Algorithm.
Frećhet’s algorithm is a metric for path space similarity proposed
by Maurice Rene ́ Frećhet, a French mathematician, in 1906.39 It
is now commonly used in other fields such as railroad turnout

Figure 5. Flow chart of reference cell selection based on K-means.
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fault detection and transformer fault detection.40−42 Frećhet’s
algorithm extends the realistic distance problem in general sets
and especially provides a good calculation method for similarity
measures between two variables. After the feature extraction in
Section 2.1−2.4, each normal cell of EV battery pack has similar
changes in general. If there is a cell with malfunction, it will show
different change features from other cells. Therefore, the
introduction of the Frećhet algorithm can identify the cell well.

The flow of calculating the dissimilarity is shown in Figure 6.
Frećhet’s mathematical definition is as follows:
Supposing that L1 and L2 are two continuous curves on the

space S, i.e., L1:[0,1] → S and L2:[0,1] → S; and set
reparameterized functions α and β in the unit interval, and α:
[0,1] → [0,1], β:[0,1] → [0,1]; then, the Frećhet distance F(L1,
L2) between two continuous curves L1 and L2 is defined as

= { } [ ]F L L d L t L t t( , ) inf max ( ( ( )), ( ( ))) , 0, 11 2
,

1 2

(9)

where d is the metric function, and the metric functions are
Gaussian affiliation function, weighted Euclidean distance, etc.

According to the above definition, this fault diagnosis method
uses the discrete Frećhet algorithm. This method is similar to the
continuous Frećhet distance calculation method and can be used
to calculate the dissimilarity between discrete reference cells and
discrete cells to be detected. And the method is easy to be
implemented on a computer. The specific procedure is as
follows.

Supposing the reference cell CL for this discharge process is
found to be
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Figure 6. Flow chart of fault diagnosis based on the Frećhet algorithm.

Figure 7. Overall flow chart of fault diagnosis.
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where vk denotes the feature value of the kth cell and the
sampling point is all of the data of the current process.

Using the definition of the Frećhet distance, the Frećhet
distance F(CL, C2) can be calculated for the reference cell CL and
the detection cell C2

Then, we calculate the dissimilarity

= F C CDS ( , )L 2 (10)

We set the threshold T. If the dissimilarity DSi is greater than
the threshold T, the cell is considered as a faulty cell. On the
contrary, the current cell is considered as a normal cell

= * + *T 1.3 (mean(DS) 3 std(DS)) (11)

where mean is the mean of DS of all cells at the current moment
and std is the standard deviation of DS of all cells at the current
moment. That is, T is 1.3 times the 3σ principle.

Typically, training data from actual vehicle operations are
used to threshold set, which have been tagged in detail with the
time of failure and the number of the faulty unit. Adaptive
thresholds are then set based on 3-σ, and margins are considered
so that faulty units are alarmed and normal units are not. Based
on the adjusted thresholds, it is applied to another vehicle of the
same model for testing to determine if it is effective.
2.6. General Flow Chart of Fault Diagnosis. Battery

failure of electric vehicles still affects users. And serious battery
failure can lead to thermal runaway, which eventually triggers
spontaneous combustion and brings incalculable harm to
people. This fault diagnosis method is implemented based on
K-means clustering and the Frećhet algorithm. And the overall
flow of fault diagnosis is shown in Figure 7.

The purpose is tantamount to diagnosing the battery of tiny
faults and achieving early warning in the current calculation
process. The overall steps are presented as follows.
Step 1: To judge the calculation conditions of the discharge

process data collected in the big data platform for electric
vehicles. If the data points collected in the current discharge
process exceed 100, it meets the calculation requirements and
goes to the next step. If the data points collected in the current

discharge process are less than 100 points, the discharge process
sampling is invalid and cannot be used for fault diagnosis.
Step 2:The data of the discharge process is cleaned. As can be

seen from Section 2.2, the voltage data collected by the sensor
have a large amount of noise, which can greatly affect the
judgment result of the fault diagnosis algorithm. Therefore, this
method introduces an R-Lowess algorithm for noise reduction
of the collected voltage data. R-Lowess can effectively remove
the anomalies caused by sensor errors and can retain the fault
variation characteristics of the battery.
Step 3: In the early stage, it is difficult to achieve an early

warning and easy to miss the alarm if using the collected raw
voltage data for fault diagnosis because of the small change
characteristics of the battery voltage where minor faults occur.
Therefore, this method introduces an OLS-based feature
extraction method to extract the potential features of the
voltage data. The extracted features can effectively highlight the
evolution of battery faults compared to other normal battery
variation features. And it can achieve early warning in the current
calculation process.
Step 4: A reference cell selection method based on K-means

clustering is developed to reduce the false positives of the fault
diagnosis algorithm. It is able to effectively reduce the impact of
inconsistency between cells and can decrease the false alarm rate
of the algorithm. This method needs to be able to reduce false
positives compared to other literature with neighboring cells.
Step 5: A fault diagnosis method is proposed based on the

Frećhet algorithm. Utilizing the extracted features, the
dissimilarity of each cell to the reference cell is calculated. The
result is constructed as the dissimilarity matrix of each cell at
each moment. Threshold value T is set based on the 3δ principle.
If a cell in the dissimilarity matrix exceeds the threshold value T
at a certain moment, the algorithm alarms. A fault occurs in that
cell. If no cell in the dissimilarity matrix of the current process
exceeds the threshold T, the algorithm returns and proceeds to
the calculation of the next discharge process.

Figure 8. Normal vehicle #C1 data cleaning result by R-Lowess.
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3. RESULTS AND DISCUSSION
Faults such as extrusion, loose connection, internal short circuit,
etc. generally exist in the battery pack. And the battery fault
diagnosis contains fault cell number, fault type, fault cause, etc.
However, more accurate models and more specialized technical
support are needed for the analysis of the specific causes of
battery failure. In this paper, only voltage data are considered, so
it is not the scope of this paper to determine the cause of the
fault. The focus of fault diagnosis in this paper is to achieve early
warning of a minor fault in the discharge process. To verify the
effectiveness of the method proposed in this paper, three real-
world vehicles are used for verification illustration.
3.1. Data Cleaning Analysis. Figure 8 shows the voltage

data graph of each cell of normal vehicle #C1 after data cleaning
by R-Lowess. According to the original voltage graph, when the
data of this discharge process began to be collected, a voltage

drop occurred at #Cell 1−23 due to the abnormality of the
sensor, which greatly affected the data quality of the voltage.
After the R-Lowess process, the voltage drop at the 10th
sampling point has been removed. And R-Lowess also removes
some burrs in the data collection during the discharge process,
which improves the data quality and is useful to the fault
diagnosis results. Also, it is found from Figure 8 that subsequent
points of normal voltage fluctuations, such as the 560−600th
and 1500−1580th sampling points, are able to be retained intact.
These sampling points belong to normal fluctuations and are not
abnormal data. Similarly, in other parts of the voltage data, the
normal voltage fluctuation feature is retained by the R-Lowess
method, and no further examples will be given.

As shown in Figure 9, the fault occurred in vehicle #C3. The
vehicle is used as an example in this section to illustrate that the
noise reduction algorithm is not very sensitive to the changing

Figure 9. Faulty vehicle #C3 data cleaning result by R-Lowess.

Figure 10. Normal vehicle #C1 dissimilarity result by the Frećhet algorithm.
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features of the fault monolith. The R-Lowess method is able to
retain the slight fault features intact and will only remove outliers

that are anomalous due to the sensors. In the faulty vehicle #C3,
#Cell 31 shows a weak internal short-circuit fault at the 351st

Figure 11. Faulty vehicle #C2 dissimilarity result by the Frećhet algorithm: (a) calculation result of the whole process of the faulty vehicle #C2 and (b)
detailed descriptions at #A, #B, #C, and #D.
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sampling point and the voltage shows a decreasing trend.
However, due to the cell equalization mechanism, this cell
voltage drops by 0.01 V before the cell voltage stabilizes again. As
seen at the 351st sampling point, this fault feature was not
removed by the R-Lowess algorithm. Also, at the 1680th
sampling point, some cells in the battery pack show a voltage
fluctuation at the same time. This noise reduction algorithm is
equally insensitive to this normal fluctuation feature and retains
the fluctuation feature. And the fault feature is also retained for
#Cell 31 where the fault occurred earlier. During subsequent
#Cell 31 monomer discharge, the evolution of the internal short
circuit intensifies and R-Lowess is able to retain the fault
signature, which is no longer described here as an example.
Furthermore, it is well known from the original voltage plot that
at the 3600th sampling point, there is an abrupt rise in the
monomer voltage due to a sensor acquisition error, a feature that
is removed from the voltage data after R-Lowess processing.

After the R-Lowess processing, the data quality of the discharge
process was considerably improved.

In summary, through the analysis of one normal vehicle and
one faulty vehicle, it can be proved that the noise reduction
algorithm proposed in this paper can effectively remove the data
collection errors caused by sensors, while preserving the
evolution features of the battery unit when it happens to be
faulty.
3.2. Fault Diagnosis Analysis. The dissimilarity detection

results of the Frećhet algorithm for normal vehicle #C1 are
shown in Figure 10. From Figure 10, it can be seen that the
feature data extracted by the process are input into the Frećhet
algorithm, and no false alarms or missed alarms occur in all
sampling points of normal vehicle #C1. In Figure 10, the red
dashed line is the threshold T. Figure 10 also shows that normal
cells are basically concentrated in a small range at the same
sampling point, and individual cells may deviate from the

Figure 12. Faulty vehicle #C3 dissimilarity result by the Frećhet algorithm: (a) calculation result of the whole process of the faulty vehicle #C3 and (b)
detailed description of sampling points 200−400 and 1880−2450 in panel (a).
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concentration range of other cells due to factors such as poor
consistency. But the cell does not exceed the threshold T set in
this paper. It also proves that the threshold setting with a certain
margin considered in this method is reasonable.

Figure 11 shows the result of the dissimilarity calculation of
the Frećhet algorithm for the faulty vehicle #C2. The voltage
data of this discharge process is input into this method, and
#Cell 47 shows a slight voltage drop at the 425th sampling point.
This method provides an early warning for this single unit in the
calculation of this process. In Figure 11(a), the red dashed line is
the threshold line, and the green bolded solid line is the result of
the dissimilarity calculation of faulty #Cell 47 in this method.
After the extraction process of the new features, Figure 11(b) #A
shows that #Cell 47 has exceeded the threshold at the 280th
(corresponds to the 320th sampling point of the voltage data due
to the sliding window setting as 40) sampling point and the
algorithm warns. In contrast, in the original voltage data, this
sudden voltage drop feature occurs at the 425th sampling
moment, and the algorithm in this paper warns almost 100
sampling points earlier. For the other normal cells, no false alarm
occurred during the whole calculation process. Figure 11(b)
#B−#D also shows that the 460th, 720th, and 1170th sampling
points were also just close to the threshold value and did not
exceed it, which were normal cells. The focus of this paper is to
achieve early warning of minor faults, and the diagnosis of faults
for which the voltage difference has become very obvious at a
later stage is not a focus of this paper. To distinguish the fault
becoming serious, this algorithm does not alarm the voltage
difference becoming largely due to short-circuit fault at a later
stage, but only the sudden voltage change due to the
intensification of the fault.

Figure 12 shows the result of the dissimilarity calculation of
the Frećhet algorithm for the faulty vehicle #C3. The evolution
of the fault in the early stage of this vehicle is more insignificant
compared to the faulty vehicle #C2. The innovative features of
the faulty vehicle #C3 are input into this diagnostic method, and
the weak voltage drop due to the faulty cell can also be warned in
advance after the calculation of this method. In Figure 12, the
red dashed line is the threshold line of the process and the
thickened yellow line is the fault #Cell 31 of this faulty vehicle. It

can be concluded from Figure 12(b)(1) that this method has
achieved the warning at the 290th sampling point (correspond-
ing voltage value of 330th sampling point) before the cell voltage
surge point occurs, while the voltage surge point is at the 351st
moment and this method has advanced the warning by 31
sampling points. After the 320th sampling point, a weak internal
short circuit occurs in the cell causing a voltage drop. Since there
is an equalization mechanism within the battery pack, it slows
down the voltage drop trend of the single faulty cell #Cell 31. For
this phenomenon, the algorithm does not warn about this tiny
internal short circuit anymore since it was already warned at the
320th sampling moment earlier. However, #Cell 31 shows a
sudden voltage drop again at the subsequent 1960th sample
point, and the method in this paper performs the fault warning
again at the 1930th moment and 30 samples earlier with this
sudden drop point in Figure 12(b)(2). This is due to the fact
that #Cell 31 had already experienced a fault in the previous
period, and fault evolution became severe with that sampling
point. Fault expansion makes the dissimilarity results calculated
by this algorithm very prominent, which also verifies the
effectiveness of this method for detecting sudden voltage
changes.

In summary, the effectiveness and feasibility of the fault
diagnosis algorithm proposed in this paper are verified using one
normal vehicle and two faulty vehicles. After the current process
of discharge data is subjected to data noise reduction, new
feature extraction, and dissimilarity calculation of the proposed
method in this paper, it can amplify the minor fault features and
can give early warning to the battery cells long before the sudden
voltage drop.
3.3. Comparative Experimental Analysis Based on

Reference Cells.When calculating the dissimilarity of adjacent
cells, it was found that individual cells would be affected by
inconsistency and the algorithm would calculate abnormal
dissimilarity, which is prone to false positives. Therefore, in this
paper, K-means clustering is used to calculate the ideal cell that is
an equivalent substitute for this process as a reference cell.

Figure 13 shows the cell calculation for the faulty vehicle #C2.
In the algorithm setup, the average of the cell voltage of the first
two highest counts is chosen as the ideal cell for this process. As

Figure 13. Cluster center distribution of faulty vehicle #C2 in the first 100 sampling points.
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can be seen from Figure 13, the first two highest counts of cells
for the faulty vehicle #C2 are #Cell 73, which appears within the
cluster center 13 times in the first hundred moments, and #Cell
20, which appears within the cluster center 10 times in the first
hundred moments. Therefore, the reference cell voltage value
for the faulty vehicle #C2 during this discharge is the average
voltage of #Cell 73 and #Cell 20. This algorithm is able to reduce
false alarms by selecting only the first 100 moments and the first
two highest counts of cells. In practical applications, this
parameter can be adjusted according to the actual situation.

Figure 14 shows the results calculated for the faulty vehicle
#C2 without the use of a reference cell. For comparison with the
results using the reference cell, the input is also the features
extracted for this discharge process, but the dissimilarity results
are between neighboring cells. In Figure 14, the red dashed line
is the threshold T. The formula for setting the T value is the same

as before. The bold solid green line is fault #Cell 47. And the
solid purple line is the #Cell 46 adjacent to fault #Cell 47. The
purple curve is the result of dissimilarity between the single
#Cell 46 and #Cell 47, and the bold solid green line is the result
of dissimilarity between the fault #Cell 47 and #Cell 48.
Therefore, according to the calculation logic, the faulty cell can
be located at #Cell 47. Although calculating the dissimilarity
between neighboring cells is able to detect the faulty cells when a
fault occurs, it can also be noticed from Figure 14 that at the
550th, 700th, and 950th moments of the process, some cells
exceeded the threshold T and the algorithm had a false alarm.

Compared with the calculation results of the Frećhet
dissimilarity without using the reference cells, the fault detection
processed by the K-means clustering method, in Figure 11,
proposed in this paper, can reduce the influence of inconsistency
of each cell. The fault diagnosis algorithm did not have fault false

Figure 14. Faulty vehicle #C2 using adjacent cell dissimilarity results by the Frećhet algorithm.

Figure 15. Cluster center distribution of normal vehicle #C1 in the first 100 sampling points.
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Figure 16. Normal vehicle #C1 using adjacent cell dissimilarity results by the Frećhet algorithm: (a) calculation result of the whole process of normal
vehicle #C1 and (b) detailed description of #A, #B, and #C in panel (a).
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alarms throughout the calculation process, and only the faulty
cells were warned, which proved the effectiveness of this
method.

In a similar way, Figure 15 shows the distribution of the
number of times each cell in the normal vehicle #C1 falls within
the cluster center. The two cells with the highest number of
occurrences in the first hundred moments were also selected for
this vehicle. As seen in Figure 15, 95 cells of the process fell
within the cluster center range for 15 of the first hundred
moments for #Cell 15 and for 12 of the first hundred moments
for #Cell 76. Therefore, the reference cell for normal vehicle
#C1 during this discharge is the average of the voltage between
#Cell 15 and #Cell 76.

Figure 16(a) shows the dissimilarity results calculated for
normal vehicle #C1 using neighboring cells. The red dashed line
is the threshold T. The threshold T is established in the same

way as in the previous section. In Figure 16b, without using the
reference cells selected by our method, the algorithm shows a
false alarm for #Cell 88 at the sampling point around 1200, a
false alarm for #Cell 41 at the sampling point around 1500, and a
false alarm for #Cell 41 at the sampling point around 2200. And
from Figure 10, it can be found that the results of Frećhet
dissimilarity calculated using the reference cells selected by our
method are more satisfactory. Our proposed fault diagnosis
algorithm does not show any false alarms while calculating the
whole process.

In summary, it can be demonstrated by a faulty vehicle and a
normal vehicle that using the adjacent cell calculation method
will lead to many false alarms due to the inconsistency between
cells and difficulty in setting the threshold value. However, after
selecting the reference cells using our method, the performance
of the algorithm is improved, the false alarm rate is greatly

Figure 17. Faulty vehicle #C3 features extracted based on the OLS method.

Figure 18. Faulty vehicle #C3 dissimilarity results using literature features.
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reduced, and it is able to warn accurately. In this calculation, the
selection of two cells is generally sufficient to achieve the effect in
reducing the inconsistent influence. In other cases with different
applications, voltage averages for more cells at more moments
can be selected depending on data quality, etc. In addition, the
use of this method mitigates the effect of severe deviations in the
voltage of the faulty cell on the reference cell when averaging the
voltages on all cells.
3.4. Comparative Experimental Analysis Based on

Feature Extraction. Figure 17 shows the feature values
extracted by the faulty vehicle #C3 through the method of this
paper. It can be observed that the feature extraction through the
method in this paper can amplify the small voltage drop feature,
which is beneficial to the detection of the fault diagnosis
algorithm. In addition, the study in this paper focuses on the
prewarning of minor faults, but the characteristics of the late
faults where the voltage difference becomes large are not
studied. Therefore, this method does not diagnose for the late
voltage value that continues to deviate significantly from the
normal cell voltage. The sampling point around 1900 in Figure
17, where the fault characteristics appear to change markedly, is
the result of the short-circuit fault aggravation of this single cell
and the coupling effect of the cell equalization mechanism. This
phenomenon has been analyzed and described in Section 3.2.
Further, in the actual vehicle, we found that cells with large
voltage differences may sometimes be caused by cellular
inconsistency and do not form part of the cell generation fault.
Subsequent experiments will be illustrated.

Figure 18 shows the results of fault diagnosis using the
normalized cell voltage features from ref 13 and only the first five
hundred moments are plotted to facilitate a comparison of the
detection in the initial occurrence of a fault. For the fairness of
the comparison, only the feature values are swapped in the
comparison test. The other conditions are the same, such as data
cleaning, sliding window size, threshold setting, etc. Figure 18
shows this diagnosis results in an alarm for the single #Cell 31
only at the 312th moment (corresponding to the 352nd moment
of voltage data), while the feature extracted in this paper is a
warning signal at the 280th moment (for the 320th moment of
voltage data), 32 sampling points ahead. By comparing with the

normalized cell voltage features in ref 13, the effectiveness of the
proposed features in this paper for the amplification and early
warning of minor fault features is shown by Figure 12 in Section
3.2.

Figure 19 shows the results of the dissimilarity calculated from
the voltage values after data noise reduction. For ease of
comparison, only the first five hundred moments containing the
fault features are plotted. Figure 19 shows that in the first five
hundred of the faulty vehicle #C3, although it was possible to
locate the fault at the 330th sampling point (corresponding to
the 370th moment of the voltage value), the sudden voltage drop
was at the 351st moment and did not complete the early
warning. Compared with the feature extraction method set out
in the present paper, our method warned at the 280th sampling
point (corresponding to the 320th moment of voltage data),
which was 31 points faster than using the original voltage data.
Also, the solid purple line #Cell 39 appears to be a false alarm.
This is due to the poor consistency of this cell compared to other
cells, and there is always a certain voltage difference with the
voltage values of other cells, which can be clearly found in the
purple curve cell from the original voltage data in Figure 3.
However, the features proposed in this paper did not produce
false alarms for this cell in Figure 12 and the OLS-based features
extracted in this paper were effective in highlighting the fault
features for early warning.

In summary, compared with using the normalized cell voltage
features of ref 13 and using only the original voltage, the features
extracted in this paper can be more effective in reducing false
alarms, amplifying minor fault features, and achieving early
warning.

4. CONCLUSIONS
This paper proposes a fault diagnosis method based on K-means
and the Frećhet algorithm, which can give early warning to cells
where weak faults occur through potential feature extraction of
voltage data in a discharge process. The data smoothing method
based on R-Lowess proposed in this paper can effectively
remove the noisy data caused by sensors, while it is insensitive to
the general weak fault features. Compared with the input

Figure 19. Faulty vehicle #C3 dissimilarity results using original voltage data.
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original voltage data, the fault feature extraction method based
on the OLS method proposed in this paper can achieve early
fault diagnosis and can amplify the small fault features for easy
detection. A reference cell selection method based on K-means
clustering is proposed to decrease the influence of inconsistency
between cells on the algorithm results. Compared with the
general calculation between adjacent cells, the reference cells
selected in this paper can effectively mitigate the algorithm false
positives caused by cell inconsistency and greatly improve the
accuracy of the fault diagnosis algorithm. And based on the
extracted new fault features, the Frećhet algorithm is proposed
for fault diagnosis and localization. Through the actual operation
of electric vehicle data verification, the method can also be
applied in the field of electric vehicle battery fault diagnosis and
can effectively identify the fault cells with high accuracy.

In addition, due to the lack of fault data, the stability of this
algorithm can be verified on more faulty vehicles in the ensuing
research. Or some data enhancement methods are introduced to
increase the faulty vehicle data.
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