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Parameter estimation for nonlinear dynamic system models,
represented by ordinary differential equations (ODEs), using
noisy and sparse data, is a vital task in many fields. We pro-
pose a fast and accurate method, manifold-constrained Gaussian
process inference (MAGI), for this task. MAGI uses a Gaus-
sian process model over time series data, explicitly conditioned
on the manifold constraint that derivatives of the Gaussian
process must satisfy the ODE system. By doing so, we com-
pletely bypass the need for numerical integration and achieve
substantial savings in computational time. MAGI is also suit-
able for inference with unobserved system components, which
often occur in real experiments. MAGI is distinct from existing
approaches as we provide a principled statistical construction
under a Bayesian framework, which incorporates the ODE system
through the manifold constraint. We demonstrate the accuracy
and speed of MAGI using realistic examples based on physical
experiments.

parameter estimation | ordinary differential equations |
posterior sampling | inverse problem

Dynamic systems, represented as a set of ordinary differential
equations (ODEs), are commonly used to model behav-

iors in scientific domains, such as gene regulation (1), biological
rhythms (2), spread of disease (3), ecology (4), etc. We focus on
models specified by a set of ODEs

ẋ(t) =
dx(t)

dt
= f(x(t),θ, t), t ∈ [0,T ], [1]

where the vector x(t) contains the system outputs that evolve
over time t and θ is the vector of model parameters to
be estimated from experimental/observational data. When f
is nonlinear, solving x(t) given initial conditions x(0) and θ
generally requires a numerical integration method, such as
Runge–Kutta.

Historically, ODEs have mainly been used for conceptual or
theoretical understanding rather than data fitting as experimen-
tal data were limited. Advances in experimental and data collec-
tion techniques have increased the capacity to follow dynamic
systems closer to real time. Such data will generally be recorded
at discrete times and subject to measurement error. Thus, we
assume that we observe y(τ ) = x(τ ) + ε(τ ) at a set of observa-
tion time points τ with error ε governed by noise level σ. Our
focus here is inference of θ given y(τ ), with emphasis on non-
linear f where specialized methods that exploit a linear structure
(e.g., refs. 5 and 6), are not generally applicable. We shall present
a coherent, statistically principled framework for dynamic system
inference with the help of Gaussian processes (GPs). The key
to our method is to restrict the GPs on a manifold that satisfies
the ODE system: Thus, we name our method MAGI (manifold-
constrained Gaussian process inference). Placing a GP on x(t)
facilitates inference of θ without numerical integration, and our
explicit manifold constraint is the key idea that addresses the
conceptual incompatibility between the GP and the specification
of the ODE model, as we shall discuss shortly when overview-
ing our method. We show that the resulting parameter inference

is computationally efficient, statistically principled, and effective
in a variety of practical scenarios. MAGI particularly works in
the cases when some system component(s) is/are unobserved. To
the best of our knowledge, none of the current available soft-
ware packages that do not use numerical integration can analyze
systems with unobserved component(s).

Overview of Our Method
Following the Bayesian paradigm, we view the D-dimensional
system x(t) to be a realization of the stochastic process X(t) =
(X1(t), . . . ,XD(t)) and the model parameters θ a realization
of the random variable Θ. In Bayesian statistics, the basis of
inference is the posterior distribution, obtained by combining
the likelihood function with a chosen prior distribution on the
unknown parameters and stochastic processes. Specifically, we
impose a general prior distribution π(·) on θ and independent
GP prior distributions on each component Xd(t) so that Xd(t)∼
GP(µd ,Kd), t ∈ [0,T ], where Kd :R×R→R is a positive def-
inite covariance kernel for the GP and µd :R→R is the mean
function. Then, for any finite set of time points τ d , Xd(τ d) has
a multivariate Gaussian distribution with mean vector µd(τ d)
and covariance matrix Kd(τ d , τ d). Denote the observations by
y(τ ) = (y1(τ 1), . . . , yD(τD)), where τ = (τ 1, τ 2, . . . , τD) is the
collection of all observation time points, and each component Xd

can have its own set of observation times τ d = (τd,1, . . . , τd,Nd ).
If the d th component is not observed, then Nd = 0, and τ d = ∅.
N =N1 + · · ·+ND is the total number of observations. We note
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that for the remainder of the paper, the notation t shall refer to
time generically, while τ shall refer specifically to the observation
time points.

As an illustrative example, consider the dynamic system in
ref. 1 that governs the oscillation of Hes1 mRNA (messenger
ribonucleic acid) (M ) and Hes1 protein (P) levels in cultured
cells, where it is postulated that an Hes1-interacting (H ) factor
contributes to a stable oscillation, a manifestation of biologi-
cal rhythm (2). The ODEs of the three-component system X =
(P ,M ,H ) are

f(X ,θ, t) =

 −aPH + bM − cP
−dM + e

1+P2

−aPH + f
1+P2 − gH

,

where θ = (a, b, c, d , e, f , g) are the associated parameters. In
Fig. 1, left-most panel, we show noise-contaminated data gen-
erated from the system, which closely mimics the experimental
setup described in ref. 1: P and M are observed at 15-min inter-
vals for 4 h, but H is never observed. In addition, P and M
observations are asynchronous: Starting at time 0, every 15 min
we observe P ; starting at 7.5 min, every 15 min we observe M ; P
and M are never observed at the same time. It can be seen that
the mRNA and protein levels exhibit the behavior of regulation
via negative feedback.

The goal here is to infer the seven parameters of the system:
a, b govern the rate of protein synthesis in the presence of the
interacting factor; c, d , g are the rates of decomposition; and
e, f are inhibition rates. The unobserved H component poses a
challenge for most existing methods that do not use numerical
integration but is capably handled by MAGI: The P and M pan-
els of Fig. 1 show that our inferred trajectories provide good fits
to the observed data, and the H panel shows that the dynamics
of the entirely unobserved H component are largely recovered
as well. We emphasize that these trajectories are inferred with-
out any use of numerical solvers. We shall return to the Hes1
example in detail in Results.

Intuitively, the GP prior on X(t) facilitates computation as
GP provides closed analytical forms for Ẋ(t) and X(t), which
could bypass the need for numerical integration. In particular,
with a GP prior on X(t), the conditional distribution of Ẋ(t)
given X(t) is also a GP with its mean function and covariance
kernel completely specified. This GP specification for the deriva-
tives ẋ(t), however, is inherently incompatible with the ODE
model because Eq. 1 also completely specifies ẋ(t) given x(t)
(via the function f). As a key contribution of our method, MAGI
addresses this conceptual incompatibility by constraining the GP
to satisfy the ODE model in Eq. 1. To do so, we first define a
random variable W quantifying the difference between stochas-

tic process X(t) and the ODE structure with a given value of the
parameter θ:

W = sup
t∈[0,T ],d∈{1,...,D}

|Ẋd(t)− f(X(t),θ, t)d |. [2]

W ≡ 0 if and only if ODEs with parameter θ are satisfied by
X(t). Therefore, ideally the posterior distribution for X(t) and
θ given the observations y(τ ) and the ODE constraint, W ≡ 0, is
(informally)

pΘ,X(t)|W ,Y(τ)(θ, x(t)|W = 0, Y(τ ) = y(τ )). [3]

While Eq. 3 is the ideal posterior, in reality W is not generally
computable. In practice, we approximate W by finite discretiza-
tion on the set I = (t1, t2, . . . , tn) such that τ ⊂ I⊂ [0,T ] and
similarly define WI as

WI = max
t∈I,d∈{1,...,D}

|Ẋd(t)− f(X(t),θ, t)d |. [4]

Note that WI is the maximum of a finite set, and WI→W mono-
tonically as I becomes dense in [0,T ]. Therefore, the practically
computable posterior distribution is

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ )),

which is the joint conditional distribution of θ and X(I)
together. Thus, effectively, we simultaneously infer both the
parameters and the unobserved trajectory X(I) from the noisy
observations y(τ ).

Under Bayes’ rule, we have

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ ))

∝P(Θ=θ, X(I) = x(I),WI = 0, Y(τ ) = y(τ )),

where the right-hand side can be decomposed as

P(Θ=θ, X(I) = x(I),WI = 0, Y(τ ) = y(τ ))

=πΘ(θ)×P(X(I) = x(I)|Θ=θ)︸ ︷︷ ︸
(1)

×P(Y(τ ) = y(τ )|X(I) = x(I),Θ=θ)︸ ︷︷ ︸
(2)

×P(WI = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)︸ ︷︷ ︸
(3)

.

The first term (1) can be simplified as P(X(I) = x(I)|Θ=θ) =
P(X(I) = x(I)) due to the prior independence of X(I) and Θ;
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Fig. 1. Inference by MAGI for Hes1 partially observed asynchronous system on 2,000 simulated datasets. The red curve is the truth. MAGI recovers the
system well, without the usage of any numerical solver: The green curve shows the median of the inferred trajectories among the 2,000 simulated datasets,
and a 95% interval from the 2.5 and 97.5% of all inferred trajectories is shown via the blue area.
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it corresponds to the GP prior on X . The second term (2) cor-
responds to the noisy observations. The third term (3) can be
simplified as

P(WI = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)

=P(Ẋ(I)− f(x(I),θ, tI) = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)

=P(Ẋ(I)− f(x(I),θ, tI) = 0|X(I) = x(I))

=P(Ẋ(I) = f(x(I),θ, tI)|X(I) = x(I)),

which is the conditional density of Ẋ(I) given X(I) evaluated
at f(x(I),θ, tI). All three terms are multivariate Gaussian: The
third term is Gaussian because Ẋ(I) given X(I) has a multi-
variate Gaussian distribution as long as the kernel K is twice
differentiable.

Therefore, the practically computable posterior distribution
simplifies to

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ )) [5]

∝πΘ(θ) exp

{
−1

2

D∑
d=1

[
+ |I| log(2π) + log |Cd |+ ‖xd(I)−µd(I)‖2

C−1
d︸ ︷︷ ︸

(1)

+ |I| log(2π) + log|Kd |+
∥∥∥f x,θ

d,I −µ̇d(I)−md{xd(I)−µd(I)}
∥∥∥2

K−1
d︸ ︷︷ ︸

(3)

+Nd log(2πσ2
d) + ‖xd(τ d)− yd(τ d)‖2

σ−2
d︸ ︷︷ ︸

(2)


,

where ‖v‖2A = vᵀAv, |I| is the cardinality of I, f x,θ
d,I is short for

the d th component of f(x(I),θ, tI), and the multivariate Gaus-
sian covariance matrix Cd and the matrix Kd can be derived as
follows for each component d :

C =K(I, I)

m =′K(I, I)K(I, I)−1

K =K′′(I, I)− ′K(I, I)K(I, I)−1K′(I, I)

, [6]

where ′K= ∂
∂s
K(s, t), K′= ∂

∂t
K(s, t), and K

′′
= ∂2

∂s∂t
K(s, t).

In practice, we choose the Matern kernel
K(s, t) =φ1

21−ν

Γ(ν)

(√
2ν l

φ2

)ν
Bν
(√

2ν l
φ2

)
, where l = |s − t |,

Γ is the Gamma function, Bν is the modified Bessel function
of the second kind, and the degree of freedom ν is set to be
2.01 to ensure that the kernel is twice differentiable. K has two
hyperparameters φ1 and φ2. Their meaning and specification
are discussed in Materials and Methods.

With the posterior distribution specified in Eq. 5, we use
Hamiltonian Monte Carlo (HMC) (7) to obtain samples of
X I and the parameters together. At the completion of HMC
sampling, we take the posterior mean of X I as the inferred tra-
jectory and the posterior means of the sampled parameters as
the parameter estimates. Throughout the MAGI computation,
no numerical integration is ever needed.

Review of Related Work
The problem of dynamic system inference has been stud-
ied in the literature, which we now briefly review. We first
note that a simple approach to constructing the “ideal” like-
lihood function is according to p(y(t)|x̂(t,θ, x(0)),σ), where

x̂(t,θ, x(0)) is the numerical solution of the ODE obtained by
numerical integration given θ and the initial conditions. This
approach suffers from a high computational burden: Numer-
ical integration is required for every θ sampled in an opti-
mization or Markov chain Monte Carlo (MCMC) routine
(8). Smoothing methods have been useful for eliminating the
dependence on numerical ODE solutions, and an innovative
penalized likelihood approach (9) uses a B-spline basis for
constructing estimated functions to simultaneously satisfy the
ODE system and fit the observed data. While in principle,
the method in ref. 9 can handle an unobserved system com-
ponent, substantive manual input is required as we show in
Results, which contrasts with the ready-made solution that MAGI
provides.

As an alternative to the penalized likelihood approach, GPs
are a natural candidate for fulfilling the smoothing role in a
Bayesian paradigm due to their flexibility and analytic tractabil-
ity (10). The use of GPs to approximate the dynamic system
and facilitate computation has been previously studied by a
number of authors (8, 11–15). The basic idea is to specify a
joint GP over y, x, ẋ with hyperparameters φ and then, pro-
vide a factorization of the joint density p(y, x, ẋ,θ,φ,σ) that is
suitable for inference. The main challenge is to find a coher-
ent way to combine information from two distinct sources: the
approximation to the system by the GP governed by hyperpa-
rameters φ and the actual dynamic system equations governed
by parameters θ. In refs. 8 and 11, the factorization proposed
is p(y, x, ẋ,θ,φ,σ) = p(y|x,σ)p(ẋ|x,θ,φ)p(x|φ)p(φ)p(θ), where
p(y|x,σ) comes from the observation model and p(x|φ) comes
from the GP prior as in our approach. However, there are sig-
nificant conceptual difficulties in specifying p(ẋ|x,θ,φ): On one
hand, the distribution of ẋ is completely determined by the GP
given x, while on the other hand, ẋ is completely specified by
the ODE system ẋ = f(x,θ, t); these two are incompatible. Pre-
vious authors have attempted to circumvent this incompatibility
of the GP and ODE system: Refs. 8 and 11 use a product
of experts heuristic by letting p(ẋ|x,θ,φ)∝ p(ẋ|x,φ)p(ẋ|x,θ),
where the two distributions in the product come from the GP
and a noisy version of the ODE, respectively. In ref. 15, the
authors arrive at the same posterior as refs. 8 and 11 by assum-
ing an alternative graphical model that bypasses the product
of experts heuristic; nonetheless, the method requires work-
ing with an artificial noisy version of the ODE. In ref. 12, the
authors start with a different factorization: p(y, x, ẋ,θ,φ,σ) =
p(y|ẋ,φ,σ)p(ẋ|x,θ)p(x|φ)p(φ)p(θ), where p(y|ẋ,φ) and p(x|φ)
are given by the GP and p(ẋ|x,θ) is a Dirac delta distribu-
tion given by the ODE. However, this factorization is incom-
patible with the observation model p(y|x,σ) as discussed in
detail in ref. 16. There is other related work that uses GPs
in an ad hoc partial fashion to aid inference. In ref. 13,
GP regression is used to obtain the means of x and ẋ for
embedding within an Approximate Bayesian Computation esti-
mation procedure. In ref. 14, GP smoothing is used during
an initial burn-in phase as a proxy for the likelihood, before
switching to the ideal likelihood to obtain final MCMC sam-
ples. While empirical results from the aforementioned studies
are promising, a principled statistical framework for inference
that addresses the previously noted conceptual incompatibility
between the GP and ODE specifications is lacking. Our work
presents one such principled statistical framework through the
explicit manifold constraint. MAGI is therefore distinct from
recent GP-based approaches (11, 15) or any other Bayesian
analogs of ref. 9.

In addition to the conceptual incompatibility, none of the
existing methods that do not use numerical integration offer a
practical solution for a system with unobserved component(s),
which highlights another unique and important contribution of
our approach.
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Results
We apply MAGI to three systems. We begin with an illustra-
tion that demonstrates the effectiveness of MAGI in practical
problems with unobserved system component(s). Then, we make
comparisons with other current methods on two benchmark sys-
tems, which show that our proposed method provides more
accurate inference while having much faster run time.

Illustration: Hes1 Model. The Hes1 model described in the Intro-
duction demonstrates inference on a system with an unobserved
component and asynchronous observation times. This section
continues the inference of this model. Ref. 1 studied the theoret-
ical oscillation behavior using parameter values a = 0.022, b =
0.3, c = 0.031, d = 0.028; e = 0.5, f = 20, g = 0.3, which leads to
one oscillation cycle approximately every 2 h. Ref. 1 also set the
initial condition at the lowest value of P when the system is in
oscillation equilibrium (1): P = 1.439, M = 2.037, H = 17.904.
The noise level in our simulation is derived from ref. 1 where
the SE based on repeated measures is reported to be around
15% of the P (protein) level and M (mRNA) level, so we set
the simulation noise to be multiplicative following a log-normal
distribution with SD 0.15; throughout this example, we assume
the noise level σ is known to be 0.15 from repeated measures
reported in ref. 1. The H component is never observed. Owing to
the multiplicative error on the strictly positive system, we apply
our method to the log-transformed ODEs, so that the resulting
error distributions are Gaussian. To the best of our knowledge,
MAGI is the only one that provides a practical and complete
solution for handling unobserved component cases like this
example.

We generate 2,000 simulated datasets based on the above
setup for the Hes1 system. The left-most panel in Fig. 1 shows
one example dataset. For each dataset, we use MAGI to infer
the trajectories and estimate the parameters. We use the pos-
terior mean of Xt = (P ,M ,H )t as the inferred trajectories for
the system components, which are generated by MAGI with-
out using any numerical solver. Fig. 1 summarizes the inferred
trajectories across the 2,000 simulated datasets, showing the
median of the inferred trajectories of Xt together with the 95%
interval of the inferred trajectories represented by the 2.5 and
97.5% percentiles. The posterior mean of θ = (a, b, c, d , f , e, g)
is our estimate of the parameters. Table 1 summarizes the
parameter estimates across the 2,000 simulated datasets, by
showing their means and SDs. Fig. 1 shows that MAGI recov-
ers the system well, including the completely unobserved H
component. Table 1 shows that MAGI also recovers the sys-
tem parameters well, except for the parameters that only appear
in the equation for the unobserved H component, which we
will discuss shortly. Together, Fig. 1 and Table 1 demonstrate
that MAGI can recover the entire system without any usage

Table 1. Parameter inference in the Hes1 partially observed
asynchronous system based on 2,000 simulation datasets

θ Truth MAGI Ref. 9

Estimate RMSE Estimate RMSE
a 0.022 0.021 ± 0.003 0.003 0.027 ± 0.026 0.026
b 0.3 0.329 ± 0.051 0.059 0.302 ± 0.086 0.086
c 0.031 0.035 ± 0.006 0.007 0.031 ± 0.010 0.010
d 0.028 0.029 ± 0.002 0.003 0.028 ± 0.003 0.003
e 0.5 0.552 ± 0.074 0.090 0.498 ± 0.088 0.088
f 20 13.759 ± 3.026 6.936 604.9 ± 5084.8 5,117.0
g 0.3 0.141 ± 0.026 0.162 1.442 ± 9.452 9.519

Average parameter estimates based on MAGI and ref. 9 across the 2,000
simulated datasets are reported together with the SD. Parameter RMSEs are
reported in the following column. Bold highlights the best method in terms
of parameter RMSE for each parameter.

of a numerical solver, even in the presence of unobserved
component(s).
Metrics for assessing the quality of system recovery. To further
assess the quality of the parameter estimates and the system
recovery, we consider two metrics. First, as shown in Table 1,
we examine the accuracy of the parameter estimates by directly
calculating the root mean squared error (RMSE) of the param-
eter estimates to the true parameter value. We call this measure
the parameter RMSE metric. Second, it is possible that a system
might be insensitive to some of the parameters; in the extreme
case, some parameters may not be fully identifiable given only
the observed data and components. In these situations, it is
possible that the system trajectories implied by quite distinct
parameter values are similar to each other (or even close to
the true trajectory). We thus consider an additional trajectory
RMSE metric to account for possible parameter insensitivity
and measure how well the system components are recovered
given the parameter and initial condition estimates. The trajec-
tory RMSE is obtained by treating the numerical ODE solution
based on the true parameter value as the ground truth: First,
the numerical solver is used to reconstruct the trajectory based
on the estimates of the parameter and initial condition (from
a given method); then, we calculate the RMSE of this recon-
structed trajectory to the true trajectory at the observation time
points. We emphasize that the trajectory RMSE metric is only
for evaluation purpose to assess (and compare across methods)
how well a method recovers the trajectories of the system com-
ponents and that throughout MAGI, no numerical solver is ever
needed.

We summarize the trajectory RMSEs of MAGI in Table 2 for
the Hes1 system.

We compare MAGI with the benchmark provided by the B
spline-based penalization approach of ref. 9. To the best of our
knowledge, among all of the existing methods that do not use
numerical integration, ref. 9 is the only one with a software
package that can be manually adapted to handle an unobserved
component. We note, however, that this package itself is not
ready made for this problem: It requires substantial manual
input as it does not have default or built-in setup of its hyper-
parameters for the unobserved component. None of the other
benchmark methods, including refs. 11 and 15, provide software
that is equipped to handle an unobserved component. Table 1
compares our estimates against those given by ref. 9 based on
the parameter RMSE, which shows that the parameter RMSEs
for MAGI are substantially smaller than ref. 9. Fig. 1 shows that
the inferred trajectories from MAGI are very close to the truth.
On the contrary, the method in ref. 9 is not able to recover the
unobserved component H nor the associated parameters f and
g ; SI Appendix, Fig. S1 has the plots. Table 2 compares the tra-
jectory RMSE of the two methods. It is seen that the trajectory
RMSE of MAGI is substantially smaller than that of ref. 9. Fur-
ther implementation details and comparison are provided in SI
Appendix.

Finally, we note that MAGI recovers the unobserved com-
ponent H almost as well as the observed components of P
and M , as measured by the trajectory RMSEs. In compari-
son, for the result of ref. 9 in Table 2, the trajectory RMSE
of the unobserved H component is orders of magnitude worse
than those of P and M . The numerical results thus illus-
trate the effectiveness of MAGI in borrowing information from
the observed components to infer the unobserved component,
which is made possible by explicitly conditioning on the ODE
structure. The self-regulating parameter g and inhibition rate
parameter f for the unobserved component appear to have
high inference variation across the simulated datasets despite
the small trajectory RMSEs. This suggests that the system itself
could be insensitive to f and g when the H component is
unobserved.
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Table 2. Trajectory RMSEs of the individual components in the
Hes1 system, comparing the average trajectory RMSEs of MAGI
and ref. 9 over the 2,000 simulated datasets

Method P M H

MAGI 0.97 0.21 2.57
Ref. 9 1.30 0.40 59.47

The best trajectory RMSE for each system component is shown in bold.

Comparison with Previous Methods Based on GPs. To further assess
MAGI, we compare with two methods: adaptive gradient match-
ing (AGM) of ref. 11 and fast Gaussian process-based gradient
matching (FGPGM) of ref. 15, representing the state of the art
of inference methods based on GPs. For fair comparison, we use
the same benchmark systems, scripts, and software provided by
the authors for performance assessment and run the software
using the settings recommended by the authors. The benchmark
systems include the FitzHugh–Nagumo (FN) equations (17) and
a protein transduction model (18).
FN model. The FN equations are a classic ion channel model that
describes spike potentials. The system consists of X = (V ,R),
where V is the variable defining the voltage of the neuron mem-
brane potential and R is the recovery variable from neuron
currents, satisfying the ODE

f(X ,θ, t) =

 c(V − V 3

3
+R)

−1

c
(V − a + bR)

,

where θ = (a, b, c) are the associated parameters. As in refs. 11
and 15, the true parameters are set to a = 0.2, b = 0.2, c = 3, and
we generate the true trajectories for this model using a numerical
solver with initial conditions V =−1, R = 1.

To compare MAGI with FGPGM of ref. 15 and AGM of
ref. 11, we simulated 100 datasets under the noise setting of
σV =σR = 0.2 with 41 observations. The noise level is chosen
to be on similar magnitude with that of ref. 15, and the noise
level is set to be the same across the two components as the
implementation of ref. 11 can only handle equal-variance noise.
The number of repetitions (i.e., 100) is set to be the same as
ref. 15 due to the high computing time of these alternative
methods.

The parameter estimation results from the three methods are
summarized in Table 3, where MAGI has the lowest parameter
RMSEs among the three. Fig. 2 shows the inferred trajectories
obtained by our method: MAGI recovers the system well, and
the 95% interval band is so narrow around the truth that we
can only see the band clearly after magnification (as shown in
Fig. 2, Insets). SI Appendix provides visual comparison of the
inferred trajectories of different methods, where MAGI gives
the most consistent results across the simulations. Furthermore,
to assess how well the methods recover the system components,
we calculated the trajectory RMSEs, and the results are sum-
marized in Table 4, where MAGI significantly outperforms the
others, reducing the trajectory RMSE over the best alternative
method for 60% in V and 25% in R. We note that compared
with the true parameter value, all three methods show some
bias in the parameter estimates, which is partly due to the GP
prior as discussed in ref. 15, and MAGI appears to have the
smallest bias.

For computing cost, the average run time of MAGI for this
system over the repetitions is 3 min, which is 145 times faster than
FGPGM (15) and 90 times faster than AGM (11) on the same
processor (we follow the authors’ recommendation for running
their methods) (SI Appendix has details).
Protein transduction model. This protein transduction example
is based on systems biology where components S and Sd rep-

resent a signaling protein and its degraded form, respectively.
In the biochemical reaction, S binds to protein R to form the
complex SR, which enables the activation of R into Rpp . X =
(S ,Sd ,R,SR,Rpp) satisfies the ODE

f(X ,θ, t) =


−k1 ·S − k2 ·S ·R + k3 ·SR

k1 ·S
−k2 ·S ·R + k3 ·SR +

V ·Rpp

Km+Rpp

k2 ·S ·R− k3 ·SR − k4 ·SR

k4 ·SR − V ·Rpp

Km+Rpp

,

where θ = (k1, k2, k3, k4,V ,Km) are the associated rate param-
eters.

We follow the same simulation setup as refs. 11 and 15 by
taking t = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}as the
observation times, X (0) = (1, 0, 1, 0, 0) as the initial values, and
θ = (0.07, 0.6, 0.05, 0.3, 0.017, 0.3) as the true parameter values.
Two scenarios for additive observation noise are considered:
σ= 0.001 (low noise) and σ= 0.01 (high noise). Note that the
observation times are unequally spaced, with only a sparse num-
ber of observations from t = 20 to t = 100. Further, inference
for this system has been noted to be challenging due to the
nonidentifiability of the parameters, in particular Km and V
(15). Therefore, the parameter RMSE is not meaningful for
this system, and we focus our comparison on the trajectory
RMSE.

We compare MAGI with FGPGM of ref. 15 and AGM of ref.
11 on 100 simulated datasets for each noise setting (SI Appendix
has method and implementation details). We plot the inferred
trajectories of MAGI in the high-noise setting in Fig. 3, which
closely recover the system. The 95% interval band from MAGI is
quite narrow that for most of the inferred components, we need
magnifications (as shown in Fig. 3, Insets) to clearly see the 95%
band. We then calculated the trajectory RMSEs, and the results
are summarized in Table 5 for each system component. In both
noise settings, MAGI produces trajectory RMSEs that are uni-
formly smaller than both FGPGM (15) and AGM (11) for all
system components. In the low-noise setting, the advantage of
MAGI is especially apparent for components S , R, SR, and Rpp ,
with trajectory RMSEs less than half of the closest comparison
method. For the high-noise setting, MAGI reduces trajectory
RMSE the most for Sd and Rpp (∼50%). AGM (11) struggles
with this example at both noise settings. To visually compare the
trajectory RMSEs in Table 5, plots of the corresponding recon-
structed trajectories by different methods at both noise settings
are given in SI Appendix.

The run time of MAGI for this system averaged over the rep-
etitions is 18 min, which is 12 times faster than FGPGM (15)
and 18 times faster than AGM (11) on the same processor (we
follow the authors’ recommendation for running their methods)
(SI Appendix has details).

Discussion
We have presented a methodology for the inference of dynamic
systems, using manifold-constrained GPs. A key feature that

Table 3. Parameter inference in the FN model based on 100
simulated datasets

θ MAGI FGPGM (15) AGM (11)

Estimate RMSE Estimate RMSE Estimate RMSE
a 0.19 ± 0.02 0.02 0.22 ± 0.04 0.05 0.30 ± 0.03 0.10
b 0.35 ± 0.09 0.17 0.32 ± 0.13 0.18 0.36 ± 0.06 0.17
c 2.89 ± 0.06 0.13 2.85 ± 0.15 0.21 2.04 ± 0.14 0.97

For each method, average parameter estimates are reported together
with SD; parameter RMSEs across simulations are also reported. Bold
highlights the best method in terms of parameter RMSE for each parameter.
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distinguishes our work from the previous approaches is that it
provides a principled statistical framework, firmly grounded on
the Bayesian paradigm. Our method also outperformed currently
available GP-based approaches in the accuracy of inference on
benchmark examples. Furthermore, the computation time for
our method is much faster. Our method is robust and able
to handle a variety of challenging systems, including unob-
served components, asynchronous observations, and parameter
nonidentifiability.

A robust software implementation is provided, with user inter-
faces available for R, MATLAB, and Python, as described in SI
Appendix. The user may specify custom ODE systems in any of
these languages for inference with our package by following the
syntax in the examples that accompany this article. In practice,
inference with MAGI using our software can be carried out with
relatively few user interventions. The setting of hyperparameters
and initial values is fully automatic, although may be overridden
by the user.

The main setting that requires some tuning is the num-
ber of discretization points in I. In our examples, this was
determined by gradually increasing the denseness of the points
with short sampler runs, until the results become indistinguish-
able. Note that further increasing the denseness of I has no
ill effect, apart from increasing the computational time. To
illustrate the effect of the denseness of I on MAGI inference
results, an empirical study is included in SI Appendix, Vary-
ing Number of Discretization, where we examined the results
of the FN model with the discretization set I taken to be
41, 81, 161, and 321 equally spaced points. The results con-
firm that our proposal of gradually increasing the denseness of
I works well. The inference results improve as we increase I
from 41 to 161 points, and at 161 points, the results are sta-
bilized. If we further increase the discretization to 321 points,
that doubles the compute time with only a slight gain in accuracy
compared with 161 points in terms of trajectory RMSEs. This
empirical study also indicates that as WI becomes an increas-
ingly dense approximation of W , an inference limit would be
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Fig. 2. Inferred trajectories by MAGI for each component of the FN system
over 100 simulated datasets. The Top is the V component and the Bottom is
the R component. The blue shaded area represents the 95% interval. Insets
magnify the corresponding segments.

Table 4. Trajectory RMSEs of each component in the FN system,
comparing the average trajectory RMSE of the three methods
over 100 simulated datasets

Method V R

MAGI 0.103 0.070
FGPGM (15) 0.257 0.094
AGM (11) 1.177 0.662

The best trajectory RMSE for each system component is shown in bold.
MAGI reduces the RMSE for 60% in component V and 25% in component R
over the best alternative method.

expected. A theoretical study is a natural future direction of
investigation.

We also investigated the stability of MAGI when the obser-
vation time points are farther apart. This empirical study,
based on the FN model with 21 observations, is included in SI
Appendix, FN Model with Fewer Observations. The inferred tra-
jectories from the 21 observations are still close to the truth,
while the interval bands become wider, which is expected as
we have less information in this case. We also found that the
denseness of the discretization needs to be increased (to 321
time points in this case) to compensate for the sparser 21
observations.∗

An inherent feature of the GP approximation is the tendency
to favor smoother curves. This limitation has been previously
acknowledged (11, 15). As a consequence, two potential forms of
bias can exist. First, estimates derived from the posterior distri-
butions of the parameters may have some statistical bias. Second,
the trajectories reconstructed by a numerical solver based on the
estimated parameters may differ slightly from the inferred tra-
jectories. MAGI, which is built on a GP framework, does not
entirely eliminate these forms of bias. However, as seen in the
benchmark systems, the magnitude of our bias in both respects
is significantly smaller than the current state of the art in refs. 11
and 15.

We considered the inference of dynamic systems specified by
ODEs in this article. Such deterministic ODE models are often
adequate to describe dynamics at the aggregate or population
level (19). However, when the goal is to describe the behav-
ior of individuals [e.g., individual molecules (20, 21)], models
such as stochastic differential equations (SDEs) and continuous-
time Markov processes, which explicitly incorporate intrinsic
(stochastic) noise, often become the model of choice. Extend-
ing our method to the inference of SDEs and continuous-time
Markov models is a future direction we plan to investigate.
Finally, recent developments in deep learning have shown con-
nections between deep neural networks and GPs (22, 23). It
could thus also be interesting to explore the application of neural
networks to model the ODE system outputs x(t) in conjunction
with GPs.

Materials and Methods
For notational simplicity, we drop the dimension index d in this section when
the meaning is clear.

Algorithm Overview. We begin by summarizing the computational scheme
of MAGI. Overall, we use HMC (7) to obtain samples of X I and the param-
eters from their joint posterior distribution. Details of the HMC sampling
are included in SI Appendix, Hamiltonian Monte Carlo. At each iteration
of HMC, X I and the parameters† are updated together with a joint gradi-
ent, with leapfrog step sizes automatically tuned during the burn-in period
to achieve an acceptance rate between 60 and 90%. At the completion of

*This finding echoes the classical understanding that stiff systems require denser
discretization (observations farther apart make the system appear relatively more stiff).

†The parameters here refer to θ and σ. If the noise level σ is known a priori, the
parameters then refer to θ only.
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Fig. 3. Inferred trajectories by MAGI for each component of the protein transduction system in the high-noise setting. The red line is the truth, and the
green line is the median inferred trajectory over 100 simulated datasets. The blue shaded area represents the 95% interval. Insets magnify the corresponding
segment.

HMC sampling (and after discarding an appropriate burn-in period for con-
vergence), we take the posterior means of X I as the inferred trajectories and
the posterior means of the sampled parameters as the parameter estimates.
The techniques we use to temper the posterior and speed up the compu-
tations are discussed in Prior Tempering and SI Appendix, Techniques for
Computational Efficiency.

Several steps are taken to initialize the HMC sampler. First, we apply a
GP fitting procedure to obtain values of φ and σ for the observed com-
ponents; the computed values of the hyperparameters φ are subsequently
held fixed during the HMC sampling, while the computed value of σ is
used as the starting value in the HMC sampler (if σ is known, the GP fit-
ting procedure is used to obtain values of φ only). Second, starting values
of X I for the observed components are obtained by linearly interpolat-
ing between the observation time points. Third, starting values for the
remaining quantities—θ and (X I , φ) for any unobserved component(s)—are
obtained by optimization of the posterior as described below.

Setting Hyperparameters φ for Observed Components. The GP prior Xd(t)∼
GP(µd ,Kd), t∈ [0, T], is on each component Xd(t) separately. The GP

Matern kernel K(l) =φ1
21−ν
Γ(ν)

(√
2ν l

φ2

)
νBν

(√
2ν l

φ2

)
has two hyperpa-

rameters that are held fixed during sampling: φ1 controls overall variance
level of the GP, while φ2 controls the bandwidth for how much neighboring
points of the GP affect each other.

When the observation noise level σ is unknown, values of (φ1,φ2,σ) are
obtained jointly by maximizing GP fitting without conditioning on any ODE
information, namely

(φ̃, σ̃) = arg maxφ,σp(φ,σ2|yI0
)

= arg maxφ,σπΦ1 (φ1)πΦ2 (φ2)πσ(σ2)p(yI0
|φ,σ2), [7]

where yI0
|φ,σ∼N (0,Kφ +σ2). The index set I0 is the smallest evenly

spaced set such that all observation time points in this component are in
I0 (i.e., τ ⊆ I0). The priors πΦ1 (φ1) and πσ(σ2) for the variance parameter
φ1 and σ are set to be flat. The prior πΦ2 (φ2) for the bandwidth parameter
φ2 is set to be a Gaussian distribution. 1) The mean µΦ2 is set to be half
of the period corresponding to the frequency that is the weighted aver-
age of all of the frequencies in the Fourier transform of y on I0 (the values
of y on I0 are linearly interpolated from the observations at τ ), where the
weight on a given frequency is the squared modulus of the Fourier trans-
form with that frequency, and 2) the SD is set such that T is three SDs
away from µΦ2 . This Gaussian prior on φ2 serves to prevent it from being

too extreme. In the subsequent sampling of (θ, Xτ ,σ2), the hyperparam-
eters φ are fixed at φ̃, while σ̃ gives the starting value of σ in the HMC
sampler.

If σ is known, then values of (φ1,φ2) are obtained by maximizing

φ̃= arg maxφp(φ|yI0
,σ2) = arg maxφπΦ1 (φ1)πΦ2 (φ2)p(yI0

|φ,σ2) [8]

and held fixed at φ̃ in the subsequent HMC sampling of (θ, Xτ ). The priors
for φ1 and φ2 are the same as previously defined.

Initialization of X I for the Observed Components. To provide starting values
of X I for the HMC sampler, we use the values of Yτ at the observation time
points and linearly interpolate the remaining points in I.

Initialization of the Parameter Vector θ When All System Components Are
Observed. To provide starting values of θ for the HMC sampler, we optimize
the posterior Eq. 5 as a function of θ alone, holding X I and σ unchanged
at their starting values, when there is no unobserved component(s). The
optimized θ is then used as the starting value for the HMC sampler in this
case.

Settings in the Presence of Unobserved System Components: Setting φ, Initial-
izing X I for Unobserved Components, and Initializing θ. Separate treatment is
needed for the setting of φ and initialization of (θ, X I) for the unobserved
component(s). We use an optimization procedure that seeks to maximize
the full posterior in Eq. 5 as a function of θ together with φ and the
whole curve of X I for unobserved components while holding the σ, φ, and
X I for the observed components unchanged at their initial value discussed
above. We thereby set φ for the unobserved component and the starting
values of θ and X I for unobserved components at the optimized value. In
the subsequent sampling, the hyperparameters are fixed at the optimized
φ, while the HMC sampling starts at the θ and the X I obtained by this
optimization.

Prior Tempering. After φ is set, we use a tempering scheme to control the
influence of the GP prior relative to the likelihood during HMC sampling.
Note that Eq. 5 can be written as

pΘ,X(I)|Y(τ ),WI
(θ, x(I)|y(τ ), WI = 0)

∝pΘ,X(I)|WI
(θ, x(I)|WI = 0)pY(τ )|X(τ )(y(τ )|x(τ )).

[9]

As the cardinality of |I| increases with more discretization points,
the prior part pΘ,X(I)|WI

(θ, x(I)|WI = 0) grows, while the likelihood part
pY(τ )|X(τ )(y(τ )|x(τ )) stays unchanged. Thus, to balance the influence of the
prior, we introduce a tempering hyperparameter β with the corresponding
posterior

Table 5. Trajectory RMSEs of the individual components in the
protein transduction system, by comparing the average RMSEs of
the three methods over 100 simulated datasets

Method S Sd R SR Rpp

Low-noise case, σ= 0.001
MAGI 0.0020 0.0013 0.0040 0.0017 0.0036
FGPGM (15) 0.0049 0.0016 0.0156 0.0036 0.0149
AGM (11) 0.0476 0.2881 0.3992 0.0826 0.2807
High-noise case, σ= 0.01
MAGI 0.0122 0.0043 0.0167 0.0135 0.0136
FGPGM (15) 0.0128 0.0089 0.0210 0.0136 0.0309
AGM (11) 0.0671 0.3125 0.4138 0.0980 0.2973

The method achieving the best RMSE for each system component is
shown in bold.
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p(β)
Θ,XI|WI ,Yτ

(θ, xI|0, yτ )

∝pΘ,X(I)|WI
(θ, x(I)|WI = 0)1/βpY(τ )|X(I)(y(τ )|x(I))

∝πΘ(θ) exp

{
−

1

2

D∑
d=1

[
Nd log(2πσ2

d) + ‖xd(τ d)− yd(τ d)‖2

σ
−2
d

+
1

β

(
‖xd(I)−µd(I)‖2

C−1
d

+
∥∥∥fX,θ

d,I − µ̇d(I)−md(xd(I)−µd(I))
∥∥∥2

K−1
d

)]}
.

[10]

A useful setting that we recommend is β= D|I|/N, where D is the num-
ber of system components, |I| is the number of discretization time points,
and N =

∑D
d=1 Nd is the total number of observations. This setting aims to

balance the likelihood contribution from the observations with the total
number of discretization points.

Data Availability. All of the data used in the article are simula-
tion data. The details, including the models to generate the sim-
ulation data, are described in Results and SI Appendix. Our soft-
ware package, available at GitHub, https://github.com/wongswk/magi,
also includes complete replication scripts for all of the data and
examples.
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