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Abstract
PCR-mediated gene modification is a powerful approach to the functional analysis of
genes in Saccharomyces cerevisiae. One application of this method is epitope-tagging of
a gene to analyse the corresponding protein by immunological methods. However, the
number of epitope tags available in a convenient format is still low, and interference
with protein function by the epitope, particularly if it is large, is not uncommon. To
address these limitations and broaden the utility of the method, we constructed a
set of convenient template plasmids designed for PCR-based C-terminal tagging with
10 different, relatively short peptide sequences that are recognized by commercially
available monoclonal antibodies. The encoded tags are FLAG, 3×FLAG, T7, His-tag,
Strep-tag II, S-tag, Myc, HSV, VSV-G and V5. The same pair of primers can be used
to construct tagged alleles of a gene of interest with any of the 10 tags. In addition,
a six-glycine linker sequence is inserted upstream of these tags to minimize the
influence of the tag on the target protein and maximize its accessibility for antibody
binding. Three marker genes, HIS3MX6, kanMX6 and hphMX4, are available for
each epitope. We demonstrate the utility of the new tags for both immunoblotting
and one-step affinity purification of the regulatory particle of the 26S proteasome.
The set of plasmids has been deposited in the non-profit plasmid repository Addgene
(http://www.addgene.org). Copyright  2009 John Wiley & Sons, Ltd.
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Introduction

The model eukaryote Saccharomyces cerevisiae
has many characteristics that facilitate rigorous
genetic and biochemical analyses (Sherman, 2002).
One such feature is the high efficiency of homol-
ogous DNA recombination. A specific chromoso-
mal region may be replaced efficiently if a DNA
fragment bearing homology at its two ends to
the target sequence is transformed into yeast cells
(Rothstein, 1991). Specific chromosomal sites can
also be replaced or tagged by PCR-based methods
(Baudin et al., 1993). A common application is the
tagging of genes with in-frame sequences encoding
epitope tags, which can be recognized by commer-
cially available antibodies, using either one-step

(Maeder et al., 2007; Petracek and Longtine, 2002)
or two-step gene replacement methods (Moqtaderi
and Struhl, 2008; Schneider et al., 1995).

Antibody binding to epitope-tagged proteins can
often be improved by adding multiple copies of
the epitope. While such large, concatenated epi-
tope tags can enhance antibody affinity or avid-
ity, they also tend to interfere more with the
function of the tagged protein (Sabourin et al.,
2007). Potential solutions to this problem are the
exchange of the tag for another, shorter tag for
which higher affinity antibodies are available or
the introduction of a flexible linker between the
target protein and the tag (Sabourin et al., 2007).
Many high-specificity monoclonal antibodies or
binding reagents to defined peptide sequences are
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commercially available (Brizzard, 2008; Waugh,
2005) but relatively few of these are easy to adopt
at the moment because of the lack of convenient
template plasmids for PCR-based tagging in yeast.
It is often desirable to follow several differentially
tagged proteins in the same cells, so a broader array
of epitope-marker templates for PCR-based epitope
tagging would be extremely helpful.

In this paper, we describe a new set of 30 plas-
mids designed for PCR-based C-terminal tagging
with 10 different epitopes using a single set of
primers. To minimize interference with the fold-
ing and function of the tagged protein, we selected
relatively short peptide tags and added a flexible
six-glycine linker upstream of the tag. Each tag-
ging vector is available with a HIS3MX6, kanMX6
or hphMX4 marker for selection of yeast transfor-
mants. We demonstrate the utility of these plas-
mids by tagging different essential subunits of the
yeast 26S proteasome and using the tagged proteins
either for immunoblot analysis or affinity purifi-
cation of proteasomal protein complexes. These
plasmids substantially expand the repertoire of pep-
tide epitope tags that can be easily fused to specific
proteins in S. cerevisiae.

Materials and methods

Strains and media

E. coli strain TOP10 (Invitrogen) was used for
DNA manipulation. Standard bacterial culture
media and growth conditions were used (Ausubel,
1987). The yeast strain YPH499 (Sikorski and
Hieter, 1989) and its derivatives were used in this
study (Table 1), and standard culture media and
methods were used for manipulation of yeast cells
(Sherman, 2002).

Plasmid constructions

Conventional methods for plasmid construction
were used (Ausubel, 1987). DNA fragments sep-
arated in agarose gels were purified by QIAquick
gel extraction (Qiagen). Oligonucleotides were syn-
thesized by Integrated DNA Technologies Inc.
The plasmids pFA6a–GFP(S65T)–kanMX6 and
pFA6a–GFP(S65T)–HIS3MX6 (Wach et al.,
1997) were cut with PacI and AscI to remove
the GFP(S65T) coding fragment. For construction
of all but the longest tag-bearing DNA frag-
ment (3×FLAG), two complementary oligonu-
cleotides encoding PacI–6×Gly–tag–AscI were
mixed in distilled water. The mixture was heated
at 90 ◦C for 5 min and allowed to cool to
25 ◦C. The resultant double-strand DNA frag-
ment was mixed with the restricted pFA6a-derived
vectors described above and ligated with T4
DNA ligase (New England Biolabs). For construc-
tion of the longer PacI–6×Gly–3×FLAG–AscI
insert, five overlapping primers were annealed: 5′-
TAACGGGGGAGGCGGGGGTGGAGACTACA-
AAGACCATGACGGTGAT-3′; 5′-TATAAAGAT-
CATGACATCGACTACAAGGATGAC-GATGA-
CAAGTAGGG-3′; 5′-TTGTAGTCTCCACCCC-
CGCCTCCCCCGTTAAT-3′; 5′-GATGTCATGAT-
CTTTATAATCACCGTCATGGTCT-3′; and 5′-
CGCGCCCTACTTGTC-ATCGTCATCCTTGTA-
GTC-3′. These annealed primers were ligated to
each other and to the vectors in the presence of
T4 DNA ligase and T4 polynucleotide kinase (Fer-
mentas). The sequences of the inserted modules
were verified by DNA sequencing. To construct
the pFA6a–6×Gly–tag–hphMX4 plasmids, the 10
pFA6a–6×Gly–tag–kanMX6 plasmids were cut
with SacI and Bgl II to remove the kanMX6 marker
gene, and the 1.7 kb SacI–Bgl II–hphMX4 frag-
ment from pAG32 (Goldstein and McCusker, 1999)

Table 1. Yeast strains used in this study

Strain Genotype Source

YPH499 MATa ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆1 Sikorski and Hieter, 1989
YPH501 MATa/MATα ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 trp1-∆63/trp1-∆63

his3-∆200/his3-∆200 leu2-∆1/leu2-∆1
Sikorski and Hieter, 1989

MHY4677 MATa ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆1
RPT5-6×GLY-FLAG::kanMX6

This study

MHY4749 MATa ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆ 1
RPT4-6×GLY-T7::HIS3MX6

This study

MHY4913 MATa ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆1
RPT4-6×GLY-V5::kanMX6

This study
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pFA6a

ampr ori

Pac I Asc I

TADH1 marker6xGLY tag

TTA ATT AAC GGG GGA GGC GGG GGT GGA  TAG GGC GCG CC
AAT TAA TTG CCC CCT CCG CCC CCA CCT          ATC CCG CGC GG
Leu Ile Asn Gly Gly Gly Gly Gly Gly   ***

Pac I Asc Isix-glycine stop

tag

forward primer

reverse primer

forward primer:

3’-(40–45 nucleotides before stop codon)-GGGGGAGGCGGGGGTGGA-5’

reverse primer for HIS3MX6 or kanMX6 marker:
3’-(40–45 nucleotides after stop codon)-GAATTCGAGCTCGTTTAAAC-5’

MCS

reverse primer for hphMX4 marker:
3’-(40–45 nucleotides after stop codon)-GAATTCGAGCTCGTTTTCGA-5’

Figure 1. Map of the common template for the series of epitope-tagging plasmids. The positions of the six-glycine coding
sequence, epitope tag coding sequence, ADH1 transcriptional terminator and selection marker between the PacI and PmeI
restriction sites are shown. The DNA sequences and corresponding translated sequences between PacI and AscI that are
common to all the plasmids are also shown. The general design for the forward and reverse primers is shown at the
bottom

was inserted. The general structure of the plasmids
is shown in Figure 1, and sequences of the tags are
given in Table 2.

PCR amplification of DNA modules and
construction of yeast strains

Polymerase chain reactions (PCRs) and yeast trans-
formations were performed as described (Petracek
and Longtine, 2002) but with some modifications.
Takara EX taq (Takara) was used for amplifica-
tion of DNA fragments from the template plas-
mids described in Figure 1. The generalized pair of
primers used for each PCR is shown in Figure 1,
and the specific primers used in the validation stud-
ies are given in Table 3. PCR conditions were
as follows: a 94 ◦C, 5 min denaturation step was
followed by five cycles of 94 ◦C, 30 s; 10 ◦C,
1 min; and 68 ◦C, 4 min, and then by 30 cycles
of 94 ◦C, 30 s; 65 ◦C, 30 s; and 72 ◦C, 4 min.
The amplified DNA was used for transformation
of diploid yeast strain YPH501 with selection
for growth on 0.3 mg/ml Geneticin/G418 (Invitro-
gen) (for kanMX6-marked fragments), 0.3 mg/ml

hygromycin B (Roche) (for hphMX4-marked frag-
ments), or minimal medium lacking histidine (for
HIS3MX6-marked fragments). After the recombi-
nation was confirmed by colony PCR, the trans-
formants were sporulated and asci were dissected.
Single-site insertion of the tagging construct was
confirmed by 2 : 2 segregation of the marker gene
based on growth on selection plates. Expres-
sion of the tagged proteins was verified by
immunoblotting.

Immunoblot analysis

Yeast extracts were prepared as described (Kush-
nirov, 2000). Proteins were resolved by SDS-
polyacrylamide gel electrophoresis (SDS–PAGE)
and were electrotransferred to Immobilon-P mem-
branes (Millipore). Antibodies against the T7 epi-
tope (1 : 5000, Novagen), V5 epitope (1 : 10 000,
Invitrogen), Rpt4 proteasome subunit (1 : 5000, a
gift from Dr Thomas Kodadek) Rpn5 proteasome
subunit (1 : 5000, a gift from Dr Daniel Finley) and
Pre6/α4 20S proteasome subunit (1 : 5000, a gift
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Table 2. Tags and names of plasmids

Tag Sequence Plasmid name

FLAG GAT TAC AAG GAC GAC GAT GAC AAG pFA6a–6×GLY–FLAG–HIS3MX6
Asp Tyr Lys Asp Asp Asp Asp Lys pFA6a–6×GLY–FLAG–kanMX6

pFA6a–6×GLY–FLAG–hphMX4
3× FLAG GAC TAC AAA GAC CAT GAC GGT GAT TAT AAA GAT CAT GAC pFA6a–6×GLY–3×FLAG–HIS3MX6

ATC GAC TAC AAG GAT GAC GAT GAC AAG pFA6a–6×GLY–3×FLAG–kanMX6
Asp Tyr Lys Asp His Asp Gly Asp Tyr Lys Asp His Asp Ile Asp Tyr Lys pFA6a–6×GLY–3×FLAG–hphMX4
Asp Asp Asp Asp Lys pFA6a–6×GLY–Strep–tagII–HIS3MX6

Strep–tag II TGG AGC CAC CCG CAG TTC GAA AAA pFA6a–6×GLY–Strep–tagII–kanMX6
Trp Ser His Pro Gln Phe Glu Lys pFA6a–6×GLY–Strep–tagII–hphMX4

T7 ATG GCT AGC ATG ACT GGT GGA CAG CAA ATG GGT pFA6a–6×GLY–T7–HIS3MX6
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly pFA6a–6×GLY–T7–kanMX6

pFA6a–6×GLY–T7–hphMX4
His tag CAT CAT CAC CAT CAC CAC pFA6a–6×GLY–His–tag–HIS3MX6

His His His His His His pFA6a–6×GLY–His–tag–kanMX6
pFA6a–6×GLY–His–tag–hphMX4

S-tag AAA GAA ACC GCT GCT GCT AAA TTC GAA CGC CAG CAC pFA6a–6×GLY–S–tag–HIS3MX6
ATG GAC AGC pFA6a–6×GLY–S–tag–kanMX6
Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser pFA6a–6×GLY–S–tag–hphMX4

Myc GAG CAG AAA CTC ATC TCA GAA GAG GAT CTG pFA6a–6×GLY–Myc–HIS3MX6
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu pFA6a–6×GLY–Myc–kanMX6

pFA6a–6×GLY–Myc–hphMX4
VSV-G GAG CAG AAA CTC ATC TCA GAA GAG GAT CTG pFA6a–6×GLY–VSV–G–HIS3MX6

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu pFA6a–6×GLY–VSV–G–kanMX6
pFA6a–6×GLY–VSV–G–hphMX4

HSV AGC CAG CCA GAA CTC GCC CCG GAA GAC CCC GAG GAT pFA6a–6×GLY–HSV–HIS3MX6
Ser Gln Pro Glu Leu Ala Pro Glu Asp Pro Glu Asp pFA6a–6×GLY–HSV–kanMX6

pFA6a–6×GLY–HSV–hphMX4
V5∗ AAG CCT ATC CCT AAC CCT CTC CTC GGT CTC GAT TCT ACG pFA6a–6×GLY–V5–HIS3MX6

Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr pFA6a–6×GLY–V5–kanMX6
pFA6a–6×GLY–V5–hphMX4

∗ The first Gly of the V5 tag is provided by the last Gly of the 6×Gly linker.

from Dr Dieter H. Wolf) were used as primary anti-
bodies. Horseradish peroxidase (HRP)-conjugated
anti-mouse antibody (GE Healthcare) and HRP-
conjugated anti-rabbit antibody (GE Healthcare)
were used as secondary antibodies. ECL Western
blotting detection reagents (GE Healthcare) were
used for protein detection using Kodak Biomax
XAR film. Commercial sources for monoclonal
antibodies against the other epitope tags described
in this report include: FLAG (M2 antibody, Sigma),
Strep-tag II (IBA), His tag (anti-tetraHis antibody,
Qiagen), S-tag (Novagen), Myc (9E10, Sigma),
VSV-G (Sigma), and HSV (Sigma).

Affinity purification of proteasomal complexes

Yeast cells were frozen in liquid nitrogen and
ground to a powder with chilled mortar and
pestle as described (Verma et al., 2000; Verma and
Deshaies, 2005). A 300 µl aliquot of the powder

was thawed in 300 µl buffer A (25 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 10% glycerol, 5 mM MgCl2,
5 mM ATP). The mixture was centrifuged for
10 min at 21 000 × g at 4 ◦C. The protein concen-
tration of the supernatant was determined using the
Bio-Rad protein assay kit, and 700 µg total protein
was mixed with 100 µl 50% slurry of FLAG-M2
antibody-agarose beads (Sigma) and incubated for
90 min at 4 ◦C with constant rotation. The beads
were washed three times with buffer A contain-
ing 0.2% Triton X-100. The bound proteins were
eluted by addition of 50 µl SDS gel sample buffer
without DTT. After incubation for 5 min at room
temperature, the beads were pelleted and the super-
natant was transferred to a new tube. SDS sample
buffer containing 0.6 M DTT (25 µl) was added
and the samples were heated at 100 ◦C for 5 min.
Aggregated material was pelleted by centrifugation,
and the supernatant was used for SDS–PAGE and
immunoblotting.
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Table 3. PCR primers used in this study

Name Sequence Purpose

MF 259 GCTGAAGTTAAGAAATTGGAAGGCACTATAGAATACCA-
AA AATTAGGGGGAGGCGGGGGTGGA

RPT4 C-terminal tagging, forward

MF 232 GTTACTGATATACACATACCTATACATACACATGTCTTT-
TTA ACAGAATTCGAGCTCGTTTAAAC

RPT4 C-terminal tagging, reverse

MF 256 AGTGAAGTTCAAGCAAGAAAATCGAAATCGGTATCCTTTT
ATGCAGGGGGAGGCGGGGGTGGA

RPT5 C-terminal tagging, forward

MF 257 GTAGATATGTGAATGGCGGCTTGATAAATCAAAATATTA-
TTA TTTGAATTCGAGCTCGTTTAAAC

RPT5 C-terminal tagging, reverse

MF 233 ACATAAAAGC TTTGCAAAGT ATTGGACAAT RPT4 colony PCR, forward
MF 258 GGTCATGGA TATGAATGAG ATTGAAG RPT5 colony PCR, forward
MF 234 AGATCTATATTACCCTGTTATCCCTAGCGG Colony PCR, reverse

Results and discussion

Construction of a set of PCR template plasmids
for C-terminal epitope tagging

During our studies of yeast 26S proteasome assem-
bly and function (Kusmierczyk et al., 2008), we
found that many of the epitope tags that are
available for PCR-based C-terminal epitope tag-
ging (Petracek and Longtine, 2002) compromised
the function of this essential proteolytic complex
or interfered with its assembly (M.F. and M.H.,
unpublished data). Many of the commonly used
epitope-tagging sequences are fairly long (e.g. 13
consecutive Myc peptides) and they are attached
directly to the coding sequence of the target gene.
The 26S proteasome is composed of a 20S protea-
some core and a 19S regulatory particle bound to
one or both ends of the 20S proteasome cylinder,
and the 26S complex includes at least 33 differ-
ent polypeptides (Schmidt et al., 2005). Given the
subunit complexity of the proteasome as well as
many other protein complexes, it is often useful to
tag multiple subunits in the complex in the same
cell, and there is still only a limited set of epi-
tope tags that can be employed conveniently for
PCR-mediated tagging.

We therefore designed a new series of plas-
mids for PCR-based C-terminal epitope tag addi-
tion in yeast. The following considerations guided
our design. First, we chose short peptide epitopes
(6–22 residues) that, if possible, had already been
shown to have low cross-reactivity with yeast pro-
teins. Shorter tags generally perturb target pro-
tein function less than longer ones (Andresen
et al., 2004). Second, we introduced a six-glycine
(6×Gly) linker coding sequence upstream of the

epitope sequence because previous work had
shown that such a flexible oligoglycine linker helps
to minimize interference with target protein func-
tion (Sabourin et al., 2007). Finally, we used the
familiar pFA6a plasmid backbone bearing one of
three different markers, HIS3MX6, kanMX6 or
hphMX4, which work effectively in the selection
for yeast transformants (Petracek and Longtine,
2002; Goldstein and McCusker, 1999).

The HIS3MX6 and kanMX6 plasmids were
constructed by replacing the GFP(S65T) coding
sequence in the pFA6a–GFP(S65T)–HIS3MX6
and pFA6a–GFP(S65T)–kanMX6 plasmids (Wach
et al., 1997) with a module encoding the 6×Gly
linker in-frame with one of 10 different peptide
epitopes. For the hphMX4 plasmids, a restric-
tion fragment bearing hphMX4 was swapped for
the kanMX6 marker fragment in each plasmid of
the kanMX6-marked set. The resulting plasmids
share the structure shown in Figure 1. For subse-
quent PCR amplification of the tag sequences, the
forward primer incorporates the six-glycine cod-
ing sequence. The PCR fragments generated are
designed to fuse the 6×Gly-epitope-tag sequence
in-frame with the C-terminus of the target protein.
The coding sequence for the tag is followed by a
stop codon, the ADH1 transcriptional terminator,
and a selectable marker gene. Tag sequences and
plasmid names are listed in Table 2.

Validation of new tagging vectors

To confirm the utility of the new plasmids, we
tagged the chromosomal RPT4 coding sequence
with several different 6×Gly-epitope tags. RPT4
encodes an essential AAA+ ATPase subunit of
the 19S regulatory subcomplex within the 26S
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Figure 2. Application of two different epitope tags for
detecting the Rpt4 proteasome subunit. (A) Growth of
yeast strains expressing the indicated tagged alleles of RPT4
is indistinguishable from congenic WT cells. The strains used
were YPH499 (WT), MHY4749 (RPT4–6×GLY–T7) and
MHY4913 (RPT4–6×GLY–V5). (B) Protein extracts from
OD600 = 0.2 equivalents of the same cells were used for
immunoblotting with antibodies against Rpt4, the T7 tag or
the V5 tag

proteasome (Schmidt et al., 2005). The same two
primers were used for all of the amplification
reactions (Table 3). Both the RPT4–6×GLY–T7
and RPT4–6×GLY–V5 derivatives grew at the
same rate as the congenic wild-type (WT) strain
(Figure 2A). The three strains also grew identically
at 37 ◦C and 16 ◦C (data not shown). Surprisingly,
the RPT4–6×GLY–His yeast strain was non-viable
(data not shown), suggesting that some of the tags
in Table 2 can interfere with a particular target pro-
tein’s function. These differences in viability with
different tags would have been difficult to predict.
This example illustrates why the availability of a
range of different epitope tags differing widely in
their biochemical properties is advantageous. The
expression of the tagged Rpt4 proteins was also
examined by immunoblotting (Figure 2B). Based
on the anti-Rpt4 blot, the two tagged proteins were
expressed at the same level as the untagged Rpt4
subunit, and there was no evidence for proteolytic
cleavage of the flexibly linked tags. The epitope-
tagged proteins showed strong and specific reactiv-
ity with the respective antibodies.

We also tagged another proteasomal ATPase
subunit gene, RPT5, this time with a sequence
encoding a 6×Gly–FLAG peptide, and determined
whether the tagged protein could be used for affin-
ity purification of proteasomal complexes. Whole
cell extract from the tagged strain was bound to an

anti-FLAG antibody-agarose resin, and the eluate
from the resin was analysed by both Coomassie
Brilliant Blue (CBB) staining and immunoblotting
(Figure 3). Interestingly, a highly purified subset
of 26S proteasome subunits could be seen by CBB
staining, and based on the pattern of bands, these
bands are likely to represent the 19S regulatory
complex without the 20S proteasome core. The 19S
and 20S proteasomal complexes are usually stably
associated when purified in the presence of ATP,
which was present in our buffers. The inference
that the 19S regulatory complex was specifically
isolated was supported by immunoblot analysis.
Subunits from the 19S complex, both from the
‘lid’ subcomplex (Rpn5) and the ‘base’ subcom-
plex (Rpt4) (Schmidt et al., 2005), were detected,
but the essential 20S proteasome subunit Pre6/α4
was not (Figure 3, bottom).

Notably, the very C-terminus of Rpt5 bears a
conserved motif that is thought to insert into a
pocket between specific subunits in the 20S pro-
teasome (Smith et al., 2007), so the C-terminal
6×Gly–FLAG tag is likely to interfere with
this interaction. Cell growth, however, was not
impaired (data not shown). FLAG-tagging of other
19S complex subunits led to immunopurification
of the entire 26S proteasome (Verma et al., 2000).
We conclude that epitope tagging of specific pro-
teasome subunits can facilitate purification of dis-
tinct subcomplexes of the proteasome, depending
on which subunit is tagged.

Concluding remarks

In this paper, we have described a new set of
plasmids for one-step PCR-based C-terminal tag-
ging of yeast proteins. A single pair of PCR
primers can be used for amplification of all 10
tag sequences, which all also include a flexible
six-glycine linker. The forward primer in Figure 1
was designed to anneal with the sequence of the
six-glycine linker. However, forward primers rec-
ommended for previously reported pFA6a-based
plasmids (Petracek and Longtine, 2002; Sung and
Huh, 2007; Tagwerker et al., 2006; Wach et al.,
1997) are also compatible with the new plas-
mids, although additional missense amino acids
will be inserted between the target protein and
six-glycine linker. Our plasmids can also be used
with a recently described system for C-terminal
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Figure 3. Purification of 19S regulatory particles of
the 26S proteasome using a strain expressing the
Rpt5–6×Gly–FLAG protein. Yeast whole cell extracts
(10 µg) from YPH499 (lane 1) and MHY4677 (lane 2) and
10 µl proteins eluted from the washed resin (lanes 3 and
4) were used for CBB staining and immunoblotting using
antibodies against Rpn5 (lid), Rpt4 (base) or Pre6/α4 (20S
core particle). Molecular mass standards are shown at left
for the CBB-stained gel

epitope switching (Sung et al., 2008). Finally, the
plasmids marked with the dominant drug resistance
genes kanMX6 and hphMX4 should be applica-
ble as well for C-terminal tagging in the fission
yeast Schizosaccharomyces pombe because these
selection markers are functional in this organism
(Bahler et al., 1998; Marti et al., 2003). The 30
new plasmids, and details about their sequences,
are made available at the non-profit plasmid repos-
itory Addgene (http://www.addgene.org).
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