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Abstract

Thousand-grain weight is a key indicator of crop yield and an important parameter for evalu-

ating cultivation measures. Existing methods based on image analysis are convenient but

lack a counting algorithm that is suitable for multiple types of grains. This research develops

an application program based on an Android device to quickly calculate the number of

grains. We explore the short axis measurement method of the grains with morphological

thought, and determine the relationship between the general corrosion threshold and the

short axis. To solve the problem of calculating the number of grains in the connected area,

the study proposes a corrosion algorithm based on the short axis and an improved corner

point method. After testing a variety of crop grains and equipment, it was found that the

method has high universality, supports grain counting with white paper as the background,

and has high accuracy and calculation efficiency. The average accuracy rate is 97.9%, and

the average time is less than 0.7 seconds. In addition, the difference between the average

accuracy for various mobile phones and multiple crops is small. This research proposes a

grain counting algorithm with a wide range of applications to meet the requirements of non-

glare use in the field. The algorithm provides a fast, accurate, low-cost tool for counting

grains of wheat, corn, mung bean, soybean, peanut, rapeseed, etc., which is less con-

strained by space and power conditions. The algorithm is highly adaptable and can provide

a reference for the study of grain counting.

Introduction

Grain weight is important for improving crop yield [1]. Thousand-grain weight (TGW),

which refers to the weight of a thousand seeds, is used to characterize the fullness of grains and

is an important parameter for assessing cultivation measures [2]. In the breeding industry,

TGW is a key indicator of the quality of a seed variety [3]. Therefore, TGW is widely employed

in crop research [4–6]. Measuring TGW includes weighing and counting. The former is rela-

tively simple and can be obtained directly through precision balance, while the latter is rela-

tively cumbersome. The conventional methods of counting are presented as follows: (1)
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Manual counting is a traditional method that is time-consuming and laborious. Counting for

a long time can be tiresome for people; therefore, they are more likely to make mistakes. (2)

The infrared detection method can adapt to particles of different sizes and shapes [7, 8], its

accuracy is high, but when the grains fall too fast, they are likely to be undercounted due to

mutual obstruction. In addition, the cost is not low. (3) The method based on sound collision

has a high accuracy [9] but is easily affected by the outside world, and the first installation is

more complicated. (4) The method of image analysis is simple [10–13] the cost is also low, but

the image segmentation algorithm poses difficulties. Such research includes two steps: (1)

extracting the grain region from the image and (2) separating each grain region and then

counting; this step is difficult. Common methods for solving these problems are described as

follows: (1) Corrosion expansion method [14]. This method is simple to operate; the process

begins by first separating the area of the adhesive with a corrosion operation and then per-

forming the expansion to restore the grain size, enabling us to determine the connection

boundary. However, different crop grains have different thresholds, and it is difficult to obtain

a general segmentation value. (2) Watershed algorithm [15]. This widely employed method

uses the local differences in the adhesion area to identify the split lines by simulating the flood-

ing process of spring. This method is sensitive to noise and easily causes over-segmentation.

(3) Active contour algorithm [16]. This algorithm uses the active contour model as the initial

reference and then achieves segmentation of the target by gradually constructing the contour

curve and approaching the edge of the object to be detected. The algorithm relies on the selec-

tion of the initial curve and needs to accurately identify the original properties of the grain.

This method is only suitable for the adhesion of a small number of grains. (4) Feature point

matching algorithm [17, 18]. Grain segmentation is realized by detecting feature points and

calculating and matching descriptors, which is not suitable for grains with irregular edges. (5)

Morphological algorithm [19, 20]. The principle is to extract the skeleton information of the

grain image and then determine the posture and direction of the adhesion point through the

operator. A smooth closing process is performed, first, according to the principle of direction,

and second according to the principle of distance. Thus, it is possible to segment the image

through the abovementioned process. This method is suitable for handling complex adhesion

situations, but a large number of opening and closing operations result in a slow calculation

speed.

Grain counting applications based on image segmentation mostly require the support of

computers and cameras [21–23], and it is necessary to prepare the equipment in advance to

perform a series of connection operations when using it. For example, Zhou Honglei used C+

+ and QT to develop a computer application. In addition, he designed a rice test platform to

measure the number and area of grains, as well as other parameters, with 8 million pixel indus-

trial cameras and metal indicator lights [21]. Yano developed SmartGrain software [11], which

runs on a computer to measure the number and shape of high-throughput rice. Such methods

are not very convenient. With the development of the mobile internet and smart terminals,

people have become accustomed to using mobile phones to work and live. The Android plat-

form provides a free development environment, which inspires a large number of practical

agricultural applications (apps), such as agricultural pest identification [24], crop phenotype

analysis [25], and plant species identification [26]. Some researchers have also conducted

research based on app counting using mobile phones. For example, LiuTao proposed a method

for calculating the number of grains based on image feature points [27], which could then

accurately calculate the number of grains in the adhesion area. However, this method was only

effective for rice and wheat grain recognition. Wu Wenhua designed the grainTKW system

[28], which had a low cost and an accuracy rate of 97%, but it needed the support of powered

equipment and brackets. Many variety tests were carried out outdoors and could not provide
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powerful support for grain counting. To solve this problem, Evgenii Komyshev developed an

outdoor counting app with white paper as the background [25], which could effectively iden-

tify the number of wheat grains. However, identifying 50 particles in 1 minute was too time-

consuming for the requirement. This type of research predominantly focuses on one or two

types of grains and lacks an algorithm suitable for a variety of crop grains. A fast, high-accu-

racy, low-cost, easy-to-operate counting method that supports outdoor environments and

meets a variety of grain requirements is needed.

In summary, existing grain counting research is mostly carried out for a certain kind of

grain. Some grain counting algorithms are not robust to various changes, and it is difficult to

obtain a universal crop grain counting algorithm. Therefore, this research has developed a

grain counting system that adapts to a wide range of grains. The GrainCounter app success-

fully enables users to quickly count the number of multiple types of outdoor grains through

smartphones, thereby solving versatility and counting problems for the background of white

paper. To eliminate the constraints of conditions, such as large space and power in laborato-

ries, white paper, which is easy to obtain, is selected as the background. To solve the problem

of identifying diverse grains of different colors, shapes, and sizes, a corrosion algorithm based

on the short axis of the grain is proposed. To reduce GrainCounter’s counting time, the

research compresses pictures and executes the most time-consuming segmentation algorithm

on the server.

Materials and methods

Grain varieties

To test the versatility of different grains, six grains of different colors, shapes, and sizes were

selected: wheat, corn, mung bean, soybean, peanut, and rapeseed. Relevant descriptions are

shown in Table 1:

GrainCounter was created for mobile devices. To test the accuracy of the algorithm for

identifying grains under different device conditions, three Android operating system products

with a high market share were selected: two mobile phones and a tablet. The parameters are

detailed in Table 2. The test environments were indoors or outdoors under the shadow of a

building or tree, on an A3 white paper, and in one test, the flash on the mobile phone used to

take pictures was turned on. Because the tablet did not have a flash, the Huawei MLA-AL10

mobile phone was pasted on the back of the tablet, and we turned on the mobile flashlight to

fulfill the light condition.

Software development tools

The counting system was composed of three parts: the mobile terminal app, grain information

management system, and grain recognition algorithm. (1) The app for the grain counting staff

was developed by Java and Android Studio and communicated with the server through the

Table 1. Description of grain types.

Grain Color Size (mm) Shape Variety

wheat yellow length: 7.2 width:3.4 ellipse Yangmai 23

corn yellow length: 11.8 width:8.8 Wedge Zhengdan 958

mung bean green length: 5.5 width:3.9 ellipse Zhonglv 1

soybean yellow length: 11.1 width:6.9 ellipse Zhonghuang 13

peanut red length: 13 width:8 ellipse Luhua 14

rape black diameter:2.1 round Zhongshuang 11

https://doi.org/10.1371/journal.pone.0273785.t001
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HTTP protocol. (2) The grain information management system served as the manager and

was developed through Eclipse. The system belonged to the B/S structure and included the

front end and back end. The former was based on the LayUI architecture and Jquery frame-

work, and the latter employed the mainstream Spring MVC development model. Open-source

MySQL was chosen as the database and was released through Tomcat. (3) The grain recogni-

tion algorithm was developed by OpenCV. After counting in this part, the number of grains,

time, and picture after recognition are returned to the users. The system implementation flow

is shown in Fig 1.

Image capture

After clicking the upload photo button on GrainCounter, the app automatically called the

camera to take pictures; a person could also select an image from the album. It was recom-

mended to sprinkle grains on clean and flat white paper. The shooting direction of the camera

was oriented perpendicular to the paper if possible. The use of the flash was recommended

because it could reduce the influence of light. The shooting range enclosed all of the grains and

contained a less irrelevant background (The sample image is shown in S1 Fig).

Image process

The resolution of the original photo was so large that uncompressed operations would greatly

increase the algorithm processing time, but excessive compression would reduce the algorithm

accuracy. To balance the accuracy and response time, the following conventional resolutions

were tested: 1080, 1440, 1920, 2500, and 3000. The numbers were the resolution numbers of

the long side, and the short side was calculated in proportion to the original image. After the

accuracy tests, we discovered that a resolution of 1920 worked best. Taking into account the

different photographing habits of different people, horizontal and vertical photographs were

captured. The study concluded that it did not affect the accuracy after the transposition test.

Image compression and steering were processed using the open-source ImageMagick develop-

ment kit.

Grain separation

The study transformed the compressed original image into a grayscale image and then pro-

cessed it into a binary image according to the threshold value to segment the research object

and background area. In this study, we used the Gaussian filtering method to remove noise

and utilized the OSTU algorithm to extract grain regions. The results are shown in Fig 2.

It was difficult to obtain a universal method to separate all kinds of seeds because the color,

shape, and size of the seeds differed, and thus, achieving accurate separation by simple tradi-

tional methods was not easy. After analysis and exploration, a corrosion method based on

short-axis grains, which could help conventional algorithms adapt to a narrow range of prob-

lems, was proposed in this research. This method is detailed as follows:

Table 2. Descriptions of test devices.

Manufactory Product Type Device Model Version Camera Resolution

OPPO Phone R11s 8.1.0 CMOS 16 megapixels 3456�4608

HUAWEI Phone Honor Play COR-AL 10 9.1.0 CMOS 16 megapixels 3456�4608

SAMSUNG Pad SM-T355C 6.0.1 CMOS 5 megapixels 2592�1944

https://doi.org/10.1371/journal.pone.0273785.t002
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1. The grain skeleton was extracted through detailed operation, and then we calculated the

grain skeleton length and distribution [29]. Fig 3(a) shows the results after treatment. The

red line segment in Fig 3(b) denotes the grain skeleton, and the shorter line segment repre-

sents a single grain.

2. The short axis of the grain was calculated. First, we separately analyzed each point on a sin-

gle grain skeleton, as points P1, P2, and P3 are shown in Fig 4. We then calculated the verti-

cal distance from the boundary to this point, as Lines l1, l2, and l3 are shown in Fig 4. The

maximum vertical distance of all points was the short axis of the grain.

3. Corrosion may break down the cohesive grains. If the corrosion was excessive, some grains

could disappear. Therefore, the choice of parameters was very important. After conducting

an analysis, we assumed that the degree of corrosion was related to the short axis of the

grain. To meet the requirements of grains of different shapes and sizes, the corrosion

Fig 1. System implementation flow.

https://doi.org/10.1371/journal.pone.0273785.g001
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parameter formula was set as:

e ¼ w � X; ð1Þ

where w is the scale coefficient, and X is the short axis of the grain.

We took the values of 0.1, 0.2. . .. . .0.9 in this study and counted the proportion of

unbonded grains and missing grains in the images. The analysis revealed that the best result

was obtained when w was set to 0.4. Fig 5 shows the effects of 6 kinds of grains after corrosion

of the 0.4�minor axis and 0.8�minor axis.

Fig 2. Binary plots of 6 types of grains.

https://doi.org/10.1371/journal.pone.0273785.g002
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After segmentation with this method, the round grains were separated. Irregularly shaped

grains could also decompose a large area of adhesion into a single grain or several small adhe-

sion grains, as shown in Fig 5. Because a small number of adhesion areas still existed, we chose

the corner point calculation method for analysis.

Grain counting

Improved corner calculation method. By analyzing the grain position distribution, we

found that it was mainly composed of three categories in Fig 6: (1) a single grain; (2) an area

where the grain adhered; and (3) an area where the grain was adhered and had holes. It was

difficult to achieve high accuracy in the case of grain adhesion for traditional methods, such as

watersheds and active contours. To solve this problem, LiuTao proposed a corner point calcu-

lation method (Liu et al.,2017). In this method, the number of grains was calculated by the

relationship between the feature points and the number of divided grains. The calculation for-

mula is shown in (2):

Grain number
Xn

k¼0

Cpeak

2
� Rclosed þ 1 ð2Þ

where Cpeak is the local maximum proportion of the grain area in the template at the edge of

the grain outline, and Rclosed is the closed area enclosed by the grain.

Fig 3. Grain skeleton of wheat. a: Grain skeleton graphics. b: Partially enlarged skeleton.

https://doi.org/10.1371/journal.pone.0273785.g003
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Fig 4. The process of short-axis calculation.

https://doi.org/10.1371/journal.pone.0273785.g004

Fig 5. Corrosion results of 6 kinds of grains based on different coefficients of short axis. Note: The three rows are binary graphs; 0.4�minor axis of

the corrosion factor, and 0.9�minor axis of the corrosion factor.

https://doi.org/10.1371/journal.pone.0273785.g005
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After many experiments, we discovered that the given 5�5 neighborhood window in his

research had some missed corners because the template was slightly small; if the template was

too large, the algorithm processing time would be much longer, and it would be difficult to

meet the application requirements. The results of the experiments in this study indicated that

the neighborhood window was 13�13 better, as shown in Fig 6(c). The particle corner points

were calculated using the parameter of 0.66�13�13 because this approach could provide more

candidate corner points.

Special perspective analysis

After many tests, the study found that the abovementioned corner point analysis method was

prone to calculation errors when two grains were almost linearly connected. As shown in Fig

7, where there was no Cpeak point above due to overlap, and only the Cpeak point below was

detected, and calculation result of the corner point algorithm was 1.5, which was actually 2

grains. Because oval-shaped grains, such as wheat, had irregular surfaces, the protruding parts

were easily covered after overlapping, which might lead to missed detection of feature points.

Fig 6. Grain topology and corner points.

https://doi.org/10.1371/journal.pone.0273785.g006
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Therefore, such results needed to be corrected. This research utilized morphological refine-

ment operations to extract the skeleton and analyzed the length and angle of the skeleton line.

According to the statistics, when the length of the skeleton line was greater than 1.5 times the

average length and the included angle ranged from 160–200 degrees (clockwise), it was judged

as a nonsingle seed. In this case, the average area method was used to calculate the number of

grains in the adhesion area [30].

Counting result display

The counting results are shown in Fig 8 and included in two parts. (1) Nonadhesive kernels.

We chose a red dot to represent a grain; it was marked in the center of the grain, which was

convenient for users to distinguish. (2) Adhesion of grains. It was represented by a red dot and

a yellow number. The red dot, which was located in the center of the area, indicates that this

part was an area composed of adhesive grains. The yellow number, such as numbers 3 and 2 in

Fig 8(b), represents the number of grains in this area. The yellow number is marked at the

upper right corner of the red dot, which is no longer involved in counting and just serves as an

indication. The final number of the entire image = the number of red dots (excluding the red

dots in the digital area) + the yellow number. For example, there were 7 grains in the picture

(b). When the user saw this picture, it was easy to judge the accuracy of the algorithm. Observ-

ing a gap between the marked result and the actual situation, it was possible to correct it and

record the adjusted result in the "corrected result" of the app.

Fig 7. Special topological relationship.

https://doi.org/10.1371/journal.pone.0273785.g007

PLOS ONE Research on a rapid identification method for counting universal grain crops

PLOS ONE | https://doi.org/10.1371/journal.pone.0273785 September 14, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0273785.g007
https://doi.org/10.1371/journal.pone.0273785


Evaluation index

The correct ratio (CR), error ratio (ER), and volatility (S2) were applied to evaluate the meth-

ods of this study. The corresponding formulas are shown in Eqs (3)–(6):

Correct ratio ¼ 1 �
jN1 � N2j

N1

� �

� 100% ð3Þ

Error ratio ¼
jN1 � N2j

N1

� �

�100% ð4Þ

M ¼
x1 þ x2 þ x3 þ . . .þ xn

n
ð5Þ

s2 ¼
x1 � Mð Þ

2
þ x2 � Mð Þ

2
þ x3 � Mð Þ

2
þ . . .þ xn � Mð Þ

2

n
ð6Þ

where N1 is the actual number of grains; N2 is the number of grains identified by the

Fig 8. Grain counting result. Note. A: Counting result graph. B: Meaning of the red dots and numbers.

https://doi.org/10.1371/journal.pone.0273785.g008
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algorithm; n is 8; xi is the accuracy of 8 kinds of grains; and M is the average identification

accuracy rate of 8 groups, in which the grains are the same species, ranging from 50 to 400.

Results and analysis

Result evaluation

Evaluation of the accuracy of different mobile phones and grains. The number of

counting grains in agriculture was concentrated in the range of 50–400 grains. Thus, a test pro-

gram with these 2 numbers as the upper and lower limits and an arithmetic difference of 50

was designed. The test results are shown in Table 3 (The original statistical result is shown in

S1 Table).

According to the statistical results, we could draw the following conclusions: (1) Comparing

the average accuracy rate of each crop under three different equipment conditions, we found

that corn grain had the lowest accuracy rate of 96.4% and that the grains of peanut and rape-

seed had the highest accuracy rates of 98.9% and 98.8%, respectively. (2) The average accuracy

rates of OPPO, Huawei, and Samsung tablets were 98.8%, 98.5%, and 96.3%, respectively. The

identification accuracy of mobile phones was relatively high and relatively stable, with small

differences in the results. The accuracy rate of Samsung’s tablet was slightly lower than that of

mobile phones and fluctuated greatly. The accuracy rate of identifying rapeseed grain was the

Table 3. Test results of different equipment for 6 kinds of crops.

Grain Species OPPO HUAWEI SAMSUNG

GN CR % GN CR % AVG CR% GN CR % GN CR % AVG CR% GN CR % GN CR % AVG CR%

Wheat 50 100.0 250 97.6 98.9 50 100.0 250 98.8 99.1 50 92.0 250 97.6 97.5

100 99 300 99.7 100 100.0 300 98.3 100 94.0 300 98.3

150 99.3 350 97.4 150 100.0 350 96.9 150 92.7 350 90.9

200 98.5 400 100.0 200 100.0 400 98.8 200 95.0 400 95.8

Corn 50 100.0 250 99.2 98.4 50 98.0 250 99.6 97.4 50 100.0 250 98.4 96.4

100 100.0 300 99.0 100 97.0 300 99.3 100 98.0 300 96.3

150 99.3 350 98.3 150 99.3 350 98.3 150 95.3 350 92.3

200 98.0 400 93.3 200 94.5 400 93.3 200 83.5 400 83.5

Mung Bean 50 100.0 250 98.8 98.8 50 98.0 250 99.2 98.4 50 98.0 250 99.2 97.8

100 99.0 300 97.3 100 100.0 300 96.3 100 94.0 300 92.3

150 97.3 350 99.7 150 97.3 350 98.9 150 95.3 350 96.3

200 99.5 400 99.0 200 99.0 400 98.5 200 97.5 400 97.5

Soybean 50 98.0 250 98.8 98.1 50 100.0 250 99.2 99.0 50 100.0 250 96.0 97.7

100 99.0 300 97.7 100 100.0 300 98.7 100 98.0 300 93.0

150 100.0 350 97.1 150 100.0 350 97.4 150 99.3 350 93.1

200 99.0 400 95.3 200 99.0 400 97.8 200 95.5 400 93.0

peanut 50 98.0 250 99.2 99.1 50 100.0 250 99.6 99.2 50 100.0 250 98.4 98.9

100 100.0 300 98.7 100 99.0 300 99.0 100 100.0 300 98.3

150 100.0 350 97.4 150 100.0 350 98.3 150 98.7 350 95.4

200 100.0 400 99.5 200 98.5 400 99.0 200 99.5 400 96.5

Rape 50 100.0 250 100.0 99.2 50 92.0 250 98.0 97.9 50 100.0 250 99.6 98.8

100 100.0 300 98.3 100 99.0 300 98.3 100 100.0 300 99.7

150 98.7 350 97.4 150 98.7 350 98.3 150 100.0 350 97.4

200 99.0 400 100.0 200 99.0 400 100.0 200 99.0 400 99.5

Note. GN means grain numbers, CR means correct ratio, and AVG CR means average correct ratio.

https://doi.org/10.1371/journal.pone.0273785.t003
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best, with an accuracy rate of 99.4%. Moreover, the accuracy rate of identifying corn grain was

93.4%, which was the lowest. (3) Overall effect: Using interregional statistical methods to ana-

lyze the distribution of the accuracy of different equipment and crop grains, the results are

shown in Fig 9. The chart reflected that the 35% accuracy rate was concentrated in the range

99.1%-100%, followed by the range 98.1%-99% and the range 96.1%-98%, and accounted for

27% and 21%, respectively. Grains with an accuracy rate of more than 96.1% accounted for

83% of the total. There were 5 cases where the accuracy rate was less than 92%, accounting for

3%. (4) Special circumstances: There were two cases where the accuracy rate was lower than

90%, both of which were photos of 200 grains of wheat and 400 grains of wheat taken by Sam-

sung tablets, and the counting accuracy rate was 83.5%.

Identification efficiency evaluation

The time consumption required to recognize a picture based on a white paper background is

shown in Fig 10. (1) The average running times of the OPPO, Huawei, and Samsung tablets

were 0.647 s, 0.604 s, and 0.36 s, respectively. The time-consuming difference between the two

mobile phones utilized in the test was small, and the time required for the tablet was the least.

(2) The running time of the algorithm rarely exceeded 1 second. (3) The analysis time did not

maintain a linear positive correlation with the number of grains in the picture. Various factors

affected the running time, such as the tightness of the grains, size of the picture, and shape of

the grains [25, 27, 28]. (4) Among the six test grains, the time to analyze corn was slightly lon-

ger and that of rapeseed grain was relatively short.

Fig 9. Accuracy distribution of test grains. Note. The horizontal axis is the accuracy rate of recognition by the algorithm; the left longitudinal axis is

the quantity, and the right longitudinal axis is the percentage.

https://doi.org/10.1371/journal.pone.0273785.g009

Fig 10. Time-consuming algorithm.

https://doi.org/10.1371/journal.pone.0273785.g010
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Software main interfaces

The app was simple to operate, could meet the diverse needs of users, and had been commer-

cialized. The main interfaces of the app are described as follows: (1) Through the “upload

image” button, the users could directly take a picture or select the picture to be identified from

the album, and the program automatically calculates the number. When a missed test or error

was detected, the number of corrections could be entered with the "I want to correct" button in

the lower right corner. (3) All historical results could be queried by clicking the clock icon.

With the filter button, we could quickly search by time range and keywords of the remarks. (4)

We checked the content to be exported and automatically sent the records to the specified

mailbox in Excel format. (5) The application was very inexpensive; the single costs did not

exceed 0.1 yuan, and the user could recharge the memory and issue an invoice. The flow-chart

diagram of the system was shown in Fig 11.

Discussion

Comparison of the accuracy of different algorithms

It is common to use corrosion and watershed algorithms to calculate the number of grains.

This study tests their accuracy on 6 kinds of selected grains, as shown in Table 4. The corrosion

algorithm has relatively high accuracy on wheat, mung bean, and rapeseed grains, with an

Fig 11. Flow-chart diagram of the system.

https://doi.org/10.1371/journal.pone.0273785.g011

Table 4. Algorithm accuracy comparison.

Grain Erode accuracy Watershed accuracy Algorithm in this paper

Wheat 92.28% 76.53% 98.9%

Corn 82.28% 72.66% 98.4%

Mung Bean 91.75% 89.60% 98.8%

Soybean 84.14% 78.78% 98.1%

Peanut 81.60% 84.73% 99.1%

Rape 93.15% 97.16% 99.2%

https://doi.org/10.1371/journal.pone.0273785.t004
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average accuracy rate higher than 90%. The watershed algorithm is suitable for rapeseed grain,

with an average accuracy rate of 97.16%. In other grains, the accuracy rate is relatively low.

Fig 12 shows the effects of these two methods for segmenting mung beans. Traditional cor-

rosion algorithms are highly efficient, but it is difficult to select a separation threshold suitable

for multiple crops. The watershed algorithm is easy to over segment. As shown in Fig 12, there

are 6 grains of mung bean, but the calculated result of the watershed algorithm is 16 grains,

producing a relatively large error rate.

The calculation of grains in the adhesion area is difficult in this research. The corner point

algorithm has a satisfactory effect in identifying the grains that are adhered to each other and

have smooth edges. However, for grains with irregular surfaces, it is easy for too many false

corners to appear, which can cause a decrease inaccuracy. As shown in Fig 13(a), the blue

points P2, P6, P7, P8, and P13 are the false corners of the corn kernels, and the red points are

the real corners. The appearance of false corners would miscalculate the actual 7 kernels as 9.5

grains. In addition, when the grains in the adhesion area are oriented at a special angle, the

true corners can be blocked, leading to a misjudgment. As shown in Fig 13(b), the protruding

vertices of corn adhere to other grains, such as P1, P2, and P3. The original two corner points

are mistaken for one corner point, which leads to calculation errors. Therefore, the accuracy of

Liutao’s algorithm [27] is reduced in these cases. As a result, we reduce the number of areas of

adhered grains and then apply the corner point algorithm for grains that are very difficult to

decompose. Fig 13(c) and 13(d) show the results of the algorithm processing in this research,

which could provide a better representation of the impact of this type of combination.

Efficiency comparison

Manually counting 400 grains, the traditional manual method takes approximately 140 s; the

counting machine with mechanical rotation takes 24 s [31], and the wseen seed tester based on

a personal computer (PC) and the camera takes 2.4 s. The smartphone app GrainTKW with

the blue baseboard as the background takes 6.7 s-7 s [28]. The monochromatic board-based

Fig 12. Results of corrosion and watershed analysis method of mung bean grains.

https://doi.org/10.1371/journal.pone.0273785.g012
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Fig 13. Adhesion area analysis. Note The distribution of grain corner points and the number of corner points under special position. C and D are the

results of applying the algorithm of this paper to the two cases of A and B, respectively.

https://doi.org/10.1371/journal.pone.0273785.g013
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app developed by Liu Tao takes 1 s [27]. Dmitry Afonnikov developed the SeedCounter app

based on Android phones and white paper, which takes 20–555 s to recognize 50 grains, and

the algorithm takes 5–110 s [25]. In this study, the counting time of GrainCounter for 400

grains is approximately 4 s. Therefore, the algorithm takes less than 1 s. Approximately 3 s is

needed to transfer pictures to the server and return the counting results. In terms of efficiency,

the algorithm is relatively superior for the same type of products.

Current kernel calculation tools

The current grain counting equipment is divided into mechanical equipment and electronic

equipment. The former is mostly desktop equipment, such as Deren Electronics’ grain coun-

ters, including hosts, splicers, and unloaders [31]. The total weight of the equipment is 41 kg; it

is difficult to move and is only suitable for specific spaces. The latter is mostly based on image

recognition technology, such as wseen’s SeedTester [32]. This type of equipment requires a

computer, imaging device, lighting box, and imaging board. In addition, the equipment is

cumbersome to assemble, occupies a space of 40 cm×35 cm×40 cm, and is expensive. Small

and medium enterprises and individuals cannot afford it. Mobile devices, such as mobile

phones and tablet PCs, are highly popular, compact, and flexible. Although some researchers

have developed apps based on mobile devices [27, 28], they require additional configuration

and are generally only suitable for a small number of types of grains. The white paper is very

easy to obtain, and this algorithm meets the technical requirements of a variety of grains.

Therefore, the GrainCounter in this study, which is based on white paper and mobile devices,

is more suitable for low-cost and wide-ranging counting requirements.

Conclusion

This research introduces a grain counting system based on the background of a white paper.

After testing six kinds of grains of different colors, shapes, and sizes, the grain counting algo-

rithm in this study has a wide range of applications and can provide a fast, accurate, low-cost,

easy-to-operate, and universal grain counting tool for breeders and precision cultivators. The

tool in this research can calculate the number of grains under the condition of white paper out-

doors, eliminate the constraints of indoor power supply, and meet the scenarios of low invest-

ment in rural breeding, low education level, and lack of manpower. After testing on mobile

phones and a tablet PC, the average accuracy rate ranges from 96.4%-98.9%, and the average

time to run the algorithm is less than 0.7 s.
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