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Abstract: Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and tungsten
disulfide inorganic nanotubes (INT-WS2) were prepared by blending in solution, and the effects of
INT-WS2 on the isothermal crystallization behavior and kinetics of PHBV were investigated for the
first time. The isothermal crystallization process was studied in detail using various techniques, with
emphasis on the role of INT-WS2 concentration. Differential scanning calorimetry (DSC) and polarized
optical microscopy (POM) showed that, in the nucleation-controlled regime, crystallization rates
of PHBV in the nanocomposites are influenced by the INT-WS2 loading. Our results demonstrated
that low loadings of INT-WS2 (0.1–1.0 wt %) increased the crystallization rates of PHBV, reducing
the fold surface free energy by up to 24%. This is ascribed to the high nucleation efficiency of
INT-WS2 on the crystallization of PHBV. These observations facilitate a deeper understanding of
the structure-property relationships in PHBV biopolymer nanocomposites and are useful for their
practical applications.
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1. Introduction

Over recent years, bio-based products have attracted increasing interest due to escalating
environmental concerns and diminishing fossil resources [1]. Consequently, there is and has
been a growing demand and interest, in both academic and industrial realms, to investigate
biopolymers (i.e., polymeric material of non-fossil, biological origin) and develop strategies that
can implement them for societal needs. Biopolymers can be broadly classified into two main
categories: agropolymers, such as starch and other carbohydrates, proteins, etc., and biodegradable
polymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), etc. Biosynthetic polymers
such as PHAs are linear, aliphatic polyesters that are produced by a microbial process in a
sugar-based medium, where in certain bacteria they act as carbon (energy) storage banks [2].
A family of these materials from over 150 different monomers can be obtained with incredibly
diverse properties [3]. Of these, polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), and their
copolymers poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), are commonly used matrices in bio
and eco-composites [4]. Whilst PHB exhibits high stiffness and crystallinity, the incorporation of
3-hydroxyvalerate (HV) groups in a random copolymer with 3-hydroxybutyrate (HB) is a strategy used
to increase the flexibility and processing capabilities of the polymer, reducing stiffness, melting point
and crystallinity of the copolymer on increasing the HV content [3]. Despite improved thermal and
mechanical properties, PHBV still presents some disadvantages, which include a narrow processing
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window, a slow crystallization rate, and low values of strain-at-break, along with a higher cost when
compared with petroleum-based synthetic polymers [5]. To solve the aforementioned limitations,
methods such as physical blending or chemical structure design combined with processing conditions
can be applied to improve the performance of PHA products [3,6].

Nanocomposite strategies have been suggested to overcome the inherent shortcomings of
biopolymer-based materials, and nano-biocomposites obtained by introducing nanofillers into
biopolymers result in very promising materials, manifesting improved thermal and mechanical
properties whilst maintaining material biodegradability, without introducing toxicity [6]. These find
applications mainly in packaging, agriculture, and biomedical or hygiene devices, and represent an
emerging alternative towards environmentally benign and economically viable chemical production [7].
Depending on the processing conditions from the melt into the solid state, biopolymeric materials
may partially crystallize into a semicrystalline morphology that affects the aforementioned relevant
properties. For this reason, numerous studies have been undertaken to characterize the crystallization
behavior and to control the crystallinity, the crystallization kinetics, the spherulitic superstructure,
or the crystal polymorphism, employing calorimetry and optical microscopy techniques [3,8].
In particular, calorimetry enables quantification of transition temperatures and enthalpies in isothermal
and non-isothermal modes. Lorenzo et al. [8] have suggested a methodology for the minimization of
possible errors associated with data manipulation in the measurement and analysis of conventional
experimental DSC data. Isothermal crystallization experiments performed by DSC showed an increase
in the crystallization kinetics of polycaprolactone (PCL) with increases in carbon nanotubes content
as a consequence of the supernucleation effect [9]. Making use of fast scanning chip calorimeters
and combining both approaches allowed them to shed further light on fundamental details of the
polymer-crystallization process [10]. Furthermore, systematic studies of nucleation, crystallization,
melting, and reorganization are made possible for a large number of polymers. In particular, promising
research serving as a conceptual study to quantitatively approach the link between the condition of
cooling the melt of crystallizable polymers, the formation of crystal nuclei and the cold-crystallization
behavior have been successfully developed [11].

The enhancement of biodegradability, biocompatibility, thermal conductivity and mechanical
proprieties of biopolymeric materials can be achieved by adding nanofillers [12–15]. On the other
hand, the use of layered transition metal dichalcogenide nanofillers such as tungsten and molybdenum
disulfide (WS2, MoS2) inorganic fullerenes (IFs) and inorganic nanotubes (INTs) [16,17] is expected to
produce advanced nanocomposite materials [18,19]. As well as unique electronic and mechanochemical
behavior, these novel nanomaterials show remarkable properties like high impact resistance and
flexibility under tensile stress, excellent tribological behavior, superior fracture resistance to shockwaves,
and simple and relatively inexpensive fabrication methods [20]. Recently, the incorporation of WS2 in
polymer systems has demonstrated a range opportunities for many new applications. For example,
IF-WS2 nanoparticles were used to produce advanced nylon-6 nanocomposites [21]. In particular,
it was shown that introducing IF-WS2 nanoparticles into nylon-6 provoked a strong nucleation effect
which induced changes in the crystal growth process. In the same way, the addition of low WS2

loadings strongly increased the crystallization rate of PHBV [22]. For these systems, drawing induced
during melt crystallization process has been shown to vary the crystalline structure (i.e., from α to β)
leading to improved mechanical properties in melt-spun bio-based PHBV fibers [23]. Similarly, WS2

nanotubes (INT-WS2) have been shown to improve the thermal, mechanical and tribological properties
of biopolymers like poly(3-hydroxybutyrate) (PHB) [24] and poly(L-lactic acid) (PLLA) [25], and
the bio-applied polymer poly(ether ether ketone) (PEEK) [26]. Additionally, from an environmental
viewpoint, INT-WS2 have demonstrated much lower cytotoxicity than other nanoparticle fillers, such
as silica or carbon black [27] and have shown promise with respect to biocompatibility in the case of
salivary gland cells [28].

The present work continues progress in this field and is centered on the incorporation of INT-WS2

as nanoreinforcements to improve the processability and performance of PHBV. Scanning electron
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microscopy (SEM) observations revealed that an excellent dispersion of highly efficient INT-WS2

nucleating agents was achieved, leading to composites with substantially enhanced thermal and
mechanical properties [29]. However, to date the influence of the nanofiller on the crystallization
behavior and kinetics of PHBV under isothermal conditions has not been investigated. Here, this
process is studied in detail using differential scanning calorimetry (DSC) and polarized optical
microscopy (POM) techniques, with particular emphasis on the role of INT-WS2 concentration.
The research reported provides a better understanding of the structure-property relationship of PHBV
biopolymer nanocomposites, with an outlook towards extending their practical applications.

2. Experimental Section

2.1. Materials and Processing

The PHBV biopolymer employed, containing 2.0 wt % hydroxyvalerate (HV) with a reported
Mw = 410 kg mol−1, was obtained in powder form from Goodfellow Cambridge, Ltd. (Huntingdon,
UK) and used as received. The tungsten disulfide inorganic nanotubes (INT-WS2) were provided by
NanoMaterials, Ltd. (Yavne, Israel) and used without chemical modification. Several formulations
of PHBV/INT-WS2 (0.1, 0.5 and 1.0 wt %) nanocomposites were prepared [29]. The nanofiller was
dispersed in a solution of PHBV in chloroform (HPLC grade, Sigma-Aldrich Química SL, Madrid,
Spain), which was subsequently precipitated in methanol (HPLC grade, Sigma-Aldrich Química SL,
Madrid, Spain), then filtered and dried in a vacuum oven at 50 ◦C for 24 h.

2.2. Characterization Techniques

2.2.1. Differential Scanning Calorimetry (DSC)

The isothermal crystallization and melting behavior of the new nanocomposites were studied
using a Perkin Elmer DSC7/Pyris differential scanning calorimeter (Perkin-Elmer España SL, Madrid,
Spain). The instrument was calibrated for temperature and heat flow using high purity indium and
zinc standard. A tau lag calibration of the instrument for different heating rates was performed
using indium. The experimental and theoretical procedures used in this study are similar to those
employed in our previous publications for PLLA/INT-WS2 [25] and nylon-6/IF-WS2 [21]. In this
case, samples of 6–11 mg were placed in sealed 40 µL aluminum pans under a flowing nitrogen
atmosphere. Before cooling, the samples were maintained for 5 min at 180 ◦C to erase any prior
thermo-mechanical history and to assure maximum thermal stability of the components as well as
the reproducibility of the results. Then the molten samples were cooled at fastest achievable rate of
64 ◦C min−1 to specific isothermal crystallization temperatures (Tc) and maintained until crystallization
was completed (i.e., complete return to baseline), and the heat evolved during crystallization was
recorded as a function of time at selected Tc. Pyris DSC7 kinetic software was used to obtain partial
areas from the data points of the exotherm, corresponding to a given degree of the total crystalline
transformation. The crystallinity of PHBV in the samples was determined, after normalizing for
filler content, using a value of ∆Hm for 100% crystalline PHBV (low HV content) of 146 J g−1 [3,30].
The isothermal crystallization step was followed by a heating step up to 180 ◦C at a rate of 5 ◦C min−1,
and melting temperatures (Tm) were taken as the peak maxima of the melting endotherms.

2.2.2. Polarized Optical Microscopy (POM)

Polarized optical microscopy (POM) was used to investigate the spherulitic morphology of neat
PHBV and the PHBV/INT-WS2 nanocomposites employing a Mettler FP-80HT (Mettler-Toledo SAE,
Barcelona, Spain) hot stage on a Reichert Zetopan Pol polarizing microscope equipped with a Nikon
FX35A 35 mm SLR camera. The isothermal crystallization cycles consisted in a 5-min hold period at
180 ◦C followed by rapid cooling at 20 ◦C min−1 to specific crystallization temperatures, Tc = 110 ◦C,
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112 ◦C and 122 ◦C. Samples were maintained at Tc for enough time to allow the monitorization of the
spherulitic growth process.

3. Results

3.1. Isothermal Crystallization

The physical and mechanical properties of semicrystalline polymers depend on the morphology,
the crystalline structure and the degree of crystallinity. Much effort has been devoted to study
the isothermal crystallization kinetics of new PHBV/INT-WS2 bionanocomposites, with a view
to control the crystallization rate, degree of crystallinity and, consequently, its morphology and
properties. In this respect, the isothermal melt crystallization kinetics of neat PHBV and its
nanocomposites was investigated with DSC over a wide range of crystallization temperatures from
94 ◦C to 130 ◦C. The curves in Figure 1 indicate the total time for the complete crystallization process
at the above-mentioned temperatures and are truncated at the time when no further crystallization
was evident by DSC. Figure 1a shows that at higher Tc more time is required to fully crystallize the
pure PHBV sample. At lower Tc the curves shifted to shorter times, indicating increased crystallization
rates directly proportional to the isothermal crystallization temperature employed. The crystallization
behavior of the nanocomposites with temperature was similar, Figure 1b–d. These results are consistent
with the theory of crystallization kinetics, implying that as the supercooling (i.e., the difference between
the melting and crystallization temperatures) increases, the crystallization rate accelerates and the
crystallization exotherm becomes sharper, controlled in turn by the evolution of the number of crystal
nuclei formed during crystallization process of the biopolymer matrix. In previous studies on the
nucleation behavior of PLLA reported by Androsch et al. [11], it was shown that isothermal formation
of crystal nuclei at high supercooling of the melt can be quantified by the analysis of crystallization at
elevated temperature.
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Figure 1. Differential scanning calorimetry (DSC) thermograms of isothermal crystallization of
(a) PHBV; (b) poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/ tungsten disulfide inorganic nanotubes
(PHBV/INT-WS2) (0.1 wt %); (c) PHBV/INT-WS2 (0.5 wt %) and (d) PHBV/INT-WS2 (1.0 wt %)
obtained at the indicated crystallization temperatures.
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By comparing Figure 1a with Figure 1b–d, it is clear that at the Tc the exothermic peaks for the
nanocomposites are in all cases sharper than those for pure PHBV indicating that the INT-WS2

accelerates the crystallization process of the polymer in the nanocomposites. The reduction in
the time to reach overall crystallization can be employed to describe this acceleration process.
For example, the PHBV copolymer without INT-WS2 fully crystallized after approximately 120 min
at Tc = 110 ◦C, whereas for the 0.5 wt % nanocomposite material it took less than 4 min at Tc = 116
◦C (i.e., at a temperature of 4 ◦C higher than that of the pure polymer). From the data it can be
seen that the incorporation of low INT-WS2 weight-fractions in PHBV nanocomposite allows the
crystallization to take place at higher temperatures and over larger intervals (96–110 ◦C for PHBV,
116–126 ◦C for PHBV/INT-WS2 (0.1 wt %), 104–112 ◦C PHBV/INT-WS2 (0.5 wt %) and 118–128 ◦C for
PHBV/INT-WS2 (1.0 wt %).

The relative crystallinity, X(t), can be defined by the following expression:

X(t) =

∫ t
0

dH(t)
dt dt∫ t∞

0
dH(t)

dt dt
=

∆Ht

∆H∞
(1)

where dH/dt is the heat flow rate; ∆Ht is the heat generated at time t; ∆H∞ is the total heat generated
to the end of the crystallization process. The classical Avrami Equation (2) was employed to describe
the isothermal crystallization kinetics:

X(t) = 1− exp(−ktn) (2)

where n is the Avrami exponent, which is a constant that depends on the nucleation mechanism and
type of crystal growth, and k is the Avrami rate constant associated with nucleation and growth rate
parameters. Equation (2) can be rewritten as:

log[− ln(1− X(t))] = log k + n log t (3)

and the values of log [−ln(1 − X(t))] plotted versus log t, allowing the Avrami exponent n and the
crystallization rate constant k to be calculated from the slope and intercept of the linear fit, respectively.
It is rare that the Avarmi equation can be used to describe the entire crystallization process, but is
widely accepted as valid at the early stage of crystallization, as previously reported in our studies for
nylon-6/IF-WS2 [21] and PLLA/INT-WS2 [25]. Linear regressions of these straight lines at low levels of
crystalline transformation (5–40%) yielded the Avrami exponents (n) shown in Table 1. As an example,
Figure 2 illustrates the Avrami plots for both neat PHBV and PHBV/INT-WS2 (1.0 wt %) at different
crystallization temperatures and the data are represented in Table 1. The average values obtained for n
varied with the INT-WS2 concentration: n ≈ 3.0 for neat PHBV, n ≈ 3.3 for PHBV/INT-WS2 (0.1 wt %),
n ≈ 4.2 for PHBV/INT-WS2 (0.5 wt %) and n ≈ 4.4 for PHBV/INT-WS2 (1.0 wt %). According to the
ideal case of the Avrami equation for nucleated crystallization with three-dimensional crystal growth,
the value of the exponent should be n = 3 [31]. A value of n = 4 indicates ideal three-dimensional
growth with a linear increase in nucleation sites over time due to heterogeneous nucleation, which
was expected for the binary composite materials with the addition of nanoparticles. However, the
ideal state was not achieved during the crystallization process probably due to athermal crystallization
and/or imperfections within the polymer network (entanglements, single chains transversing multiple
lamellae, etc.) as well as secondary crystallization processes, mixed nucleation modes and the change
in material density [3]. Moreover, even some experimental factors such as an error introduced in the
determination of the onset of crystallization or induction time, the establishment of the baseline and
incomplete isothermal crystallization data, the effect of the cooling rate from the melt to the isothermal
crystallization temperature and the conversion range employed for the fitting can lead to non-integer
values of n [8]. In addition, the supernucleation effect of the nanotubes could also be connected to
the variation of the n exponents [9]. The values of n reported in the literature for PHBV systems are
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dispersed, ranging from 1.7 to 4 [3]. Liu et al. [32] also obtained n values of 2.0–2.2 for P(3HB-co-3HV)
(6.6 mol % HV). Chan et al. [33], however, obtained n values across a range of HV contents of 2.35–2.7,
and Saad et al. [34] obtained an exponent of 3.8 for thin P(3HB) films. Meanwhile, Xu et al. [35] applied
the Avrami equation to IR data for isothermal crystallization of P(3HB) and Nodax (P(3HB-co-3HHx))
and obtained an n value of 1.72 and 2.08 respectively, indicating that a heterogeneous nucleation
mechanism exists in this case. Nonetheless, the increase of the Avrami exponent compared to the neat
sample did justify the fact that the initial nucleation stage was enhanced by the nanoparticles. With the
linearized Avrami plots, the intercept value is ln(k) and the overall rate constant (k) is easily determined.
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Figure 2. Avrami plots of the crystallization of (a) PHBV and (b) PHBV/INT-WS2 (1.0 wt %) as a
function of the crystallization temperature (Tc).
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Table 1. Isothermal crystallization parameters of PHBV and PHBV/INT-WS2 nanocomposites.
Tc = crystallization temperature, τ0.5 = the time needed to reach 50% crystalline transformation,
n = Avrami exponent, kn = overall rate constant, Tm = melting temperature and σe = fold surface
free energy. (*) The main error arises from baseline selection during data processing. We estimate the
following errors: ±1 J/g for (∆Ht) and ±100 for ∆(τ0.5).

INT-WS2
Content (wt %) Tc (◦C) τ0.5 (min) n kn × 105 Tm1/Tm2 (◦C) σe (erg cm−2)

0

96 2.4 4.4 ± 0.1 15.65 149.6/160.0

75 ± 3

98 3.3 3.8 ± 0.1 7.31 148.5/159.5
100 4.9 3.3 ± 0.1 3.71 147.5/158.0
102 6.9 2.9 ± 0.2 2.51 147.1/157.3
104 9.5 2.7 ± 0.1 1.5 146.9/156.8
106 15.1 2.5 ± 0.1 0.77 145.7/154.9
108 26.3 2.3 ± 0.1 0.42 144.7/153.6
110 49.3 2.0 ± 0.2 0.28 145.2/155.8

0.1

104 3 4.0 ± 0.1 8.49 145.2/155.8

57 ± 2
106 5.2 3.6 ± 0.1 1.83 144.2/154.4
108 9.3 3.3 ± 0.2 0.43 144.1/153.7
110 19 3.0 ± 0.1 0.1 144.4/153.0
112 37.2 2.7 ± 0.1 0.05 144.8/152.3

0.5

116 1.4 5.2 ± 0.1 145.23 156.7/165.2

71 ± 3

118 2.2 4.6 ± 0.2 17.5 154.6/165.2
120 4.1 4.2 ± 0.1 1.84 153.6/161.2
122 8.6 3.9 ± 0.1 0.16 153.3/160.0
124 19.5 3.7 ± 0.2 0.01 153
126 47.6 3.8 ± 0.2 0.003 152.5

1

118 2.3 4.6 ± 0.1 14.37 152.4/160.8

58 ± 2

120 3.8 4.3 ± 0.1 2.29 152.7/160.3
122 6.3 4.1 ± 0.1 0.34 153.1/160.0
124 10.8 4.1 ± 0.2 0.04 153.8/160.3
126 19 3.9 ± 0.2 0.01 154
128 34.9 4.0 ± 0.2 0.005 154.7

Another common way to estimate the overall rate constant, also k, is by the well-fitting logarithmic
representation of the following expression [36]:

kn =
ln 2

(τ0.5)
n (4)

where τ0.5 is the time needed to reach 50% crystalline transformation. Values of kn obtained for both
neat PHBV and its nanocomposites are represented in Figure 3, where the effect of the crystallization
temperature (Tc) and INT-WS2 concentration on the overall crystallization rate can be observed
(Table 1). By increasing Tc from 96 ◦C to 110 ◦C, the crystallization of neat PHBV becomes hindered
and kn decreases due to the excessive mobility of the polymer chains that reduces the development of
nucleation sites at the higher temperature. A similar phenomenon takes place for PHBV/INT-WS2

(1.0 wt %) in the range of 118–128 ◦C. The values of kn for the nanocomposites were found to be higher
in all cases than those for PHBV. Whilst PHBV presented a value of kn ≈ 2.51 × 10−5 at Tc = 102 ◦C,
in the case of the nanocomposites, the values of kn of around the same order were obtained at 120 ◦C
for a concentration of 1.0 wt % of INT-WS2. The results show that INT-WS2 nanoparticles are effective
nucleating agents for PHBV, promoting the nucleation of the crystallization of the polymer chains
at small nanofiller loadings, without altering its crystal structure [29]. Additionally, the presence of
increasing content of INT-WS2 also improves the crystallinity of PHBV, as can be seen in Figure 4.
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Figure 3. Logarithmic plots of the global rate constant (k) of PHBV/INT-WS2 nanocomposites as
a function of the crystallization temperature (Tc); the inset represents the inverse of crystallization
half-time (1/τ0.5) as a function of Tc.
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Figure 4. Variation of the crystallinity of isothermal crystallization of PHBV/INT-WS2 nanocomposites
as a function of the crystallization temperature (Tc).

Hereafter, the melting behavior of PHBV/INT-WS2 will be presented in order to understand
the dependence of the double melting temperatures of PHBV with composition. Figure 5 shows
the DSC melting curves obtained in this study after isothermal crystallization at different Tc for
PHBV/INT-WS2 (1.0 wt %), where a clear double melting behavior was observed and the results for
all samples are summarized in Table 1. No clear difference was observed in the evolution of the double
melting temperature with INT-WS2 due the large shift of the crystallization interval of PHBV to higher
temperature and direct temperature comparisons were not feasible (i.e., the measurable temperature
range for neat PHBV was 96–110 ◦C, whereas for the 1.0 wt % nanocomposite, the measurable
temperature range was 118–128 ◦C).
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Figure 5. Melting DSC thermograms of PHBV/INT-WS2 (1.0 wt %) nanocomposite obtained at a
heating rate of 5 ◦C min−1 after isothermal crystallization at the indicated temperatures.

3.2. Crystallization Activation Energy

For further insight into the crystallization behavior of PHBV and its nanocomposites, the free
energy of folding (σe) was calculated using the Lauritzen and Hoffman (L–H) model [37,38], previously
adopted to calculate the isothermal crystallization activation energy of nylon-6/IF-WS2 [21] and
PLLA/INT-WS2 [25]. In this approximation, σe represents the energy required to fold the polymer
chains during crystallization. In agreement with the kinetic theory of crystallization and independent
regime type, the crystallization rate (G) can be expressed as:

G = G0 exp[− U∗

R(Tc − T0)
] exp[−

Kg(III)

f Tc∆T
] (5)

where G0 is a temperature independent pre-exponential term, U* is the activation energy required
for chain movement (2.45 × 106 cal kmol−1), T0 is the temperature at which there is no chain motion
(usually T0 = Tg − 51.6 K), R is the universal gas constant, ∆T is the undercooling, or T0

m − Tc where
T0

m is the equilibrium melting temperature, f is a correction factor that accounts for the variation of
the equilibrium melting enthalpy (∆H0

m) with temperature, defined as 2Tc/(Tc + T0
m), and Kg is the

nucleation constant for Regime III [3,39], which can be expressed by:

Kg(I I I) =
4b0σuσeT0

m

kB∆H0
m

(6)

where k is the Boltzmann constant, 1.38 × 10−26 kJ K−1, b0 = 7.2 nm and corresponds to the thickness
of a single crystalline monolayer added during growth [3], and σe and σu are the basal and lateral
interfacial free energies of the crystallite, respectively. The logarithmic representation of the first term
of Equation (5) versus 1/fTc∆T is presented in Figure 6 for all the samples analyzed, and the linear
fits observed support unique regime behavior. The values of Kg(III) were calculated from the slopes of
these plots.
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Although the literature values found for ∆Hm vary considerable since they are fundamentally
conditioned by the determination method [3], the influence of this experimental variability in
the comparative analysis of the values of the interfacial free energies can be eliminated by
applying the Hoffman approximation [38], which determines the interfacial free energy using the
following expression:

σu = α∆H0
m
√

a0b0 (7)

where α = 0.24 (for high melting polyesters) and a0b0 = 38.01 Å [40] that corresponds to the chain
cross-section in the PHBV crystal. Thus, the basal interfacial free energy can be derived from the
following equation:

σe =
kBKg(I I I)

4b0T0
mα
√

a0b0
(8)

Under these considerations and based on our previous studies of the isothermal crystallization
of polymer/WS2 systems [21,25], the values of σe obtained for PHBV, PHBV/INT-WS2 (0.1 wt %),
PHBV/INT-WS2 (0.5 wt %) and PHBV/INT-WS2 (1.0 wt %) are around 75, 57, 71 and 58 erg cm−2,
respectively. There is a clear trend for decreasing values of σe as the INT-WS2 content is increased.
From these results, we can conclude that between around 6–24% lower energy is required to generate
crystalline nuclei of PHBV, which in turn also promotes the formation of new PHBV crystal surfaces.
This excellent matching suggests that PHBV crystals might grow on the INT-WS2 surface by an epitaxial
mechanism in absence of the chemical interaction between the INT-WS2 and PHBV. More in-depth
experiments will be conducted to verify this proposal in a future study.

3.3. Spherulitic Growth Analysis from POM Observation

Optical light microscopy images of crystals produced during the isothermal crystallization
of PHBV and its nanocomposite containing INT-WS2 were obtained. As an example, Figures 7
and 8 shows the spherulitic morphology of neat PHBV and PHBV/INT-WS2 (1.0 wt %) isothermally
crystallized at 100 ◦C and 122 ◦C, respectively.
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Figure 7. POM images of PHBV/INT-WS2 nanocomposites. PHBV: (a–f) are images taken at
8 min; 12 min; 23 min; 30 min; 37 min and after 60 min rapidly cooled to 80 ◦C, respectively; and
PHBV/INT-WS2 (1.0 wt %): (g–l) are images taken at 4 min; 5 min; 6 min; 7 min, 8 min and 10 min,
respectively. Scale bar 100 µm.

The mainly circular superstructures are indicative of the formation of a central nucleus followed
by radial, outward growth, as expected. In Figure 7e crystal diameters of approximately 130 µm
were observed after 37 min and in Figure 7k crystal diameters of 140 µm were seen after only
8 min. This observation further confirms the acceleration of the crystallization process of PHBV
by incorporation of INT-WS2. Another effect observed in the nucleated systems was an average
decrease in crystal diameters of the neighboring spherulites before impingement. This was due to
a higher density of nucleation sites and faster crystal formation compared to the neat copolymer.
Assuming linear, constant growth rates, a linear slope of the growth diameter with respect to time for
the four samples clearly indicated that crystal growth is faster in the samples containing INT-WS2

than in the pure PHBV sample (Figure 8). The crystal growth rates for neat PHBV are 0.54 and
0.92 µm min−1 at Tc = 110 ◦C and 112 ◦C, respectively. The crystal growth rates for the 0.1, 0.5 and
1.0 wt % nanocomposites are 2.61, 4.48, and 8.62 µm min−1, which is sixteen times faster for the
1.0 wt % sample compared to the neat polymer at the two different Tc values. Another way to interpret
this figure is by comparing the time required for the spherulites to reach a certain diameter. To
reach a diameter of, for example, 35 µm at Tc = 122 ◦C, inorganic nanotube fractions of 1.0 wt %, a
0.5 wt %, and 0.1 wt % in PHBV, needed approximately 4, 8, and 13 min, respectively. However, a
neat PHBV sample requires around 38 and 65 min for Tc = 110 ◦C and 112 ◦C, respectively. This is
another clear indication of the increase in the crystallization rate of PHBV due to the incorporation
of the well-dispersed INT-WS2 nanofiller. In particular, the increasing slope of the growth rate of the
spherulite radii as a function of INT-WS2 concentration may be due to the increased nucleation sites
available thus facilitating accelerated growth in either case. More research would be required.
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4. Conclusions

From the melt-crystallization measurements, it was shown that INT-WS2 strongly affect the
crystallization of PHBV polymer. INT-WS2 accelerate the crystallization process of PHBV in the
nanocomposites and shift the crystallization temperature/interval for PHBV to higher temperatures
with increasing INT-WS2 content. The experimental data fitted very well to the Avrami kinetic
model. In particular, it was found that the value of the Avrami exponent n for PHBV/INT-WS2

nanocomposites increased compared to that for neat PHBV, and the analysis of the activation energy
of crystallization regime III using the Lauritzen and Hoffman (L–H) model showed that for the
PHBV/INT-WS2 nanocomposites, the fold surface free energy (σe) of PHBV chains decreased with
increasing INT-WS2 content. Similarly, the variation of the spherulitic radii of PHBV with crystallization
time and concentration of nanofiller, calculated from the POM micrographs, also supports the
spherulite growth-accelerating effect of PHBV. While the crystallization occurred at much higher
temperatures with the incorporation of INT-WS2, the direct comparisons of crystallization rates were
not quantifiable at equivalent temperatures because of the acceleration effect of the doped materials.
This new knowledge obtained from the crystallization kinetics of the PHBV biopolymer and its
nanocomposites can provide an essential benchmark for optimizing the design and processing of
PHBV-based thermoplastic materials with desirable properties.
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