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Abstract Biological macromolecules function in highly crowded cellular environments. The

structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo

crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive

atomistic model cytoplasm we found that protein-protein interactions may destabilize native

protein structures, whereas metabolite interactions may induce more compact states due to

electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced

macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-

dimensional surface diffusion and altered protein-ligand binding that may reduce the effective

concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific

association in cellular environments attributed to solvation and entropic effects. These effects are

expected to have broad implications for the in vivo functioning of biomolecules. This work is a first

step towards physically realistic in silico whole-cell models that connect molecular with cellular

biology.

DOI: 10.7554/eLife.19274.001

Introduction
How biomolecules efficiently function in real biological environments with crowding and significant

chemical and physical heterogeneity remains a fundamental question in biology (Minton, 2001).

Typical cytoplasmic macromolecular concentrations are 300–450 g/L or 25–45 vol%

(Zimmerman and Trach, 1991). Metabolites add about 10 g/L (Bennett et al., 2009). Volume exclu-

sion upon crowding favors compact macromolecular states (Minton, 2001), but the full physico-

chemical nature of cellular environments with attractive and repulsive interactions, solvation effects

and co-solvents apparently leads to more varied effects (Monteith et al., 2015; Harada et al.,

2013, 2012; Feig and Sugita, 2012; Kim and Mittal, 2013; Tanizaki et al., 2008). The key question

is whether and how the in vivo behavior of biological macromolecules differs from their well-charac-

terized in vitro properties.

In-cell NMR and other recent experiments of cell-like solutions point at possible native state

destabilization upon crowding (Monteith et al., 2015; Inomata et al., 2009; Hong and Gierasch,

2010; Sakakibara et al., 2009). Such observations contradict a simple excluded volume model (Min-

ton, 2001) and a full understanding of how cellular environments modulate protein structures

remains elusive. Cellular environments reduce the diffusive dynamics of macromolecules, but, again,
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details of how exactly macromolecules and metabolites move in an environment that is highly

crowded and rich in varying interactions are unclear. Crowded environments also provide increased

opportunities for weak protein-protein interactions due to frequent random encounters but it is

unknown to what extent such weak interactions may benefit the efficiency of metabolic cascades or

other coordinated biological processes.

As experiments are beginning to approach realistic cellular environments, it remains extremely

challenging to probe biomolecular structure and dynamics in cellular environments without either

perturbing the system that is being studied or the environment. Theoretical studies have the poten-

tial to overcome such challenges (Im et al., 2016). Whole-cell modeling based on the metabolic net-

work of Mycoplasma genitalium (MG) has been able to predict phenotype variations (Karr et al.,

2012), but without considering physical details. Molecular-level models have captured aspects of

cellular environments (McGuffee and Elcock, 2010; Ando and Skolnick, 2010; Cossins and Jacob-

son, 2011), but the full biological complexity has not been reached (Feig and Sugita, 2013). Driven

by data from high-throughput experiments, we built a comprehensive cytoplasmic model based pri-

marily on MG and its nearest relative, Mycoplasma pneumoniae (Feig et al., 2015; Kühner et al.,

2009). Here, this model is subject to molecular dynamics simulations to examine in atomistic detail

how realistic cellular environments affect the dynamic interplay of proteins, nucleic acids, and

metabolites.

Results
All-atom molecular dynamics (MD) simulations were applied to three atomistic cytoplasmic models

containing proteins, nucleic acids, metabolites, ions and water, explicitly. We studied MGh, based on

a cytoplasmic model built previously with 103 million atoms in a cubic (100 nm) (Bennett et al.,

2009) box (Figure 1 and Table 1) (Feig et al., 2015), and two different subsections, MGm1 and

MGm2, with 12 million atoms (Table 1). Unrestrained MD simulations were carried out for 20 ns

(MGh), 140 ns (MGm1) (Video 1), and 60 ns (MGm2). Although the simulation times, limited by

resource constraints, may seem short, ensemble averaging over many copies of the same molecules

eLife digest Much of the work that has been done to understand how cells work has involved

studying parts of a cell in isolation. This is particularly true of studies that have examined the

arrangement of atoms in large molecules with elaborate structures like proteins or DNA. However,

cells are densely packed with many different molecules and there is little proof that proteins keep

the same structures inside cells that they have when they are studied alone.

To really understand how cells work, new ways to understand how molecules behave inside cells

are needed. While this cannot be achieved directly, technology has now reached the stage where

we can, to some extent, study living cells by recreating them virtually. Simulated cells can copy the

atomic details of all the molecules in a cell and can estimate how different molecules might behave

together.

Yu et al. have now developed a computer simulation of part of a cell from the bacterium,

Mycoplasma genitalium, one of the simplest forms of life on Earth. This model suggested new

possible interactions between molecules inside cells that cannot currently be studied in real cells.

The model shows that some proteins have a much less rigid structure in cells than they do in

isolation, whilst others are able to work together more closely to carry out certain tasks. Finally, the

model predicted that small molecules such as food, water and drugs would move more slowly

through cells as they become stuck or trapped by larger molecules.

These results could be particularly important in helping to improve drug design. Currently the

simulations are limited, and can only model parts of simple cells for less than a thousandth of a

second. However, in future it should be possible to recreate larger and more complex cells,

including human cells, for longer periods of time. These could be used to better study human

diseases and help to design new treatments. The ultimate goal is to simulate a whole cell in full

detail by combining all the available experimental data.

DOI: 10.7554/eLife.19274.002
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in different local environments allowed for meaningful statistics. Furthermore, the three systems

were started from different initial conditions providing further statistical significance.

Native state stability of biomacromolecules in cellular environments
The stabilities of five proteins (phosphoglycerate kinase, PGK; pyruvate dehydrogenase E1.a, PDHA;

NADH oxidase, NOX; enolase, ENO; and translation initiation factor 1, IF1) and tRNA (ATRN) in the

cellular environments in terms of root mean square displacements (RMSD) from the initial homology

models and radii of gyration (Rg) were compared with simulations in dilute solvents (Figure 2A and

Table 2). We focused on these systems because of large copy numbers to obtain sufficient statistics.

Average RMSD values with respect to the initial models were lower or the same in the cellular envi-

ronment compared to dilute solvent for PGK, NOX, ENO, and IF1 but increased for PDHA. The sta-

bility of individual copies varied significantly presumably at least in part as a function of the local

environment consistent with recent work by Ebbinghaus et al. that found significant variations in pro-

tein folding rates within a single cell (Ebbinghaus et al., 2010). Some copies of PDHA significantly

departed from the native structures in the cellular environment and those molecules had extensive

contacts with other proteins (Figure 2—figure supplement 2 and Video 2) similar to previously

observed destabilizations of native structures due to protein-protein interactions in crowded envi-

ronments (Harada et al., 2013; Feig and Sugita, 2012). To further understand the mechanism by

which PDHA became destabilized, we analyzed one copy that denatured significantly in more detail

(we denote this copy as PDHA*). Time traces shown in Figure 2—figure supplement 2 illustrate

that the increase in RMSD coincides with the formation of protein-protein contacts, in particular with

PYK. Additional energetic analysis indicates that the destabilization is driven by an overall decrease

Figure 1. Molecular model of a bacterial cytoplasm. (A) Schematic illustration of Mycoplasma genitalium (MG). (B) Equilibrated MGh system highlighted

with proteins, tRNA, GroEL, and ribosomes. (C) MGh cl ose-up showing atomistic level of detail. See also supplementary Figures 1 and 2 for structures

of individual macromolecules and metabolites as well as supplementary Figure 3 for initial configurations of the simulated systems.

DOI: 10.7554/eLife.19274.003

The following figure supplements are available for figure 1:

Figure supplement 1. Macromolecular components.

DOI: 10.7554/eLife.19274.004

Figure supplement 2. Structure of metabolites in MGh.

DOI: 10.7554/eLife.19274.005

Figure supplement 3. Initial configurations of simulated systems.

DOI: 10.7554/eLife.19274.006
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in the crowding free energy (see Figure 2—figure supplement 2). Further decomposition reveals a

decrease in protein-protein electrostatic energies and van der Waals interactions while electrostatic

solvation energies increase as PDHA becomes destabilized (Figure 2—figure supplement 2E,F).

This means that favorable protein-protein electrostatic interactions between PDHA and the crowders

are counteracted by unfavorable solvation as far as the dominant electrostatic component is con-

cerned. The combination of the electrostatic and electrostatic solvation contributions increases (Fig-

ure 2—figure supplement 2E) suggesting that based on electrostatics and solvation alone the

destabilization of PDHA* would not be favorable. However, this increase is more than outweighed

by a decrease in the van der Waals interaction energy that suggests that, in the case of PDHA*, non-

specific, shape-driven interactions ultimately lead to native state destabilization. In addition, the

Table 1. Simulated cytoplasmic systems.

System MGh MGm1 MGm2 MGcg

Cubic box length (nm) 99.8 48.2 48.2 106.2

Program GENESIS GENESIS NAMD GENESIS

Simulation time 20 ns 140 ns 60 ns 10 � 20 ms

number of molecules

Ribosomes 31 3 3 24

GroELs 20 3 3 24

Proteins 1238 182 133 1927

RNAs 284 28 44 298

Metabolites 41,006 5.005 5.072

Ions 214,000 23,049 27,415

Waters 26,263,505 2,944,143 2,893,830

Total # of atoms 103,708,785 11,737,298 11,706,962

See also Figure 1—figure supplement 3 showing initial configurations and supplementary material with lists of the individual molecular components.

DOI: 10.7554/eLife.19274.007

Video 1. Nanosecond dynamics of the MGm1 system in

atomistic detail. Macromolecules are shown with both

cartoon and lines. Metabolites and ions are shown with

stick or sphere. Macromolecules in back ground are

shown with surface representation.

DOI: 10.7554/eLife.19274.008

Video 2. Conformational dynamics highlighting partial

denaturation of one copy of PDHA (green, tube) due to

interactions with proteins in the vicinity.

DOI: 10.7554/eLife.19274.014
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overall solvent-accessible surface area of the PDHA*-crowder system decreases as evidenced by the

decrease in the asp term (which is proportional to the solvent-accessible surface area), further con-

tributing to the interaction of the destabilized PDHA* with the crowder environment being more

favorable than the initial non-interacting native PDHA*.

Rg values, reflecting overall compactness, were generally lower in the cellular environment over

dilute solvent as expected from the volume exclusion effect (Minton, 2001). However, dilute solvent

with added KCl matching the molality of the cytoplasm led to a similar reduction in Rg as in the cellu-

lar environment (Figure 2A). We focused additional analysis on PGK, where FRET measurements in

the presence of polyethylene glycol (PEG) and coarse-grained simulations have suggested that its

two domains come closer upon crowding concomitant with higher enzymatic activity (Dhar et al.,

2010). In living cells, folded structures are also stabilized (Ebbinghaus et al., 2010; Guo et al.,

2012). Consistent with these studies, the distance between the two ligand-binding sites (dlig) in

Figure 2. Conformational stability of macromolecules in crowded and dilute environments. (A) Time-averaged RMSDs (from starting structures) and

radii of gyration (Rg) for selected macromolecules in MGm1(red), in dilute solution with only counterions (blue) and with KCl excess salt (green).

Statistical errors are with respect to copies of the same type. (B) Probability of the center of mass distances between the ligand binding sites dlig for

PGK in MGm1 (red), in water (blue), and in KCl (green). (C): Final snapshots of PGK in MGm1 (red), in water (blue), and in KCl (green). (D) Time- and

ensemble-averaged 3D distribution of atoms in the ATP phosphate group (blue, 0.002 Å�3) and K+ (yellow, 0.001 Å�3) around PGK in MGm1. (E) Time-

and ensemble-averaged 3D distribution of K+ (yellow, 0.001 Å�3) and Cl- (purple, 0.001 Å�3) around PGK in KCl aqueous solution. See also

supplementary Figures 1, 2 and 3 showing time series of structural stability measures and the influence of the local crowding environment on the

structure of PGK and PDHA.

DOI: 10.7554/eLife.19274.009

The following figure supplements are available for figure 2:

Figure supplement 1. Time series of structural stability measures for selected macromolecules.

DOI: 10.7554/eLife.19274.010

Figure supplement 2. Influence of local crowding environment on the structure of PDHA in MGm1.

DOI: 10.7554/eLife.19274.011

Figure supplement 3. Influence of metabolite binding and local crowding environment on the structure of PGK in MGm1.

DOI: 10.7554/eLife.19274.012
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MGm1 decreased relative to that in water, but a similar decrease also occurred in the KCl solution

(Figure 2B–C). The PGK domain cleft attracted high concentrations of ATP in the cell where Cl- was

found in the KCl simulations (Figure 2D–E). However, we found little correlation between dlig and

the crowder coordination number of PGK (Nc) (Figure 2—figure supplement 3). To understand this

observation in more detail, we looked again at one specific copy PGK (denoted as PGK*) where we

correlated the time series of dlig with macromolecular crowder contacts, nucleotides entering the

cleft, and the resulting additional charge (Figure 2—figure supplement 3). It can be seen that dlig

closely tracks the charge in the cleft with more compact conformations occurring when more nega-

tive charge is present. The charge would screen electrostatic repulsion across the cleft between a

large number of basic residues and allow the two ligand-binding domains to come closer. In this spe-

cific example, ATP and/or CTP entering the cleft region (Figure 2—figure supplement 3E) are

responsible for bringing the negative charge to the cleft (Figure 2—figure supplement 3E). On the

other hand, contacts with crowder molecules are not well correlated with dlig for this copy of PGK*

(Figure 2—figure supplement 3F) mirroring the overall lack of correlation of dlig with crowder con-

tacts (Figure 2—figure supplement 3B). These observations suggest that electrostatic stabilization

by ions can induce similar effects as may be expected due to volume exclusion effects and that non-

specific interactions with metabolites can affect biomolecular structures in unexpected ways.

Weak non-specific interactions of metabolically related enzymes
The high concentration of macromolecules in the cytoplasm allows macromolecules to weakly inter-

act without forming traditional complexes. Such ‘quinary’ interactions have been proposed before

(Monteith et al., 2015), but experimental studies in complex cellular environments are challenging

and their biological significance is unclear. Based on distance changes for proximal macromolecular

pairs relative to the initially randomly setup systems (DdAB) we compared interactions between regu-

lar proteins, RNAs, and huge complexes (ribosome and GroEL) to determine relative affinities for

each other between these types of macromolecules (Figure 3A). The electrostatically-driven strong

repulsion among RNAs and between RNAs and huge macromolecules (mainly ribosomes) is readily

apparent. Repulsion between proteins and RNA and huge complexes is weaker, whereas protein-

protein interactions were neutral. However, proteins involved in the glycolysis pathway showed weak

attraction. An attraction of glycolytic enzymes is consistent with experimental data indicating the for-

mation of dynamic complexes to enhance the multi-step reaction efficiency via substrate channeling

(Dutow et al., 2010). Specific complex formation or specific weak interactions may allow related

enzymes to associate, but here we observe non-specific weak associations that do not follow identifi-

able interaction patterns between different enzymes and require an alternate rationalization.

Table 2. Simulated single protein reference systems.

System Cubic box [nm] # of waters # of ions # of metabolites # of atoms Simulation time* [ns]

PGK_w 9.89 30,787 Cl�: 8 0 98,886 4 � 140

PGK_i 9.87 30,374 K+: 217, Cl�: 225 0 98,081 4 � 140

PDHA_w 9.90 31,032 Na+: 7 0 98,779 2 � 140

PDHA_i 9.98 30,627 K+: 224, Cl�: 217 0 97,998 2 � 140

IF1_w 9.92 32,785 Cl-: 4 0 99,535 2 � 140

IF1_i 9.90 32,312 K+: 233, Cl�: 237 0 98,582 2 � 140

NOX_w 9.89 30,473 Cl�: 3 0 98,708 2 � 140

NOX_i 9.87 30,007 K+: 222, Cl�: 225 0 97,754 2 � 140

ENO_w 9.85 28,050 Na+: 2 0 98,330 2 � 140

ENO_i 9.84 27,648 K+: 203, Cl�: 201 0 97,526 2 � 140

ATRN_i 9.88 31,734 K+: 231, Cl�: 156 0 98,032 2 � 140

ACKA_m 14.71 102,379 K+: 231, Cl�: 156 168 325,691 2 � 510

*The first 10 ns of each trajectory was discarded as equilibration.

DOI: 10.7554/eLife.19274.013
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One explanation can be found based on the relative solvation free energies of glycolytic enzymes.

Calculated solvation free energies for glycolytic enzymes are similarly favorable as other proteins,

but they are less favorable compared to tRNA, aminoacyl tRNA synthetases with tRNA, and ribo-

somes, which together make up about a third of the macromolecular mass (Figure 3B). This sug-

gests that solvation effects effectively cause a weak attraction of glycolytic enzymes (and other

similar proteins) as they are relatively hydrophobic compared to the RNA containing molecular

components.

Another aspect is the large size difference between glycolytic enzymes and ribosomes. Simula-

tions of two-component mixtures of Lennard-Jones spheres to focus on entropic effects (Figure 3—

figure supplement 1) show an increased concentration of smaller particles within a distance of two

to three times their radii when large particles are present vs. a homogenous mixture of small par-

ticles. This is an indirect consequence of Asakura-Oosawa-type depletion forces where attraction

between large particles excludes smaller particles bringing them closer to each other (Asakura and

Oosawa, 1958). Therefore, the presence of large ribosomes enhances the proximity of smaller

enzymes.

We note that a possible biological significance of relative size differences between enzymes and

other smaller biomolecules such as metabolites has been raised before by Srere (Srere, 1984) in the

context of protein-protein interactions and substrate channeling in metabolically-related enzymes.

However, these early ideas were not yet informed by the full knowledge of structural biology that is

Figure 3. Association of metabolic proteins in crowded environments. (A) Intermolecular distance changes

between initial and final time (DdAB) for pairs of glycolytic enzymes, other regular proteins, RNAs, and ribosomes/

GroEL (huge). (B) Solvation free energies DGsol normalized by the solvent-accessible surface area (SASA) for

equilibrated copies of macromolecules in MGm1 using GBMV (Lee et al., 2003) in CHARMM (Brooks et al.,

2009). See also supplementary Figure 1 showing the influence of large macromolecules on the association of

small proteins based on simple Lennard-Jones mixtures.

DOI: 10.7554/eLife.19274.015

The following figure supplement is available for figure 3:

Figure supplement 1. Influence of large macromolecules on the association of small proteins.

DOI: 10.7554/eLife.19274.016
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available today and, therefore, did not provide clear physical rationales for how enzymes sizes and

size distributions may relate to biological function.

Diffusive properties of biological macromolecules in cellular
environments
Translational diffusion coefficients (Dtr) of Green Fluorescent Proteins (GFPs) and GFP-attached pro-

teins (GAPs) are reduced about tenfold in Escherichia coli cells compared to dilute solutions

(Nenninger et al., 2010) but much less is known how exactly the slow-down in diffusion depends on

the local cellular environment. We calculated Dtr for the macromolecules in MGm1 as a function of

their Stokes radius, RS, from our simulations (Figure 4; Video 3). Remarkably, experimental values

are matched without adjusting parameters suggesting that our model based on MG may capture

the physical properties of bacterial cytoplasms more generally. Convergence analysis from our data

(Figure 4—figure supplement 1) combined with previous studies of diffusion rates (McGuffee and

Figure 4. Translational diffusion of macromolecules in MGm1 slows down as a function of Stokes radius and is

dependent on local crowding. (A) Translational diffusion coefficients (Dtr) of macromolecules in MGm1 vs. Stokes

radii (Rs) from MD, and SD compared with experimental data for green fluorescent protein (GFP) and GFP-

attached proteins in E. coli (Nenninger et al., 2010). Fitted functions are Dtr = 341/Rs
2 (MD) and Dtr = 496/Rs

2

(SD). (B) Dtr/D0 using D0 from HYDROPRO (Fernandes and de la Torre, 2002) for MGm1 (grey), SD (orange), and

BD (green). Fitted functions for Dtr/D0 are 1.5/Rs (MD), 2.0/Rs (SD), and 5.6/Rs (BD). (C) Normalized translational

diffusion coefficient (Dtr) vs. normalized coordination number (Nc) for selected macromolecules (white squares) and

distribution of macromolecules vs. Nc (blue line). See also supplementary Figures 1 and 2 showing the

dependency of the calculated diffusion coefficients on the observation time and the influence of the local

crowding environment on the diffusion coefficients of individual proteins.

DOI: 10.7554/eLife.19274.017

The following figure supplements are available for figure 4:

Figure supplement 1. Dependency of translational diffusion coefficient Dtr on the maximum observation time

tmax.

DOI: 10.7554/eLife.19274.018

Figure supplement 2. Influence of local crowding environment on Dtr.

DOI: 10.7554/eLife.19274.019
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Elcock, 2010; Ando and Skolnick, 2010) sug-

gests that long-time diffusion rates are

approached already at 100 ns, although with

slight overestimation (McGuffee and Elcock,

2010). There is also excellent agreement

between the all-atom MD simulations and esti-

mates of Dtr from coarse-grained Stokesian

dynamics (SD) simulations of spherical macromo-

lecules (MGcg, Table 1) in the presence of hydro-

dynamic interactions (Ando and Skolnick, 2010)

(Figure 4B). The ratio Dtr/D0 that describes the

slow-down in diffusion due to crowding relative

to diffusion in dilute solvent D0, based on values

estimated by HYDROPRO (Fernandes and de la

Torre, 2002), decreases as 1/Rs as expected

from previous studies of diffusion in crowded

solutions (McGuffee and Elcock, 2010; Roosen-

Runge et al., 2011; Szymański et al., 2006;

Banks and Fradin, 2005). Given the classical 1/

Rs dependency in dilute solvent, Dtr follows a 1/

Rs (Zimmerman and Trach, 1991) dependency

in crowded environments. Inverse quadratic

functions are excellent fits to both the atomistic

and coarse-grained simulation results

(Figure 4A).

Although the ensemble-averaged diffusive

properties follow a simple 1/

Rs (Zimmerman and Trach, 1991) function, there is a wide spread of Dtr in different copies of the

same macromolecule type (Figure 4A) as a consequence of experiencing different local environ-

ments (Figure 4—figure supplement 2). The diffusion constant Dtr as a function of the normalized

coordination number with surrounding macromolecules, Nc, follows a linear trend when averaged

over different types of macromolecules (Figure 4C) with diffusion rates, on average, varying three-

fold between environments with the least and most contacts with surrounding molecules. As mole-

cules diffuse through the cytoplasm, a given molecule thus exhibits a spatially varying rate of

diffusion over time scales of 1 ms–1 ms, based on how long it takes for the smallest and largest mac-

romolecules to diffuse by twice their Stokes radius.

We also report rotational motion (Figure 5) from our simulations. Rotational properties of macro-

molecules in physically realistic cellular environments have not yet been described in detail due to

simplified models and the use of spherical approximations in past studies. We find that, in general,

rotational diffusion follows the same trend as for translational diffusion, including a very similar

dependency on local crowding (Figure 5—figure supplement 1). A similar reduction of translational

and rotational diffusion upon crowding on shorter, sub-microsecond time scales found here is consis-

tent with experimental data from quasi-elastic neutron backscattering and NMR relaxometry

(Roosen-Runge et al., 2011; Roos et al., 2016). However, our simulations are too short to probe

the suggested protein species dependent decoupling of rotational and translational diffusion on lon-

ger time scales based on pulsed field gradient NMR measurements of dense protein solutions

(Roos et al., 2016).

Diffusive properties of solvent and metabolites in cellular environments
As expected (Harada et al., 2012), the diffusion of water and ions was slowed down significantly in

the cytoplasmic environment (Table 3), but little is known about the behavior of low molecular

weight organic molecules in the cytoplasm. Translational diffusion rates Dtr of the metabolites in

MGm1 exhibit a much more rapid decrease with increasing molecular weight, proportional to 1/Rs

(Bennett et al., 2009), compared with the 1/Rs (Zimmerman and Trach, 1991) decrease seen for

macromolecules (Figure 6A). Especially highly-charged phosphates diffused much slower than would

be expected simply due to crowding. This observation is in stark contrast to recent experimental

Video 3. Diffusive motion of macromolecules during

the last 130 ns of the MGm1 system. Macromolecules

are shown with surface representation. Ribosomes and

GroELs are colored violet and yellow respectively.

Other groups of molecules are colored differently for

each individual macromolecule.

DOI: 10.7554/eLife.19274.020
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results (Rothe et al., 2016) that suggest that the diffusion of small molecules should be reduced less

in crowded environments than for the much larger macromolecules. Based on our simulations this is

a consequence of a large fraction of the metabolites interacting non-specifically with macromole-

cules (Figure 6B). Once metabolites are bound on the surface of a macromolecule, diffusion

becomes two-dimensional and slows down considerably as illustrated in detail for ATP and valine

Figure 5. Rotational diffusion of macromolecules. (A) Averaged angular velocity (!) of macromolecules in MGm1 as

a function of their Stokes radii (Rs) (gray squares with IF1, ATRN, PDHD, PDHA, and PGK highlighted in purple,

red, blue, yellow, and green, respectively) (B) Rotational correlation functions (�) of macromolecules (IF1, ATRN,

PDHD, PDHA, and PGK colored in purple, red, blue, yellow, and green, respectively). (C) Normalized angular

velocities (!) vs. normalized coordination numbers (Nc) (white square) averaged over abundant macromolecules vs.

macromolecular distribution as in Figure 4. See also supplementary Figure 1 showing the influence of the local

crowding environment on the rotational diffusion of individual macromolecules.

DOI: 10.7554/eLife.19274.021

The following figure supplement is available for figure 5:

Figure supplement 1. Influence of local crowding environment on angular velocity w.

DOI: 10.7554/eLife.19274.022

Table 3. Diffusion of water and ions. Translational diffusion constants [Å2/ps] in the cytoplasm

(Mgm1) and dilute solvent (simulation of PGK in excess salt matching cytoplasmic concentration).

Cytoplasm Dilute solvent

tmax 1.0 (ns) tmax 10 (ns) tmax 1.0 (ns) tmax 10 (ns)

water 0.32 0.29 0.42 0.41

K+ 0.079 0.068 0.22 0.21

Na+ 0.017 0.015 N/A N/A

Cl� 0.17 0.14 0.22 0.21

Mg2+ 0.0073 0.0051 N/A N/A

DOI: 10.7554/eLife.19274.023
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(Figure 6C; Video 4). Trapping of metabolites on macromolecular surfaces reduces the effective

concentration of freely-diffusing metabolites consistent with recent experiments that have inferred a

large fraction of surface-interacting metabolites due to crowding (Duff et al., 2012). A recent analy-

sis of absolute metabolite concentrations in E. coli has found that most concentrations were above

the values of the Michaelis constant Km for enzymes binding those metabolites (Bennett et al.,

2009). This has led to the conclusion that most enzyme active sites should be saturated under bio-

logical conditions. However, this argument neglects the possibility of significant non-specific metab-

olite-protein interactions suggested by the present study, which would imply much lower active site

occupancies than expected from the absolute metabolite concentrations.

We further compared the interaction of ATP with the highly abundant ATP-binding protein ace-

tate kinase (ACKA) between cellular and dilute environments with ATP present at the same molality.

Figure 6. Metabolites in cytoplasmic environments interact extensively with macromolecules resulting in significantly reduced diffusion. (A) Translational

diffusion coefficients (Dtr) for metabolites in MGm1 as a function of molecular weight (phosphates: diamond; amino acids: triangles; others: circles; color

reflects charge). For abundant metabolites, diffusion coefficients in bulk (black) and during macromolecular interaction (grey) are given in parentheses.

(B) Normalized conditional distribution function, g(r), for heavy atoms of selected metabolites vs. the distance to the closest macromolecule heavy

atom. The percentage of metabolites interacting with a macromolecule is listed. (C) Dtr of ATP and VAL as a function of the coordination number with

macromolecules (Nc*) (line) and the distribution of Nc* (%) (line with points). (D) Time-averaged 3D distribution of all atoms in ATP (red, 0.008 Å�3)

around ACKA molecules in MGm1. Pink color indicates regions where all-atom crowder densities also exceed 0.008 Å�3. (E) Same as in (D) but the

density of ATP is shown in dilute solvent (blue) with light blue indicating overlap with the crowder density distribution form the MGm1 simulations. (F)

Correlation between average crowder atom densities in MGm1 and volume density grid voxel ATP densities in dilute (blue) and crowded (red)

environments. In the dilute case, we compute the crowder atom densities in MGm1 as a function of the grid ATP densities in the dilute simulations of

PDHA. Therefore, high average crowder atom densities in the cytoplasmic model at sites with high ATP densities under dilute conditions means that

those ATP sites would be displaced by interacting crowders in the cytoplasmic environment. See also supplementary Figure 1 showing analysis details

for the calculation of the ATP distributions.

DOI: 10.7554/eLife.19274.024

The following figure supplement is available for figure 6:

Figure supplement 1. ATP distribution in cytoplasmic environments.

DOI: 10.7554/eLife.19274.025
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The number density profiles �(r) show a

decreased concentration of ATP in the vicinity of

ACKA (Figure 6—figure supplement 1D) in the

cellular environment. In part, this results from

reduced accessible volume around ACKA upon

crowding (Figure 6—figure supplement 1E),

but competition can play another role since

ATPs can interact with many other proteins

instead of ACKA. The three-dimensional distri-

bution of ATP around ACKA (Figure 6D) shows

not just reduced binding of ATP in the cell but

also binding at different sites. For example, ATP

binding to the cleft region between the two

dimer subunits only features prominently in the

cellular environment. This is a consequence of

crowder interactions competing with ATP bind-

ing (Figure 6). A large fraction of the high-den-

sity ATP binding sites seen in dilute solvent

overlap with crowder interaction sites while only

very few ATP binding sites under crowded con-

ditions overlap with crowder atom densities

(Figure 6D/E/F). The active site cleft is largely

unaffected by crowder interactions and there-

fore binding to the active site should be unaf-

fected by crowding. However, because the non-

active site binding sites are very different we

expect that the binding kinetics is affected by

the presence of the crowders. Further exploration of how exactly the thermodynamics and kinetics

of metabolite-protein interactions are affected by the presence of the cytoplasm will require exten-

sive additional analysis and will be deferred to a future study.

Discussion
This study provides unprecedented details of the interactions of biomolecules in a complete cyto-

plasmic environment. Our model emphasizes that in vivo environments are significantly different

from in vitro conditions and illustrates that the inclusion of the full physical environment and the

presence of all cellular components exerts more than just the simple volume exclusion effect com-

monly associated with crowding. We find new evidence for native state perturbations in cellular envi-

ronments as a result of ‘quinary’ protein-protein interactions consistent with recent NMR studies

(Monteith et al., 2015) but also as a result of electrostatic factors due to interactions with ions and

metabolites that compete with volume exclusion effects. Our results suggest that native-state pertur-

bations towards functionally compromised states under in vivo conditions may be a more general

phenomenon that should be taken into account when interpreting in vitro studies and relying on

structures obtained via crystallography.

Another significant insight that is of biological importance is the observation of weak association

of glycolytic enzymes in our model. While glycolytic enzymes dominate our cytoplasmic model, both

of our explanations, reduced solvation energies and entropic sorting due to size differences, would

apply to the majority of metabolic enzymes and we expect that metabolic enzymes as a whole are

brought into closer proximity in the cellular environment, thereby generally enhancing metabolic

rates. An intriguing question is whether biological systems have evolved to exhibit such characteris-

tics. The large relative size of ribosomes and their large RNA contents may therefore be desirable

features outside the immediate context of their function in translation.

Our simulations also allowed us to carry out a detailed analysis of diffusive properties that

revealed significant heterogeneity in macromolecular diffusion as a function of the local environment

and a surprisingly significant reduction of metabolite diffusion as a result of sticky interactions with

Video 4. Diffusive motion of metabolites during the

last 130 ns of the MGm1 system. Macromolecules are

shown with surface representation. Metabolites and

ions are shown with van der Waals spheres.

Phosphates, amino acids, ions, and other metabolites

are highlighted with red, green, yellow, and blue.

DOI: 10.7554/eLife.19274.026
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macromolecular surfaces. The latter has implications for the number of metabolites actually present

in bulk solvent and has consequences for the mechanism of ligand binding in cellular environments.

One recurring aspect in our study is the prominent role of electrostatics that is manifested in dif-

ferent forms, such as the differential solvation between metabolic proteins and RNAs and RNA-con-

taining complexes and metabolite-protein interactions that alter protein structure via electrostatic

screening but are also at least in part responsible for reducing the amount of freely-diffusing metab-

olites. These findings mirror in part ideas by Spitzer and Poolman that hypothesized electrochemical

effects to be a major factor in organizing crowded cytoplasms (Spitzer and Poolman, 2005).

The effect of cellular environments on and by metabolites and metabolic enzymes is a major focus

of the present study. The present work points at reduced effective ligand concentrations near the

macromolecule surface and altered protein-ligand interactions under cellular conditions. Therefore,

cell-focused in silico drug design protocols that capture competing interactions and altered kinetic

properties under cellular conditions could offer significant advantages over current single-molecule

protocols.

All of the results presented here were obtained via computer simulations that, although increas-

ingly reliable and based on experimentally-driven models, still only represent theoretical predictions.

One potential concern is that the structural models used here were obtained largely via homology

modeling. While the accuracy of structure prediction has increased over the last decade

(Kryshtafovych et al., 2014), using such models may affect the accuracy of our results reported

here, in particular with respect to the effects of the cellular environment on protein stability. In order

to diminish such effects, we focused our analysis on relative comparisons of the same homology

models in the cellular environment and in dilute solvent which we believe is meaningful even if the

models are only approximations of the real structures. At the same time, the analysis of diffusive

properties and non-specific protein-protein interactions is expected to be driven mostly by overall

shape, size, and electrostatics rather than specific structural details and, therefore, we expect those

results not to be affected significantly by the use of homology models.

The simulations presented here are limited by relatively short simulation lengths due to computa-

tional resource constraints. The observed macromolecular diffusion was largely limited to motion

within a local environment without enough time to trade places with other macromolecules and cer-

tainly without exploring a substantial fraction of the volumes of our simulation systems. The short

simulation times affect the estimates of long-time diffusive behavior including the possibility of

anomalous diffusion that would not be expected to appear until macromolecules actually exchange

with each other. On the other hand, the analysis of native state destabilization and non-specific pro-

tein-protein interactions relies essentially on interactions within just the local environment that are

being sampled extensively on the time scale of our simulations, while averaging over many different

copies in different environments is assumed to provide equivalent statistics to following a single

copy that diffuses over much longer time scales. We therefore expect that much longer simulations

would primarily reduce the statistical uncertainties without fundamentally altering the results

reported here with respect to macromolecular stability and interactions. However, we expect that

longer time scales would allow sampling of specific macromolecular and ligand binding equilibria,

e.g. tRNA binding to tRNA synthetases, protein oligomerization, or binding of metabolite substrates

to their respective target protein active sites, none of which we observed in the course of our

simulations.

Force field inaccuracies are another concern and this work is a true test of the transferability and

compatibility of the CHARMM force field parameters for close molecular interactions under condi-

tions where force field parameters have not been validated extensively and artifacts, e.g. overstabili-

zation of protein-protein contacts, are possible (Petrov and Zagrovic, 2014). Therefore, additional

simulations with other force fields are desirable and follow-up by experiments is essential. The sug-

gested metabolite-induced compaction of PGK should be observable experimentally and it should

also be possible to measure weak associations of metabolic enzymes in dense protein solutions with

and without nucleic acids and with and without ribosomes using suitable fluorescence probes, for

example. Variations of diffusive properties as a function of the local cellular environments and the

diffusion of metabolites in cellular environments may be more difficult to determine experimentally

but we hope that our work will stimulate experimental efforts to determine such properties.

The next step from the model presented here is a whole-cell model in full physical detail to

include the genomic DNA, the cell membrane with embedded proteins, and cytoskeletal elements.
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Such a model would require in excess of 10 (Tanizaki et al., 2008) particles at an atomistic level of

detail. As additional experimental data becomes available and computer platforms continue to

increase in scale, this may become possible in the foreseeable future. Such a whole-cell model would

bring to bear the tremendous advances in structural biology to make a complete connection

between genotypes and phenotypes at the molecular level that is difficult to achieve with the empiri-

cal systems biology models in use today.

Materials and methods

Model system construction
We constructed a comprehensive cytoplasmic model at pH = 7 based on MG containing proteins,

nucleic acids, metabolites, ions, and explicit water, consistent with predicted biochemical pathways

as described previously (Feig et al., 2015). The model is meant to cover a cytoplasmic section that

does not contain membranes, DNA, or cytoskeletal elements and includes only essential gene prod-

ucts. Molecular concentrations were estimated based on proteomics and metabolomics data for a

very closely related organism, M. pneumoniae and macromolecular structures were predicted via

homology modeling and complexes were built where possible (see Figure 1).

All-atom molecular dynamics simulations
The cytoplasmic model covered a cubic box of size (100 nm) (Bennett et al., 2009) with about 100

million atoms (MGh; Figure 1A). This system corresponds to 1/10th of a whole MG cell. Based on

MGh, we also built two smaller subsets (MGm1 and MGm2), each with a (50 nm) (Bennett et al.,

2009) volume and containing about 12 million atoms. The subsets were constructed like the com-

plete system but using molecular copy numbers from two different 1/eighth subsets of the MGh sys-

tem. All-atom MD simulations were carried out over 140 ns for MGm1 and 60 ns for MGm2 of with

the first 10 ns were discarded as equilibration. For MGh, we performed 20 ns MD simulation with the

first 5 ns considered as equilibration. MGm1 and MGh trajectories were obtained with GENESIS

(Jung et al., 2015) on the K computer. MGm2 was run as a control using NAMD 2.9 (Phillips et al.,

2005). Analysis was performed with the in-house program MOMONGA and the MMTSB Tool Set

(Feig et al., 2004). System details are given in Table 1 and a list of macromolecules and metabolites

are provided as supplementary material.

Systems with single macromolecules in explicit solvent were built for phosphoglycerate kinase

(PGK), pyruvate dehydrogenase E1.a (PDHA), NADH oxidase (NOX), enolase (ENO), translation initi-

ation factor 1 (IF1), tRNA (ATRN), and acetate kinase (ACKA). PGK, PDHA, NOX, ENO and IF1, were

solvated in pure water (with counterions) and aqueous solvent with excess KCl. The molality of K+

ions was adjusted to match the MGm1 system. ATRN was only simulated in the presence of the

added salt. ACKA was simulated in water and in a mixture of metabolites with the components and

molalities chosen such that they match the MGm1 system. Details for these systems are given in

Table 2. MD simulations of single macromolecules in dilute solvent were repeated two to four times

using different initial random seeds. Details about the number and length of runs for each system

are given in the Table 2.

In all atomistic simulations, initial models were minimized for 100,000 steps via steepest descent.

For the first 30 ps of equilibration, a canonical (NVT) MD simulation was performed with backbone

C
a

and P atoms of the macromolecules harmonically restrained (force constant: 1.0 kcal/mol/Å

[Zimmerman and Trach, 1991]) while gradually increasing the temperature to 298.15 K. We then

performed an isothermal-isobaric (NPT) MD simulation for 10 ns without restraints. Production MD

runs were carried out under the NVT ensemble for MGm1 and MGm2. For MGh, we ran a total of 20

ns in the NPT ensemble without switching to the NVT ensemble. The CHARMM c36 force field

(Best et al., 2012) was used for all of the proteins and RNAs. The force-field parameters for the

metabolites were either taken from CGenFF (Vanommeslaeghe et al., 2010) or constructed by anal-

ogy to existing compounds. All bonds involving hydrogen atoms in the macromolecules were con-

strained using SHAKE (Ryckaert et al., 1977). Water molecules were rigid by using SETTLE

(Miyamoto and Kollman, 1992) which allowed a time step of 2 fs. Van der Waals and short-range

electrostatic interactions were truncated at 12.0 Å, and long-range electrostatic interactions were

calculated using particle-mesh Ewald summation (Darden et al., 1993) with a (512) (Bennett et al.,
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2009) grid for MGm1 and MGm2 and a (1024) (Bennett et al., 2009) grid for MGh. The temperature

(298.15 K) was held constant via Langevin dynamics (damping coefficient: 1.0 ps�1) and pressure (1

atm) was regulated in the NPT runs by using the Langevin piston Nosé-Hoover method

(Hoover et al., 2004; Nosé, 1984) (damping coefficient: 0.1 ps�1).

Brownian and Stokesian dynamics simulations
A coarse-grained model of the MG cytoplasm, MGcg., was built for Stokesian and Brownian dynam-

ics simulations. Here, each macromolecule was represented by a sphere with the radius a set to the

Stokes radius estimated by HYDROPRO (Fernandes and de la Torre, 2002) based on the modeled

structures. The number of copies for each macromolecule was set to be 8 times larger than that in

MGm1 because most of the atomistic simulation data presen ted here is based on this system. The

number and radii of macromolecules are listed in supplementary material.

MGcg was simulated via Brownian dynamics (BD) without hydrodynamics interactions (HIs)

(Ermak and McCammon, 1978) and Stokesian dynamics (SD) (Brady and Bossis, 1988;

Durlofsky et al., 1987), which includes not only the far-field HI but also the many-body and near-

field HIs. For BD simulations without HIs, we used a second-order integration scheme introduced by

Iniesta and de la Torre (Iniesta and Garci�a de la Torre, 1990), which is based on the original first-

order algorithm developed by Ermak and McCammon (Ermak and McCammon, 1978). We only

considered repulsive interactions between particles to take into account excluded volume effects,

which are described by a half-harmonic potential,

Vij ¼
1

2
kðrij� ai� aj�DÞ2 if rij<ai þ aj þD

0 if rij � ai þ aj þD

(

(1)

where k is the force constant, rij is the distance between particles i and j, ai and aj are the radii of

particles i and j, respectively, and D is an arbitrary parameter representing a buffer distance between

particles. In this study, a D¼ 1A and k¼ 10kBT=D
2 with the Boltzmann constant kB were used, which

means that Vij ¼ 5kBT at the distance rij ¼ aiþ aj. For SD simulations, the modified mid-point BD

algorithm introduced by Banchio and Brady (Banchio and Brady, 2003) and based on Fixman’s idea

(Fixman, 1978) was used. All BD and SD simulations were performed under periodic boundary con-

ditions at 298 K. A time step of 8 ps was used, which roughly corresponds to 0.0005 � a2/Dtr for the

particle with the smallest radius in the system, where Dtr is the translational diffusion constant (which

is equal to kBT/6pha with the viscosity of water h). Ten independent simulations were performed,

each over 20 ms with different random seeds from randomly generated different initial configura-

tions, using BD and SD implementations in the program GENESIS (Jung et al., 2015).

Calculation of root mean square displacements (RMSD) of
macromolecules
RMSD values were determined for C

a

and P atoms after best-fit superpositions. Structures obtained

after short-time (10 ps) MD simulations in water started from the initial predicted models were used

as reference structures since experimental structures are not available.

Highly flexible regions where C
a

and P atoms had root mean square fluctuations (RMSF) larger

than 3.0 Å2 (for proteins) or 4.0 Å2 (for tRNA) were eliminated from the analysis. Time and copy-

averaged values with their respective standard errors were calculated from t0 = 50 ns to tend = 130

ns in MGm1.

Calculation of translational diffusion coefficients
The time evolution of the square displacement of a macromolecule a in a given time window i

(r2 a; i; tð Þ) was obtained by tracking the center of mass of a. Multiple profiles of r2 a; i; tð Þ were

obtained by sliding windows up to a size of tmax = 10 ns using an interval of Dti = 10 ps for macro-

molecules and up to tmax = 1 ns for metabolites using an interval of Dti = 1 ns starting from the

beginning of the production trajectories up to tend � tmax, where tend is the maximum length of a

given simulation (see Table 1). In the case where diffusion coefficients are compared with coordina-

tion numbers (see below) Dti = 500 ps was chosen. These profiles were then averaged to obtain

mean square displacements (MSD) according to:
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r2 a;tð Þ

 �

t
¼ 1

tend� tmaxð Þ=Dti
X

i

r2 a; i;tð Þ (2)

To obtain translational diffusion coefficient Dtr, a linear function was fitted to the MSD curve and

Dtr was computed from the slope of the fitting line using the Einstein relation.

Dtr ¼
r2 a;tð Þ

 �

t

6t
(3)

For Figures 4A, 5A and 6A and Figure 4—figure supplement 1, only the last 80% of the MSD

curve were used for fitting to enhance the accuracy. The entire MSD curve was used to generate

Figures 4C, 5C and 6C, and Figure 4—figure supplement 2 and Figure 5—figure supplement 1.

The simulation results were shown with experimentally measured diffusion coefficients of green

fluorescence protein (GFP) and GFP-attached proteins (Nenninger et al., 2010). In order to map the

experimental data onto the simulations results, Stokes radii, Rs, of GFPs (GFP, GFP oligomers, and

GFP attached proteins) were estimated from the relation between the molecular weight, Mw, and Rs

obtained by HYDROPRO (Fernandes and de la Torre, 2002) for macromolecules in MGm1. Mw vs Rs

data were fitted with an exponential function (Rs = 2.54 Mw
2.86) which was used to estimate Rs for

the GFP constructs based on their Mw values.

Analysis of rotational motion
To analyze the overall tumbling motion of a macromolecule a, we adopted the procedure developed

by Case et al. (Wong and Case, 2008) using the rotation matrix that minimizes the RMSD of a

against the reference structure, the rotational correlation function in a given time window i (� a; i; tð Þ)
as a function of t was obtained using sliding windows as in the calculation of the translational diffu-

sion coefficients (see above) as follows with tmax = 10 ns:

� a;tð Þh it¼
1

tend� tmaxð Þ=Dti
X

i

� a; i;tð Þðt <tmaxÞ (4)

Time-ensemble averages of rotational correlation functions for macromolecule type A were

obtained by taking average for multiple copies of a belonging to the type A.

� A;tð Þh ia t¼
1

N

X

a

� a;tð Þh it ða2 AÞ (5)

The rotational relaxation timetrel was obtained by fitting a single exponential (McGuffee and

Elcock, 2010)

� A;tð Þh iat/ exp �t=trelð Þ (6)

Finally, the rotational diffusion coefficient of macromolecule type A was obtained as

Drot Að Þ ¼ 1=2trel (7)

To obtain time-averaged angular velocities for a molecule a, the inner product of the rotated unit

vectors at t¼ ti and t¼ ti þ tmax were calculated as:

Dej tmaxð Þ

 �

t
¼ 1

tend� tmaxð Þ=Dti
X

ti

ej tiþ tmaxð Þ � ej tið Þ

 �

j
(8)

The time-averaged angular velocity !h it of a in units of degrees was obtained as follows,

!h it¼
180

p
arccos

Dej tmaxð Þ

 �

t

tmax

 !

(9)

Calculation of coordination number of crowders
To measure the local degree of crowding around a given target molecule a, we used the number of

backbone Ca and P atoms in other macromolecules within the cutoff distance Rcut = 50 Å from the
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closest Ca and P atoms of a at a given time t as the instantaneous coordination number of crowder

atoms, Nc a; tð Þ, (For metabolites, we calculated the instantaneous coordination number of heavy

atoms in crowder from the center of mass of a target metabolite m with a cutoff value of Rcut = 25

Å. This quantity is denoted as Nc� m; tð Þ). Time averages of Nc a; tð Þ, and Nc� m; tð Þ were calculated over

10 ns windows advanced in 500 ps steps for macromolecules and over 1 ns windows advanced 1 ns

steps for metabolites, respectively.

Characterization of macromolecular interactions
Macromolecular interactions were analyzed by using the center of mass distance for macromolecule

pairs. The change of the distance between a target macromolecule a and one of the surrounding

macromolecule b, Ddab, during the entire production trajectory from t0 to tend was calculated as:

Ddab Rcutð Þ ¼ rc a;b; tendð Þh it� rc a;b; t0ð Þh it; (10)

where hit denotes the time average of center of mass distance rc a;b; tð Þ in the short time window

tshort at the beginning and at the end of the time window. The selection of surrounding molecules b

was based on the scaled distances �r between two protein pairs

�r a;bð Þ ¼ 2rc a;bð Þ
Rs að ÞþRs bð Þ (11)

where Rs a=bð Þ is the Stokes radius of each molecule. b was selected as surrounding molecule when

the time-averaged distance from a is shorter than the cutoff distance Rcut at the beginning of time

window.

�r a;b; tið Þh it<Rcut: (12)

The ensemble average of the distance change between two macromolecule groups A and B as a

function of the cutoff radius, Rcut, DdAB Rcutð Þ, was obtained for macromolecule pairs belonging to

each group. In this study, DdAB Rcutð Þ was calculated using the longest time window for MGm1 (tend =

130 ns, tshort = 5 ns), MGm2 (tend = 50 ns, tshort = 5 ns), and MGh (tend = 15 ns, tshort = 0.5 ns). The pro-

file at Rcut »2 reflects the short-range interaction (picking up the macromolecule pairs which are

almost fully attached each other), while it converges to zero at larger Rcut because the number of

macromolecule pairs having no interaction rapidly increase. DdAB Rcutð Þ was then averaged

between Rcut = 2 and 3 to reduce the noise. The averaged value is denoted simply as DdAB. A cutoff

distance of Rcut = 3 corresponds to macromolecule pairs separated by about their diameter. DdAB
values were calculated for MGh, MGm1 and MGm2, and combined with a weighted average accord-

ing to the different lengths of the trajectories. DdAB were obtained for the half of macromolecule

pairs (whose scaled distance are initially less than 3.0) selected randomly from each macromolecule

group. We repeated this calculation for 50 times, and obtained standard deviations (SD) for 50 � 2

= 100 values. Standard error was obtained by SD=
ffiffiffi

2
p

.

Macromolecular association was analyzed separately for protein-protein, protein-RNA, and RNA-

RNA interactions (see text). We separately analyzed interactions among proteins involved in the gly-

colysis pathways, which consist of HPRK (HPr/HPr kinase/phosphorylase), PYK (pyruvate kinase),

TPIA (triosephosphate isomerase), GAPA (glyceraldehyde-3-phosphate dehydrogenase), PFKA (6-

phosphofructokinase), FBA (fructose-biphosphate aldolase), ENO (enolase), PGI (glucose-6-phos-

phate isomerase), PGM (phosphoglycerate mutase) and PGK (phosphoglycerate kinase). Both multi-

meric and monomeric units were included in the analysis.

Calculation of spatial distribution functions of metabolites
Proximal radial distribution functions, g(r), were calculated for the distances between centers of

heavy atoms in target metabolites and the nearest heavy atom of surrounding macromolecules. The

number of atoms in a given target metabolite, which exist in the theoretically accessible volume (V

(r), show as gray layers in Figure 6—figure supplement 1A), n(r), were obtained as a function of dis-

tance r. The volume and pairwise distances were averaged from snapshots taken at 5 ns intervals for

the cellular systems and at 1 ns intervals for the dilute systems. The atomic number density � rð Þ was
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calculated by dividing n(r) by V(r). To obtain the normalized distribution functions, � rð Þ were divided

by the atomic number density in the furthest region from the surface of macromolecules � ¥ð Þ,

g rð Þ ¼ n rð Þ
V rð Þ� ¥ð Þ : (13)

To obtain the numerical values for VðrÞ, the periodic boundary box was divided into 1 Å grids,

and VðrÞ were approximated by counting the grids whose center is inside the VðrÞ (thick black

squares in Figure 6—figure supplement 1A). The profiles of gðrÞ were obtained in a histogram with

bin size 0.5 Å. � ¥ð Þ was approximated by taking the average value of �ðrÞ from 20 Å to 25 Å.

� rð Þ of ATP was also obtained only with respect to the 13 ACKA molecules in the crowded system

MGm1 as well as for the single ACKA under dilute conditions with metabolites and ions (ACKA_m)

(Figure 6—figure supplement 1D). We used the entire 130 ns production trajectory of MGm1. For

dilute conditions (ACKA_m) a total of 1 ms sampling from multiple trajectories was used.

In addition to � rð Þ and gðrÞ, the three-dimensional distribution of the atomic number density

� rð Þh i of metabolites or ions around the target proteins were generated with a grid size of 1 Å.

� rð Þh i were calculated for each snapshot, and iso-density surfaces were projected onto a reference

structure of the target protein by removing translational and rotational motion of the protein

(Figure 2C–E, and 6D-E in the main manuscript). For the density calculations, snapshots saved at

100 ps intervals for cellular systems and saved at 50 ps for dilute systems were used.

Because ACKA has two symmetrical domains (i.e., homodimer), ATP atoms around one domain

were transposed to the other domain, and � rð Þh i were then calculated by counting both original and

transposed solvent atoms in the same grid to generate symmetry-averaged densities (see

Figure 6D–E).

Characterization of the two-dimensional diffusion of metabolites
For selected metabolites we analyzed the interaction with macromolecule surfaces. Metabolites

were considered to be interacting with a macromolecular surface if the distance between the center

of mass of a metabolite and the nearest heavy atom of any of the surrounding macromolecules was

less than 10 Å for the large metabolites COA and NAD, and less than 8 Å for ATP, VAL, G1P, and

ETOH. If a metabolite interacted continuously with the same macromolecule for more than 5 ns

before and after a given time, we considered the metabolite to be moving on the macromolecular

surface, therefore exhibiting two-dimensional diffusion. Mean square displacements (MSD) of these

metabolites were averaged separately and the slope was divided by four instead of six when deter-

mining Dtr to reflect two-dimensional vs. three-dimensional diffusion.
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decoupling of rotational and translational diffusion of proteins under crowding conditions. Journal of the
American Chemical Society 138:10365–10372. doi: 10.1021/jacs.6b06615

Roosen-Runge F, Hennig M, Zhang F, Jacobs RM, Sztucki M, Schober H, Seydel T, Schreiber F. 2011. Protein
self-diffusion in crowded solutions. PNAS 108:11815–11820. doi: 10.1073/pnas.1107287108
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