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Abstract

Many bacteria perform a run-and-tumble random walk to explore their surrounding and to

perform chemotaxis. In this article we present a novel method to infer the relevant parame-

ters of bacterial motion from experimental trajectories including the tumbling events. We

introduce a stochastic model for the orientation angle, where a shot-noise process initiates

tumbles, and analytically calculate conditional moments, reminiscent of Kramers-Moyal

coefficients. Matching them with the moments calculated from experimental trajectories of

the bacteria E. coli and Pseudomonas putida, we are able to infer their respective tumble

rates, the rotational diffusion constants, and the distributions of tumble angles in good

agreement with results from conventional tumble recognizers. We also define a novel tum-

ble recognizer, which explicitly quantifies the error in recognizing tumbles. In the presence

of a chemical gradient we condition the moments on the bacterial direction of motion and

thereby explore the chemotaxis strategy. For both bacteria we recover and quantify the clas-

sical chemotactic strategy, where the tumble rate is smallest along the chemical gradient. In

addition, for E. coli we detect some cells, which bias their mean tumble angle towards

smaller values. Our findings are supported by a scaling analysis of appropriate ratios of con-

ditional moments, which are directly calculated from experimental data.

Author Summary

The movement strategies of bacteria have received increasing attention over the past

decade, in particular with respect to the tracking of individual cells and the mathematical

description of the resulting trajectories. Bacteria typically move in almost straight runs

interrupted by sharp turning events (run-and-tumble). In order to characterize their

motion on a single cell level, the tumble events in individual trajectories have to be identi-

fied. Traditionally, tumble recognition relies on threshold values that are applied to the

swimming speed and the reorientation angle. They are chosen in an ad hoc fashion and

introduce a certain degree of arbitrariness to the results of statistical motion analyses.

Here, we propose a new stochastic model for the orientation angle of a bacterium and
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formulate conditonal moments, which we determine both in theory and from experimen-

tal trajectories. This provides an alternative way of quantifying the bacterial run-and-tum-

ble strategy and of recognizing tumble events. Our approach no longer relies on

arbitrarily chosen segmentation thresholds and rigorously quantifies the uncertainty in

tumble recognition. We successfully apply our method not only to the paradigmatic case

of E. coli but also to trajectories of the soil bacterium Pseudomonas putida, demonstrating

that our approach provides a novel way to reliably characterize the tumbling statistics and

chemotaxis strategies of bacterial swimmers across different species.

Introduction

Taxis refers to the ability of microorganisms to sense and move along the gradient of an exter-

nal stimulus or field [1]. The most prominent example is chemotaxis, where the gradient is

formed by the density of a chemical species [2]. Many microorganisms perform chemotaxis

[2–5] but also synthetic swimmers are able to swim along chemical gradients [6–9]. Other

forms of taxis, such as gravitaxis [10, 11], rheotaxis [12], magnetotaxis [13–16], or thermotaxis

[17–19], were investigated for both biological and artificial microswimmers.

The chemotactic behavior of bacteria is a fascinating topic to study since not only the

underlying biochemical signaling pathway but also their active random walk needs to be con-

sidered [20–23]. A very common moving pattern for bacteria is the so-called run-and-tumble

random walk. Quantitatively, it was first studied by Berg and Brown [2] in the early seventies

revealing the distribution of tumble angles and the tumble rate. In the same paper the authors

also showed that E. coli decreases its tumble rate when moving along a chemical gradient.

Later, bacterial response to chemical landscapes changing in time and space was studied [24,

25]. In Ref. [26] a bias in the tumble angle was reported, i.e., the mean reorientation angle dur-

ing tumbling is smaller when moving along a chemical gradient than against it. To the best of

our knowledge, this result has not been verified in other experiments. In this paper we will pro-

vide further evidence for such an angle bias.

To separate runs from tumbles in bacterial trajectories, a computer algorithm called tumble
recognizer has been used [2, 25]. It recognizes tumbles along the bacterial trajectories based on

changes in moving direction but also in speed. When these changes are large compared to a set

of threshold parameters, a tumble is detected. The parameters are chosen such that the autom-

atized tumble recognition agrees with visual inspections of the trajectories. Hence, there is no

general rule of choosing them.

Another method to quantify the tumble behavior of bacteria is the technique of parameter

inference. Parameters used in theoretical models are determined by appropriate numerical

optimization procedures such that experimental data are best reproduced within the model.

Compared to tumble recognizers an a prioiri definition of threshold parameters is not needed.

Recently, the technique of Bayesian inference has been applied to determine the chemotactic

response function of E. coli [25] as well as distributions of reorientation angles and speed

changes [27]. In both cases, the desired model parameters are obtained by maximizing a likeli-

hood function, which contains the data of all recorded trajectories. Thus, the optimization

poses a complex numerical task [28].

In this work, we propose a different approach to infer the statistics of tumbling and chemo-

taxis from experimental data. It has the advantage that it greatly reduces the complexity of the

optimization and it also operates without any predefined parameters. Only a familiy of tumble

angle distributions needs to be specified a priori. As key tool to shrink the extensive data
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amount from recorded experimental trajectories, our approach uses a special form of condi-

tional moments (CMs) [29, 30], which we introduce in close analogy to Kramers-Moyal coeffi-

cients of stochastic processes [31]. The CMs are calculated from a minimal stochastic model of

run-and-tumble motion, where tumble events are initiated by shot-noise, and matched to the

moments obtained from experimental trajectories. Thereby, we not only infer parameters

determining tumbling but also the rotational diffusion constant. Also, by analyzing appropri-

ate ratios of the experimental CMs, we are able to draw direct conclusions on chemotactic

strategies without fitting any parameters. Thus, we are able to verify the results obtained from

parameter inference.

Kramers-Moyal coefficients were used before to analyze experimental data in order to dis-

tinguish the drift component from diffusion in the stochastic dynamic behavior of biological

organisms [32]. For example, random turns of locust swarms [33], moving patterns of the

amoeba Dictyostelium discoidum [5], or gene regulations [34] were studied with this approach.

In our case, the dynamics is clearly non-Brownian due to the shot noise modeling tumble

events. Thus, more than the first two Kramers-Moyal coefficients become relevant and can be

considered when evaluating experimental data.

In the following, we apply our method of CMs to experimentally recorded trajectories of

the bacteria E. coli and P. putida moving in gradients of a chemoattractant. Our goal is to dem-

onstrate that with this method we are able to characterize the bacterial chemotactic response

by extracting the relevant parameters of the distribution of tumble angles, the mean tumble

rate, and the rotational diffusion coefficient. We start with introducing our shot-noise model

for the run-and-tumble motion, explain the method of CMs, and how they are determined

from experimental trajectories, and finally give experimental details about cell culture, micro-

fluidic setup, and cell tracking.

In the results section we first test our method against a conventional tumble recognizer and

infer the relevant parameters without considering the direction of the chemical gradient. We

also use these paramters to define a novel tumble recognizer. Then, we condition the CMs on

the bacterial swimming direction to characterize bacterial chemotaxis. We quantitatively con-

firm the traditional picture that the mean tumble rate decreases when E. coli swims along the

chemical gradient but also find that the mean tumble angle for some of the bacteria is clearly

biased to smaller values in this swimming direction. Such an angle bias was predicted in

Ref. [35] and also found in Ref. [26]. Finally, we apply our method to the bacterium P. putida,

detect the classical chemotaxis strategy, and quantify it.

An overview of our method of conditional moments is depicted in the flow diagram of Fig

1 and explained in the caption. It can also be used as a guide through the article. In the first

large section, we explain the theoretical modeling of bacterial motion, introduce and calculate

the conditional moments, provide the tumble angle distribution for E. coli, and give details of

the experiments. Furthermore, we provide information on the computer code we developed to

implement the method of conditional moments, and which we made freely available on

github. After the large results section we close with a discussion.

Models

Shot noise model for run-and-tumble motion

A typical moving pattern for bacteria, such as E. coli, is the so-called “run-and-tumble” ran-

dom walk [23]. It consists of a running and a tumble phase. During the first phase the bacte-

rium moves forward on a nearly straight path, only rotational thermal noise affects its

persistence. During the tumble state the bacterium reduces its velocity and reorients rapidly in

a new direction with a reorientation angle β. To account for these two systematically different

Inferring the Chemotactic Strategy of Bacteria
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types of motion, we use two stochastic processes q and ξ, which govern the angular dynamics

in the following overdamped Langevin equations:

_rðtÞ ¼ vðtÞeðtÞ; ð1Þ

_YðtÞ ¼ qðtÞ þ xðtÞ : ð2Þ

Here, Θ is the bacterium’s orientation angle, r the two-dimensional position vector, e = (cos Θ,

sin Θ) is the orientation vector of the bacterium, and v(t) the swimming velocity, which

strongly decreases during a tumble event. In this article we focus on the angular dynamics and

do not specify v(t) further. ξ is a white-noise process, which accounts for rotational thermal

noise due to the ambient fluid. As usual, it is fully characterized by its mean value, hξ(t)i = 0,

and the correlation function hξ(s)ξ(t)i = 2Drot, where δ(t − s) is the delta function. The tumble

events are modeled by a shot-noise process [36, 37],

qðtÞ ¼
XNl

i¼1

bidðt � tiÞ; ð3Þ

which is a train of Nλ delta spikes with tumble amplitudes βi. The tumbles obey a Poisson dis-

tribution. They occur randomly at each time step Δtwith probability Δtλ(t), where λ(t) is the

Fig 1. Flow diagram of the CM method. As input one provides the model of bacterial motion summarized in

Eqs (1)–(4) and a sufficient number of experimental trajectories. Then, the theoretical CMs mtheo(θ,p) are

calculated from the model as a function of the parameters p and the current orientation angle θ [see Eqs (13)–

(18)] The experimental CMs mexp(θ) are determined using Eq (21). Matching these moments with a least

square fit yields as an output the parameters of the model: p(θ) = arg minp|mexp(θ) −mtheo(p)|2. Furthermore,

starting from the model and using the inferred parameters, we introduce a new tumble recognizer and test it

against a heuristic tumble recognizer. Finally, the CM ratios are obtained directly from the experimental CMs

and are used to identify the angle bias.

doi:10.1371/journal.pcbi.1005329.g001
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time-dependent tumble rate. The assumption of a Poisson distribution implies exponentially

distributed run times between the shots. However, as we show in S6 Text our method can be

applied without modification for all run time distributions with finite first moment. The ran-

dom variables βi 2 [−π, π] represent the reorientation angles during the tumble events. They

are symmetrically distributed about βi = 0, i.e., rightward and leftward tumbling is equally

probable. The probability distribution P(|β|) varies with the particular organisms studied [23,

38]. We specify it for E. coli in Eq (19) and for P. putida in Eq (26).

Eq (2) can be integrated to

YðtÞ ¼ NðtÞ þ BðtÞ; ð4Þ

where N represents the inhomogeneous Poisson process with rate function λ(t) for the tumble

events. The rotational Brownian motion B is implemented such that for each time step Δt, the

angular step is taken from a normal distribution

P½Bðt þ DtÞ � BðtÞ� ¼ PðdBÞ ¼ N ð0; 2DrotDtÞ, with zero mean and variance 2DrotΔt. In the

following we will use N and B to indicate the stochastic processes instead of q and ξ.
For completeness we give the tumble rate

lðtÞ ¼ l½rðtÞ� ≔ lequ �

Z t

� 1

Rðt � t0Þcðrðt0ÞÞdt0 ; ð5Þ

which is typically modeled as a convolution of the chemotactic field experienced along the bac-

terial path r(t) and the so-called chemotactic response function. Its precise shape has exten-

sively been discussed in the literature, e.g., in Refs. [2, 25]. We will not use Eq (5) in our

method of conditional moments but refer to it to interpret our results.

Conditional moments

Our model implements a time-continuous realization of bacterial run-and-tumble motion and

effectively separates two time scales, one for running and another for tumbling. We will use it

to infer the relevant parameters of bacterial motion from experimental trajectories including

their tumbling events. Note that our modeling of tumbles as delta spikes is an approximation

that neglects the finite tumble time. In the discussion section we suggest an extension of our

model equations by including temporal speed variations in combination with a finite tumble

time. In the current work, we explicitly excluded experimental trajectories, where the cells

tumble for very long times, so that our current approach is valid. Manual or automized filter-

ing procedures are commonly used for the analysis of bacterial trajectories [2, 5, 25, 27]

As the key tool of our inference, we define the n-th absolute conditional moment (CM) of

our stochastic process Θ(t) for a given finite time step Δt as

mn
DtðyÞ½Y� ≔

jYðt þ DtÞ � YðtÞjna
Dt

�
�
�
� YðtÞ ¼ y

� �

: ð6Þ

With |. . .|a we always select the absolute value of the changing angle, which is smaller than

π: |α|a = min(|α|, 2π − |α|). Furthermore, Δt is non-zero and chosen such that it is much larger

than the mean tumbling time. In Fig 2 we show part of a bacterial trajectory and define the rel-

evant orientation angles.

We condition the moments on the prior moving direction Θ(t) = θ such that they become

functions of θ. In the presence of a nutrient gradient the moments depend on θ because this

angle indicates whether the cell swims up or down the gradient. The CMs are reminiscent of

the Kramers-Moyal coefficients mnðxÞ½X� ≔ lim Dt!0h
½XðtþDtÞ� XðtÞ�n

Dt jXðtÞ ¼ xi. However, they

are defined with absolute values and Δt is finite. Note, for Δt! 0 the first absolute CM of

Inferring the Chemotactic Strategy of Bacteria
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Brownian motion diverges as 1=
ffiffiffiffiffi
Dt
p

, as demonstrated below. Furthermore, without taking

the absolute value the odd moments vanish because both, tumbling and rotational diffusion,

occur with equal probability to the left or right. Therefore, to have additonal moments avail-

able to be fitted to the experimental data in our inference procedure, we use the absolute value

in the definition (6) of the CMs.

Typically, with the first two moments one can distinguish between the deterministic and

stochastic terms in stochastic differential equations [39]. Analyzing the Kramers-Moyal coeffi-

cients, one can explicitly reproduce the drift and diffusion functions, which govern the dynam-

ics of various biologic systems. However, for non-Brownian stochastic processes, moments

with n larger than 1 or 2 do not necessarily vanish. This is indeed the case for our shot-noise

process.

Evaluation of the CMs. In the following we explicitly evaluate the CMs for even and odd

power n. For readers not interested in the detailed calculations, the final results are given in

Eqs (13)–(18). Besides the mean tumble rate λ, the rotational diffusion coefficient Drot, and the

time step Δt, the CMs also contain the moments h|β|ni of the tumble angle distribution P(|β|).

We specify them for E. coli in Eq (20) and for P. putida in S2 Text.

Even n: The absolute value in the CM of Eq (6) needs special attention. Therefore, we first

calculate the even CMs for our angular process Θ(t) governed by Eq (4):

mn
DtðyÞ½Y� ¼

jdYj
n
a

Dt
j YðtÞ ¼ y

� �

¼
ðdN þ dBÞn

Dt
j YðtÞ ¼ y

� �

for n even : ð7Þ

We apply the binomial formula, use that the increments dB and dN are uncorrelated, and

obtain

mn
DtðyÞ½Y� ¼

Pk¼n
k¼0

n
k

� �
dBkh iðyÞ dNn� kh iðyÞ

Dt
: ð8Þ

Fig 2. Schematics of a bacterial tumble event. E. coli moves in directionΘ(t), tumbles at time t + Δt, and

moves in the new directionΘ(t + Δt). Thus, the turning angle becomes |Θ(t + Δt) − Θ(t)|a.

doi:10.1371/journal.pcbi.1005329.g002

Inferring the Chemotactic Strategy of Bacteria

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005329 January 23, 2017 6 / 24



Eq (8) shows that we need to calculate the moments of the two stochastic processes separately.

The odd moments of both increments vanish:

dBk

 �

¼ dNk

 �

¼ 0 for k odd ð9Þ

The even moments are included in the absolute moments, which we give for later use. For dN
we assume that at most one shot occurs with rate λΔtwithin the incremental time Δt, and

obtain

jdNjk
D E

� lðyÞDt jbjkðyÞ
D E

ð10Þ

where h|β|ki is the k-th moment of the distribution P(|β|) for the tumble angle. Note, that Δt
needs to be much smaller than the mean run time but larger than the mean tumble time. Thus,

these two time scales should be separable, which is the case for the trajectories analyzed here

for P. putida and E. coli [2, 38]. To calculate the moments of the Brownian process, we use the

normal distribution of the increments with variance 2DrotΔt,

jdBjk
D E

¼ ½2DrotðyÞDt�
k=2 2

ffiffiffiffiffiffi
2p
p

Z p=
ffiffiffiffiffiffiffiffiffiffi
2DrotDt
p

0

xk exp ð� x2=2Þ ð11Þ

For small DrotΔtwe can extend the upper limit of the integral to1 and obtain

jdBjk
D E

¼ ½2DrotðyÞDt�
k=2
ðk � 1Þ!!

1 for even k
ffiffiffi
2

p

r

for odd k

8
<

:
; ð12Þ

where “!!” denotes the double factorial. Note that λ, β and Drot may in general be functions of

θ, for brevity we do not explicitly give the argument in the upcoming formulas.

We are now prepared to calculate the even CMs and start with n = 2:

m2

DtðyÞ½Y� ¼ 2Drot þ l b
2


 �
: ð13Þ

The first term on the right-hand side is derived from the mean-square displacement of Brown-

ian motion, the second one comes from the shot noise, where we will specify P(|β|) and its

moments in the following sections for each bacterium. The mixed binomial term vanishes

according to Eq (9). For higher even moments we only consider terms up to linear order in the

small square angular displacement DrotΔt. Hence, only the second moment of Brownian

motion appears in a mixed term:

m4

DtðyÞ½Y� � lð b
4


 �
þ 12DrotDt b

2

 �
Þ ð14Þ

m6

DtðyÞ½Y� � lð b
6


 �
þ 30DrotDt b

4

 �
Þ ð15Þ

m8

DtðyÞ½Y� � lð b
8


 �
þ 56DrotDt b

6

 �
Þ: ð16Þ

Uneven n:When applying Eqs (9), (10) and (12) for calculating the odd CMs, we assume

the tumble angle to be larger than the Brownian angular step and refer to S1 Text for more

Inferring the Chemotactic Strategy of Bacteria
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details. We obtain for the first and third moment:

m1

DtðyÞ½Y� ¼ l jbjh i þ 2ð1 � lDtÞ
ffiffiffiffiffiffiffiffi
Drot

pDt

r

ð17Þ

m3

DtðyÞ½Y� ¼ l jbj
3


 �
þ 4ð1 � lDtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
D3

rotDt
p

r

þ 6lDrotDt jbjh i : ð18Þ

Due to our definition of the CMs with absolute values, we obtain non-zero values for the odd

moments as functions of the model parameters. We will compare the CMs from the analytical

formula to moments calculated from experimental data and by a least-square fit determine the

relevant parameters of bacterial motion. Note that the tumble rate λ enters linearly in each

CM, while parameters related to the tumble angle β will, in general, be exponentiated up to the

order of the moment. We will exploit this different scaling behavior of the CMs to identify a

bias in the mean tumble angle during chemotaxis, which we will call angle bias in the

following.

Distribution of tumble angles for E. coli

To complete our model we have to specify the distribution of tumble angles |β|. For the E. coli
bacterium, we are inspired by the seminal work of Berg and Brown [2] and choose a gamma

distribution restricted to the domain [0, π] [40]:

PðjbjÞ ¼ gðs; kÞ ¼
1

skgincðk; pÞ
jbj

k� 1 e� jbj=s : ð19Þ

The lower, incomplete gamma function gincðk; xÞ ¼
R x

0
tk� 1 exp ð� tÞdt comes in when normal-

izing P(|β|) to one on the interval [0, π]. For k> 1 the gamma distribution has a maximum at

(k−1)σ. Due to its particular scaling properties, each moment can be written in closed form:

jbj
n

h i ¼ sn gincðkþ n; p=sÞ

gincðk; p=sÞ
: ð20Þ

Realizations of the gamma distribution on the finite interval [0, π] are depicted in S3 Fig show-

ing the wealth of different shapes, which can be achieved.

We analyze the bacterial trajectories with a time step Δt = 0.5s, taking every tenth experi-

mental data point, however, the conclusions we will draw in the following do not sensitively

depend on this number. For P. putida and its tumble rate λ we explicitly demonstrate this in

S4 Fig in the appendix. By shifting the starting point of the bacterial trajectories, we ultimately

use all experimental data points in our analysis. In total, four parameters control the direc-

tional dynamics of E. coli: Drot, λ, σ, and k. We will infer them by analyzing bacterial trajecto-

ries with the help of the CMs defined in Eq (6).

Calculating CMs from experimental trajectories

For each of the N experimental trajectories, we have a set of orientation angles Θi(t) (i = 1. . .N)

at discrete times t, which we use to determine CMs from the experimental data according to

the following formula [30]:

mn
DtðyÞ ¼

1

ZK

XN

i¼1

X

t

jYiðt þ DtÞ � YiðtÞj
n
a

Dt
KðYiðtÞ � y;DyÞ ð21Þ

Inferring the Chemotactic Strategy of Bacteria
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with

ZK ¼
XN

i¼1

X

t

KðYiðtÞ � y;DyÞ :

Here, we average over all orientation angles of N trajectories, with a duration longer than 3 sec-

onds. The Gaussian kernel KðYi � y;DyÞ ¼ exp � ðYi � yÞ2

2Dy2

h i
with Δθ = 0.125π is used to condi-

tion the CMs on a defined angle θ in the presence of a chemical gradient. When we include all

reorientation events to determine the CMs of the mean tumbling statistics, we simply set K = 1

in Eq (21), which corresponds to Δθ!1.

To perform the parameter inference, we first use Eq (21) to determine a set of moments

mn
DtðyÞ from the experimental trajectories. For a given θ value, we then fit them with the ana-

lytical formulas for the CMs using the method of least squares, which we realize with a stan-

dard numerical optimization procedure from the python libary SciPy. This gives a set of

parameters Drot, λ, σ, and k, which are in general functions of θ. We analyze trajectories

recorded at different times T = 7, 12, 30, 45, 60, and 95 minutes after the start of the experi-

ment. Typically, the tracks after 7 and 12 minutes, which we call “early” tracks, and the other

“late” tracks are analyzed together. Errors of the inferred parameters are determined by a so-

called bootstrap technique (see Ref. [41] and S4 Text).

Experimental materials and methods

Cell culture. E. coli strain AW405 was streaked on 1.5% agar (AppliChem, Germany) con-

taining Lysogeny broth (LB medium) (AppliChem, Germany) and grown at 37˚C. A single-

colony isolate was used to inoculate 10 ml of LB medium in a 100 ml flask and grown over

night in shaking culture (300/min, 37˚C). The stationary culture was diluted 1:100 into 10 ml

of fresh LB medium and grown� 3 h to an optical density at 600nm of OD600� 0.8 in mid-

exponential phase. Bacteria were washed two times by centrifugation at 1000g for 10 min and

carefully resuspended in 10 ml motility buffer (11.2 g/l K2HPO4, 4.8 g/l KH2PO4, 3.93 g/l

NaCl, 0.029 g/l EDTA and 0.5 g/l glucose; pH 7.0). Cells were diluted further to an OD600 of

0.05 before filling them into the chemotaxis device.

Chemotaxis assay and imaging. We used a μ-Slide Chemotaxis 3D (ibidi, Martinsried,

Germany) to generate stable linear gradients of the chemoattractant α-methyl-aspartate

(Sigma-Aldrich, USA). First, the gradient region was filled with motility buffer, then the cell

suspension was filled into the right reservoir of the channel. Lastly, the left reservoir was filled

with motility buffer containing 0.5 α-methyl-aspartate. Imaging was done using an IX71

inverted microscope with a 20× UPLFLN-PH objective (both Olympus, Germany) in phase

contrast mode with an attached Orca Flash 4.0 CMOS camera (Hamamatsu Photonics, Japan).

All data was aquired at 20. Video sequences of 2 minutes each were recorded at 7, 12, 30, 45,

60 and 95 minutes after filling the channel. By recording control datasets with 1 μM fluorescein

added to the chemoattractant reservoir, we confirmed that the gradient was already established

at the time of recording. Using confocal laser scanning microscopy on a channel filled only

with buffer and buffer with fluorescein, we estimated the concentration profile of the chemoat-

tractant at different times after filling. As shown in Fig 3 on the right, the gradient is approxi-

mately linear already at 7 minutes after filling, and remains almost stationary for the duration

of the experiment. The field of view and focal plane were set in the center of the gradient

region and about 35 μm from top and bottom of the 70 μm high channel (see Fig 3 left).

Because the depth of focus for this setup was about 5 μm, our recordings represent quasi-2D

slices within the channel volume.
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Image processing and cell tracking. Cells were observed using a 20x phase contrast

objective from Olympus. Together with the Hamamatsu Orca Flash camera, this setup gives

the following focal volume: 661μm × 661μm × 2.9μm. Image sequences were exported from the

camera manufacturer’s native data format to BigTIFF sequences and further processed using a

custom program written in Matlab (version R2014a, The MathWorks, USA). For each image

stack the pixelwise average projection was calculated, which was then used for background

correction. Dividing each frame by the background image yielded an image, corrected for

shading effects and which was free of non-moving objects. The resulting background corrected

image stack was segmented using a Matlab version of the Maxentropy thresholding algorithm

by Kapur et al. [42]. To minimize noise introduced by the segmentation, the threshold was

computed for each image separately and the median of these values was used to segment the

whole stack. Small specks present after segmentation were removed by morphological opening

and closing with a disk of equivalent radius of 0.3 μm. Positions of cells were determined by

computing the centroid of each connected component in the binary image. Afterwards, only

objects with areas between 1 μm2 15.6 μm2 were considered as single cells and used for further

analysis. Finally, cell tracking was performed using a Matlab version of the particle tracking

algorithm by Crocker and Grier [43].

Filtering. Cells tend to tumble at the beginning and end of each trajectory, because this is

the most common way to enter the focal plane. If they swim at an angle to the plane, they only

appear very briefly and are not tracked. Thus we disregard the first and last 0.5 s of each

recorded track in order to avoid any biasing in the tumble rates. Because run-and-tumble

detection is not feasible with very wobbly tracks, the dataset was filtered based on several crite-

ria. Trajectories with a duration longer than 10 s or with a total displacement below 10 μm

were discarded. Additionally, we removed the 20 % of tracks with the highest median curvature

[27]. This curvature filter effectively removes tracks, where the cells tumble for very long times.

Fig 3. Experimental setup. Left: Layout of the chemotaxis chamber. Attractant reservoir is on the left, cell reservoir on the

right. The central gradient region is marked in blue, its height is 70 μm, much less than the height of the reservoir chambers.

Because of the significantly larger volume in the chambers, a linear gradient establishes after filling and is maintained for

several hours. Marked in red is the field of view imaged by the microscope. Right: Temporal evolution of the chemical gradient

profile after filling the channel, measured from the spatial profile of fluorescein. Since fluorescein has about twice the molecular

weight of α-methyl-aspartate and thus a larger diffusion coefficient, we assume that the gradient evolution measured for

fluorescein is similar or slightly slower than the gradient of the chemoattractant.

doi:10.1371/journal.pcbi.1005329.g003
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Run-and-tumble recognition. For the heuristic run-and-tumble recognition we subsam-

pled the original track data by using only every third data point yielding to an effective data

rate of 6.6 Hz. Furthermore, we smoothed the tracks by applying a 5-point, second-order

Savitzky–Golay filter [44]. The smoothed tracks were used to compute frame-wise speed

v ¼ Ds
Dt , direction of propagation θ, and turning rate o ¼ Dy

Dt . To identify tumble events, we

used the algorithm from Theves et al. [38] with parameters adjusted to give reasonable results

for our data sets. In short, this algorithm determines tumble events by evaluating local extrema

in time series of speed and turn rate. A tumble event is identified if the speed minimum is suf-

ficiently deep or the maximum in the turn rate sufficiently large. More details of the algorithm

are described in the supporting information (see S5 Text).

Software

The software, where we implemented the method of conditional moments, is freely available

as python code via https://github.com/OliverPohl/Conditional-Moment-Method. It includes

the calculation of the moments from experimental trajectories, the inference of the parameters

by a least-square fit, and the tumble recognizer. We make use of the python packages

“numpy”, “scipy”, and, in particular, of “scipy optimize”.

Results

In this section, we analyze experimental trajectories of E. coli cells recorded in a linear gradient

of chemoattractant and use the method of conditional moments to infer the tumbling statistics

of this organism in two cases. First, we determine the mean tumbling statistics irrespective of

the orientation of the swimmers relative to the chemical gradient. Second, we explore chemo-

taxis of E. coli by analyzing its tumbling statistics conditioned on its orientation. In the first

case, we also demonstrate a novel tumble recognizer based on our method of conditional

moments. Finally, we analyze trajectories of the bacterium P. putida and discuss its chemotac-

tic strategy.

Overall tumbling statistics of E. coli

In order to test our method of conditional moments against a commonly used heuristic tumble

recognizer, we focus on the overall tumbling statistics of E. coli irrespective of the swimming

direction of cells relative to the chemical gradient. Thus, we set K = 1 in Eq (21) and disregard

the condition θ.

We consider the heuristic tumble recognizer as described in Refs. [25] and [38] (see also the

materials section and S5 Text). We use it to select a set of trajectories S1 with at least one recog-

nized tumble in all the late data sets at 30, 45, 60, and 95 min. With our inference method we

obtain a mean tumble rate λi = 0.39 ± 0.03 s−1, which nicely agrees with λc = 0.39 ± 0.01 s−1

determined with the heuristic tumble recognizer. Previously reported values range from

0.42 s−1 [20] to 2.86 s−1 [27] in two-dimensional setups and give 1.12 s−1 in three dimensions

[2]. Because of our experimental setup, only cells within a narrow focal zone (about 3 μm thick

compared to 8 μm in [20, 27]) are recorded. Hence, the most frequent way for cells to enter or

to leave the narrow focal plane is by tumbling. However, these two tumble events per track do

not enter our analysis because their tumble angles cannot be recorded. Upon adding them, the

average tumble rate increases to λ = 0.92 s−1.

Fig 4 compares the distribution of tumble angles determined with the tumble recognizer

and the method of conditional moments. They share common features: a maximum at 50˚

or 63˚, a skewed shape, and a considerable amount of large tumble angles. The main
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difference of both distributions in Fig 4 is the absence of small tumble angles in the inferred

distribution, for which we assume a gamma function. Thus, possible small tumble angles do

not enter in the inferred tumbling statistics, they are rather classified as Brownian noise. To

include small tumble angles in the inference method, one would need an alternative ansatz

function for the distribution P(|β|). Finally, unlike classical heuristic and other tumble rec-

ognizers, we infer Drot from the available data rather than using a fixed value in our analysis.

We find Drot� 0.06 ± 0.01 s−1 confirming the literature value of Drot� 0.062 s−1 [45].

We add two remarks. First, when we use smoothed trajectories in our inference method as

the heuristic tumble recognizer does, we also obtain a maximum tumble angle of ca. 50˚ (see

dashed red line in Fig 4). The reason is that sharp edges in the bacterial trajectories are

smoothed. However, we prefer to perform the inference method with the raw data without any

additional parameters to be chosen.

Second, the tumble events are recorded when the three-dimensional trajectories run in a

specific plane. All planes defined by the bacterial path before and after a tumble event are

equivalent. So, to obtain the distribution of tumble angles for the three-dimensional trajecto-

ries, we just have to multiply P(|β|) with sin|β| from the differential solid angle dO. Indeed, the

resulting distribution (see dashed blue line in Fig 4) compares well to the one reported in

Ref. [2]. In particular, it becomes zero at |β| = 0 and π and it has a peak reported at about 50˚.

Defining a novel tumble recognizer

Averaging over all late experimental trajectories, we have trained our model by adjusting its

parameters. In particular, we know the probability distribution P(|β|) of the tumble angle β as

well as the probability density for thermal angular displacements, N ðdYÞ, which is a normal

distribution with mean 0 and variance 2DrotΔt. As can be seen in Fig 5(a), both distributions

do have considerable overlap. This raises the question if a given angular displacement dΘ from

Fig 4. Distribution of tumble angles, P(|β|). It is determined from experiments by the heuristic tumble

recognizer (bar graph) and by the inference method with the gamma function γ(σ, k) as an ansatz (solid red

line). All recorded trajectories at 30, 45, 60, and 95 min with at least one tumble are used. The mean tumble

angle and the standard deviation are h|β|i = 0.42π = 76.0˚, Δ|β| = 0.27π = 48.7˚ (heuristic tumble recognizer)

and h|β|i = 0.47π = 85.4˚, Δ|β| = 0.23π = 41.8˚ (inference method). The inferred parameters of γ(σ, k) are σ =

0.64 and k = 2.73. The red dashed line refers to the inferred gamma distribution (σ = 0.78 and k = 2.15), when

the original data is smoothed. The blue dashed line refers to the histogram values multiplied by sin(|β|) and

then normalized to one, thus representing the tumble angle distribution in three dimensions.

doi:10.1371/journal.pcbi.1005329.g004
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the overlap region is due to Brownian diffusion or due to tumbling. Hence, the task to identify

a tumble event based purely on the angular displacements contains some intrinsic uncertainty.

Also any heuristic tumble recognizer contains such an uncertainty, since threshold parameters

have to be fixed (see S5 Text). Typically, a threshold value is used to define a minimal angular

velocity associated with a tumble [2]. Recently, the reduced speed of the bacteria during tum-

bling was introduced as an additional criterion in heuristic tumble recognizers [25, 38]. It

allows for the detection of tumble events with very small dΘ. However, the speed statistics is

noisy and one needs to introduce two additional threshold parameter, which in turn leads to

further uncertainties in identifying tumble events (see S3 Text).

In the following, we define a novel tumble recognizer, which we call systematic. It makes

the probabilistic character of tumbling recognition explicit by quantifying the uncertainty in

recognizing a tumble event. To this end, we rely on the framework of statistical hypothesis

testing [46]. Intuitively, if for a given reorientation angle dΘ the tumble probability density

P(|dΘ)| is larger than 2N ðdYÞ, we would call the event a tumble. Accordingly, we introduce

Fig 5. Definition and analysis of systematic tumble recognizer. (a) Distributions for tumble angles, P(|dΘ|) (blue line), and for

Brownian displacements, 2N ðjdYjÞ (green line), as inferred from experimental data. The shaded blue area corresponds to the type-I

error α1, while the green area refers to the type-II error α2. The dashed line marks the threshold dΘcrit. (b) Smoothed sample trajectory

with tumbles marked as green circles. They are obtained by a heuristic tumble recognizer (see S5 Text). Endpoints are not classified

and therefore black. (c) Rational tumble recognition on the basis of a hypothesis test with the likelihood ratio using the inferred

distributions P(|β|) and N ðdYÞ. Faint orange points are the original trajectory points, colored fat points are trajectory points with time

gap Δt = 0.5.

doi:10.1371/journal.pcbi.1005329.g005
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the likelihood ratio

RðdYÞ ≔
2N ðdYÞ

PðjdYjÞ
: ð22Þ

If R is small, we accept the hypothesis H: “dΘ belongs to a tumble”. If R is large, we reject it

and claim that dΘ is of thermal origin. Thus we need to introduce a threshold rcrit such that

we accept our hypothesis whenever R< rcrit(α1). Here, the threshold value rcrit depends on

the confidence level α1, which is the so-called type-I error or the probability that we miss a

tumble. When we introduce a threshold value dΘcrit by the implicit equation R(dΘcrit) = rcrit

and assign all angular displacements smaller than dΘcrit to Brownian motion, we are able to

quantify the confidence level as [see Fig 5(a)]

a1 ¼

Z dYcrit

0

PðjdYjÞdðdYÞ : ð23Þ

In our case, we choose α1 = 0.05, determine dΘcrit = 24˚ from Eq (23), and ultimately rcrit(α1) =

2.3 from rcrit = R(dΘcrit). Once given α1 and dΘcrit, we can calculate the type-II error α2 or the

probability that by mistake we recognize a tumble: a2 ¼
R p

dYcrit
N ðdYÞdðdYÞ � 0:06.

This hypothesis test based on the likelihood ratio R is also called Neyman-Pearson test [47].

It has the property of optimality in the sense that, given the two distributions and the confi-

dence level α1, there is no other test with smaller α2.

We apply this test to a representative trajectory plotted in Fig 5(c) and compare it to the

track divided in tumbles and runs by the heuristic tumble recognizer [Fig 5(b)]. We see that

most of the recognized tumbles are identical. Only one tumble is identified by the heuristic

tumble recognizer, which is marked as run with the systematic tumble recognizer. The heuris-

tic recognizer detects a faint speed minimum at this spot, whereas the angular change is insuf-

ficient for the systematic recognizer to tag the event as a tumble. We checked that the

systematic tumble recognizer identifies 85% of tumbles and runs detected by the heuristic

recognizer.

Hence, with our proposed tumble recognizer the uncertainty in tumble recognition is quan-

tified by the type I and II errors. There are no unknown parameters, which have to be set a pri-

ori besides the sampling rate. To improve the performance further, one might consider time

series in the swimming speed in addition to the orientation angle.

Chemotaxis of E. coli

Now, we infer the specifics of the tumbling behavior of E. coli while performing chemotaxis.

Therefore, we condition on the orientation angle θ by setting the angular width in Eq (21) to

ΔΘ = 0.125π. However, due to Eq (5) we expect the tumble rate λ(t) at time t, to depend on the

whole past of the trajectory. So, why is conditioning on the orientation angle θ sufficient? The

response function R is typically peaked at times close to zero meaning that the response to the

very recent past is weighted strongest [24]. Since the bacterium moves persistently between

two tumbles, we expect a strong dependence on the orientation θ just before tumbling. We will

make this insight more quantitative in Eq (24) below. Indeed, in Eq (6) one could also condi-

tion on the whole bacterial trajectory, which will then reveal details of the response function.

This will be discussed elsewhere. To determine the conditional moments, we consider all tra-

jectories, which are longer than 3 seconds irrespective of whether they contain tumble events

or not. This, of course, leads to a lower tumble rate than for the trajectory set S1 analyzed

above.
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In the left column of Fig 6 we plot the inferred tumble rate λ(θ) (red curve) and the mean

tumble angle h|β|i(θ) (blue curve) at different times T after the start of the experiment. To

determine h|β|i(θ), we use the inferred parameters k(θ) and σ(θ) in Eq (20).

Tumble rate. We find that at early and late times T, λ(θ) is essentially symmetric about its

minimum θ = π, where the bacterium moves along the chemical gradient (see Fig 2). Indeed,

the data is well fitted by a shifted cosine function, λfit(θ) = a1 + a2 cos(θ), with two fit parame-

ters a1 and a2. This can be rationalized by means of Eq (5). Since the chemical gradient is

directed along the negative x-direction, we can approximate the integral in Eq (5) by the fol-

lowing sum representing the runs of the bacterium between two tumbles:

lðtÞ ¼ lequ þ cos ðyÞKv0

Z t

t0

Rðt � t0Þtdt0 þ
Xn

i¼0

Z ti

tiþ1

� � � ; ð24Þ

where K is the magnitude of the constant chemical gradient. In the right-hand side of Eq (24)

we neglect the sum of the third term resulting from runs before the last tumble. We assume

that this sum vanishes when averaging over many trajectories. Hence, comparing our fit func-

tion with Eq (24), we recognize that a1 approximates the mean tumble rate λequ and a2/ Kv0

is a measure for the strength of the chemotactic response. The plots in Fig 6(a) and 6(c) reveal

Fig 6. Tumbling statistics with chemotaxis. (a), (c) The mean tumble rate λ (red) and the mean tumble angle h|β|i

(blue) plotted versus the orientation angle θ of the bacterium prior to tumbling for (a) the late tracks at T = 30, 45, 60,

and 95 min and for (c) the early tracks at T = 7 and 12 min. The tumble rate is fitted by a cosine function. The dashed

blue line marks h|β|i(θ) averaged over all directions. (b), (d) Ratios of CMs,mn
DtðyÞ=m

n
DtðpÞ, plotted versus power n for

different orientation angles θ for (b) the late tracks and for (d) the early tracks.

doi:10.1371/journal.pcbi.1005329.g006
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that for the late and early trajectories λequ and chemotactic strengths are very similar: a1 =

0.28 s−1 and a2 = 0.11 s−1 for the early trajectories, and a1 = 0.24 and a2 = 0.10 for the late

tracks. Therefore, our method reproduces and quantifies the classical chemotaxis strategy, i.e.,

adaption of λ according to the gradient direction.

Mean tumble angle. Surprisingly, early and late trajectories behave differently for the

mean tumble angle h|β|i(θ). While in the late trajectories it is roughly constant in θ [blue curve

in Fig 6(a)], a minimum around θ = π is recognizable in the early tracks [Fig 6(c)]. This indi-

cates that at early times of the experiment tumble angles are biased towards smaller values

when E. coli moves along the chemical gradient. Such an angle bias was also reported in

Ref. [26]

To support our findings, we determine the CMs from the experimental data and plot ratios

of the form mn
DtðyÞ=m

n
DtðpÞ versus order n in Fig 6(b) and 6(d). From Eqs (13)–(18) we find

that for n> 3 the moments are mainly determined by the leading term λh|β|ni since

DrotΔt� 1 and thus

mn
DtðyÞ

mn
DtðpÞ

�
lðyÞ

lðpÞ

jbj
n
ðyÞh i

jbj
n
ðpÞh i

: ð25Þ

Since the tumble rate λ(θ) is smallest along the chemical gradient (θ = π), we expect this ratio

of CMs to increase with growing |θ − π| for each n. This is confirmed by the graphs in in Fig 6

(b) and 6(d) for a fixed n. More importantly, the ratio provides a mean to clearly distinguish

between classical chemotaxis and a strategy with angle bias: If the ratio in Eq (25) increases

with growing n, we must have h|β|(π)i< h|β|(θ)i for θ 6¼ π and hence an angle bias. In contrast,

if the ratios for different θ converge towards constant values at larger n, we confirm classical

chemotaxis with h|β|(π)i = h|β|(θ)i. Therefore, inspecting the ratio of CMs provides a method

to distinguish chemotactic strategies directly from the experimental data without any fitting

procedure involved. For the late trajectories we find the expected convergence towards nearly

constant values at roughly λ(θ)/λ(π) [see Fig 6(b)]. However, for the early trajectories the ratios

in Fig 6(d) show a small but clearly recognizable increase with n, which hints to an angle bias.

This result led us to perform a more careful analysis of the early trajectories at T = 7 and 12

min.

At early times the bacterial population is divided into chemotactically efficient and less

efficient swimmers along the x-direction of the channel. To demonstrate this, we divide the

field of view of our experimental setting in Fig 3 in a right, middle, and left part (all three of

the same width 222μm along the gradient direction), and condition the CMs also on the

location in either of these parts. A bacterium moves with a chemotactic drift velocity along

the gradient. For the chemical gradient employed in our experiments a typical value for E.
coli is 0.9μm/s [2]. Thus, to reach all locations in the left part of the field of view, an average

bacterium needs ca. Δt = Δs/v = 800μm/(0.9μm/s) � 900 s or 15 min. Given the additional

fact that at the initiation of the experiment the chemotactic gradient has not been estab-

lished yet, we conclude that only chemotactically fast bacteria can reach the left part of the

field of view and be recorded 7 or 12 minutes after the start of the experiment. At later times

also chemotactically slower bacteria reach the left part and the bacterial population is well

mixed.

In Fig 7 we demonstrate that the chemotactically efficient bacteria apply an angle bias as

additional chemotaxis strategy. We plot the mean tumble angle and the ratio of CMs, which

are also conditioned on the left [(a), (b)], middle [(c), (d)], and right [(e), (f)] part of the chan-

nel. Fig 7(a) and 7(b) show strong indication for an angle bias in the left part of the channel.

The ratios of CMs clearly increase with n, as discussed before, whereas for bacteria in the
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middle and right part the curves are essentially constant or even fall [see Fig 7(d) and 7(f)].

This cannot be the outcome of statistical fluctuations. Since we measure the tumble angles

locally, it is very unlikely that all the bacteria show their incidentally biased tumble angles in

the left part. In conclusion, we give evidence that some E. coli cells in our experiments apply an

angle bias to swim along chemical gradients more efficiently. In Ref. [48] a mean tumble angle

Fig 7. Early bacterial tracks analyzed separately in different parts of the channel. Left column: The mean tumble rate λ
(red) and the mean tumble angle h|β|i (blue) plotted versus the orientation angle θ prior to tumbling for (a) the left, (c) the

middle, and (e) the right part. The blue dashed line marks h|β|i(θ) averaged over all directions. Right column: Ratios of CMs,

mn
DtðyÞ=m

n
DtðpÞ, plotted versus power n for different orientation angles θ for (b) the left, (d) the middle, and (f) the right part.

doi:10.1371/journal.pcbi.1005329.g007
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anticorrelated with the speed of bacteria was measured in the absence of a chemical gradient.

This is fundamentally different to our our observation, where the mean tumble angle is corre-

lated with the bacterial orientation relative to the chemical gradient before tumbling. In

Ref. [49] it is proposed that bacteria adapt tumble times to their moving direction and thereby

introduce an angle bias.

The tumble rate, on the other hand, shows a stronger dependence on θ for bacteria on the

right compared to the left side of the channel [red curves of Fig 7(a), 7(c) and 7(e)]. This effect

is also observed for all later stages of the experiment (see, for example, graphs for T = 60 min.

and T = 30, 45 min. in S1 Fig of the supporting information). So, in contrast to the angle bias it

is not special for the early data acquisitions. In Ref. [50] logarithmic sensing of the chemical

gradient has been reported, meaning that the chemotactic response scales withrc/c =r(logc).
This could explain the stronger chemotactic response of the tumble rate λ at the right side of

the channel, where c is small.

Chemotaxis of P. putida

In this section, we apply the inference method based on CMs to the bacterium P. putida,

which performs a notably different random walk than E. coli [3, 38]. During tumbling it typi-

cally reverses its direction of motion. Our data set consists of trajectories taken more than one

hour after the start of the experiment, which we analyze in the following. Furthermore, we set

Δt = 0.3 s, which is smaller than in the case of E. coli, because the tumbles are typically shorter.

However, as before, the exact value of Δt does not alter the results qualitatively (see S4 Fig).

Last, we need to specify the distribution of tumble angles, Pput(|β|). In Ref. [38] such a distribu-

tion was determined in experiments. It shows one strong peak at 180˚ (reversal) and a small

one at 0˚, which corresponds to “stopping” events without any reorientation. These events

cannot be identified without inspecting the bacterium’s speed. Since our inference method

only considers the orientation angle Θ, we are not able to detect it. Thus, concentrating on the

strong peak at 180˚, we choose for the tumble angle distribution

PputðjbjÞ ¼
1

N
e� ðp� jbjÞ=Db þ C
� �

; ð26Þ

where N is the normalization constant and C is a typically small offset to fit the occurrence of

small tumble angles. In S2 Text we list the moments h|β|ni of the tumble angle distribution

needed to calculate the CMs. By fitting them to the experimentally determined CMs, we infer

the parameters Drot, λ, Δβ, and C.

First, we determine these parameters without conditioning on a specific value θ for the ori-

entation angle, in order to infer the tumble angle distribution plotted as a red line in Fig 8(a).

It captures the trend of the distribution determined with the heuristic tumble recognizer. In

particular, the peak at β = π is clearly recovered and the mean tumble angles of both distribu-

tions nicely agree [see caption of Fig 8(a)]. Furthermore, when plotting the normalized distri-

bution/ sin(|β|)P(|β|) to capture the three-dimensional tumble angle distribution (dashed

blue line), one recovers a bimodal shape as reported in Ref. [51].

When conditioning on the orientation angle θ prior to a tumbling event, we first note that

the mean tumble angle h|β|i = 0.72π ± 0.03π is approximately constant [see Fig 8(b)]. This is

also confirmed by the ratios of CMs, which clearly converge to constant values (see S2 Fig).

The mean tumble rate λ averaged over θ is significantly larger for P. putida compared to E.
coli,

R
λdθ/2π� 1.1 s−1. Finally, we see that P. putida biases its tumble rate similar to E. coli

meaning that it applies a classical chemotaxis strategy. The tumble rate is again well approxi-

mated by λfit(θ) = a1 + a2 cos(θ) with a1 = 1.15 s−1 and a2 = 0.15 s−1.
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Discussion

In this article we presented a novel method to infer the relevant parameters of bacterial motion

from experimental trajectories including the tumbling events. To this end, we defined a basic

stochastic model for the run-and-tumble random walk, where shot noise initiates a tumble

event in the orientation angle. We analytically calculated conditional moments within the

model and matched them to the moments determined from recorded data of experimental tra-

jectories. Applying the new technique to the bacteria E. coli and P. putida, we were able to infer

the respective mean tumble rates, the rotational diffusion constants, and the distributions of

tumble angles. Based on the inferred parameters we also introduced a new tumble recognizer

using the framework of statistical hypothesis testing. In contrast to heuristic tumble recogniz-

ing procedures, there is only one parameter necessary, the confidence level, which quantifies

the uncertainty or the error in recognizing all tumble events. Thus, the new tumble recognizer

makes explicit the uncertainty in tumble recognition, which is inherent to any recognizer.

Conditioning the moments on the orientation angle, we explored and quantified the che-

motactic strategy of the two bacterial species. Although P. putida performs a different random

walk than E. coli, frequently reversing its direction of motion by 180˚, we showed that it applies

the classical chemotaxis strategy of bacteria. For E. coli we could detect some swimmers, that

reduce their mean tumble angle significantly when moving along the chemical gradient. This

confirms the angle bias reported in Ref. [26], which was obtained by averaging over all individ-

uals of a E. coli cell population. Here, we gave evidence that only a part of the cell population

exhibits this angle bias. Our findings are supported by a scaling analysis of appropriate CM

ratios, which are directly calculated from experimental data.

We have tested our novel method of conditional moments for the well known random walk

of E. coli and also discovered a new feature in its chemotactic strategy. Our method is formu-

lated in general terms and can be applied to different bacterial random walks with a run-and-

tumble strategy as demonstrated for P. putida. We mention other possible applications. For

instance, magnetotactic bacteria [13, 14] experience a torque, which aligns their directions of

motion with a magnetic field. Such an angular drift is easily included in the stochastic equation

for the orientation angle and thereby well captured in the context of our inference method by

Fig 8. Tumbling statistics of P. putida. (a) Distribution of tumble angles, P(|β|), determined by the heuristic tumble

recognizer (bar graph) and by the inference method (red line). The blue dashed line refers to the histogram values multiplied

by sin(|β|) thereby representing the tumble angle distribution in three dimensions. The mean tumble angle and the standard

deviation are h|β|i = 0.75π = 135˚, Δ|β| = 0.29π = 52.2˚ (heuristic tumble recognizer) and h|β|i = 0.72π = 130˚, Δ|β| = 0.26π =

46.8˚ (inference method). (b) The mean tumble rate λ (red) and the mean tumble angle h|β|i (blue) plotted versus θ. The

tumble rate is fitted by a cosine function.

doi:10.1371/journal.pcbi.1005329.g008
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means of the first conditional moment. Marine bacteria possess a bimodal distribution of tum-

ble angles with two maxima as measured in Ref. [52]. In order to quantify this bimodality

within our inference method, one first needs to specify a sufficiently general ansatz for the

tumble distribution as input in the model. Then, a bimodality coefficient based on the third

and fourth moments can be introduced and compared to experimental data [53].

Since variations in speed and orientation are strongly coupled to each other during a

tumble event (different than discussed in Ref. [54]), we neglected speed fluctuations in a

first approach. However, our inference method can be extended by including temporal vari-

ations in speed, which for P. putida should model the alternating speeds of propagation and

might also permit to identify so-called “stopping events” [38]. Furthermore, such a model-

ing could also increase the precision of our tumble recognizer. For example, for E. coli one

can model the time-dependent speed v(t) in Eq (1) as an Ornstein-Uhlenbeck process:

_v ¼ r½v0 � vðtÞ� � ~qðtÞ þ m. The shot-noise process ~q has spikes located at the same time

points as the shot noise q for the tumble events and some suitable amplitude. The mean

speed of all bacteria is represented by v0 and μ is Brownian white noise. The moments are

readily calculated and one also obtains an estimate for the duration of a real tumble event,

the tumble time τ� r−1. Such an approach will be presented elsewhere. It will be more elab-

orate for P. putida due to the features mentioned before and reported in Ref. [38].

Our inference method based on conditional moments revealed a bias of tumble angles for

some of E. coli cells during chemotaxis. However, the mechanism behind this effect is

unknown. Ref. [55] reports a coordinated reversal of flagellar motors on a single E. coli cell ini-

tiating tumbling. The authors speculate that such correlations could lead to the observed angle

bias. Indeed, the positions of attachment as well as the number of flagella significantly vary

between different bacterial species [56] and also between individuals of one single species [57].

Possibly, this phenotypic diversity is the origin of the non-uniform chemotactic strategy we

find. The method elaborated throughout this article provides a flexible framework to uncover

such strategies hidden in the statistics of bacterial tumbling.
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