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Abstract

Fructose-6-phosphate aldolase (FSA) is an important enzyme for the C-C bond-forming

reactions in organic synthesis. The present work is focused on the synthesis of a precursor

of D-fagomine catalyzed by a mutant FSA. The biocatalyst has been immobilized onto sev-

eral supports: magnetic nanoparticle clusters (mNC), cobalt-chelated agarose (Co-IDA),

amino-functionalized agarose (MANA-agarose) and glyoxal-agarose, obtaining a 29.0%,

93.8%, 89.7% and 53.9% of retained activity, respectively. Glyoxal-agarose FSA derivative

stood up as the best option for the synthesis of the precursor of D-fagomine due to the high

reaction rate, conversion, yield and operational stability achieved. FSA immobilized in

glyoxal-agarose could be reused up to 6 reaction cycles reaching a 4-fold improvement in

biocatalyst yield compared to the non-immobilized enzyme.

Introduction

Iminocyclitols are iminosugars that act as inhibitors of intestinal glycosidase. This biological

activity is of high pharmaceutical interest since these compounds can be used to modulate the

postprandial glucose concentration, reducing the risk of developing insulin resistance [1]. D-

fagomine, which presents the molecular configuration of D-glucose and D-mannose on car-

bons 3, 4 and 5, is the only iminocyclitol that can be obtained from a traditional food source,

the seeds of buckwheat (Fagopyrum esculentum). It is also present in other plant sources such

as mulberry (Morus Alba, Moraceae) leaves and gogi (Lycium chinense) roots [2]. This com-

pound, as other iminocyclitols, is able not only to quench and delay the hyperglycemic

response to oral sucrose and starch but to selectively agglutinate pathogenic enterobacteria in

the intestine and to facilitate the adhesion of probiotics [3].

A two-step chemo-enzymatic synthesis of D-fagomine has been described based on an

aldol reaction catalyzed by D-Fructose-6-phosphate aldolase (FSA) from Escherichia coli [4–6].

FSA is a decameric protein of 230 kDa that accepts unphosphorylated dihydroxyacetone

(DHA) as a donor substrate [7,8]. This is an advantage towards phosphorylated-DHA-depen-

dent aldolases since i) DHA is cheaper than the phosphorylated compound and ii) the removal
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of the phosphate group from the final product is circumvented. FSA can tolerate different

donor compounds like hydroxyacetone, 1-hydroxy-2-butanone and glycolaldehyde [9–12].

However, aiming to widen the applicability of this biocatalyst in industrial target reactions,

several authors have worked on increasing the FSA promiscuity by genetic engineering [9–

11,13–19]. Mutant FSA A129S, obtained by site-directed mutagenesis gave a strikingly

improved kcat/KM towards DHA, D-G3P and D-F6P and potential complementary synthetic

abilities to those of FSA wild type [20]. Therefore, FSA A129S is considered a promising bio-

catalyst for industrial application in aldol reactions.

It is known that enzyme implementation at large scale requires high stability under indus-

trial reaction conditions. Several strategies can be used to improve biocatalyst stability such as

enzyme immobilization. This strategy can also facilitate the recovery and the reuse of the bio-

catalyst in multiple reaction cycles also improving the downstream processing [21,22]. The

immobilization process requires preliminary studies of the enzymes and the supports with the

aim of selecting the most suitable method. Mesoporous supports are typically used for enzyme

immobilization due to i) the wide range of available matrixes, functional groups, sizes and

porous diameters, ii) their generally easy preparation, and iii) their easy operational use. Dif-

ferent types of materials, considering both organic (e.g. agar, chitosan or alginate) and inor-

ganic compounds (e.g. Eupergit) have been applied as carriers for enzyme immobilization

[6,23–26]. Several properties are considered desirable for the carrier such as high specific sur-

face, high chemical and mechanical robustness, high enzyme binding capacity and high com-

patibility with the reaction medium. However, there is no material fulfilling all these

characteristics for all the biocatalytic processes. Thus, the most suitable carrier for the target

process has to be found by testing different options [6]. In addition to the mesoporous sup-

ports, nanocarriers could be also considered since they have several advantages. The enzymes

immobilized on nanoparticles follow Brownian movement when are dispersed in aqueous

media, showing similar properties to the soluble enzyme. Nanoparticles demonstrate great

properties for enzyme immobilization like high surface area, minimization of diffusional prob-

lems and good mechanical stability. However, nanomaterials usually suffer from high cost of

fabrication and their recovery from the reaction medium tends to be difficult [27]. Magnetic

nanoparticles are a specific type of nanomaterials designed for efficient recovery of the biocata-

lyst from the reaction mixture by means of straightforward magnetic separation. Due to the

great properties of this kind of support, several enzymes have been immobilized on magnetic

nanoparticles obtaining different biocatalysts successfully applied in synthetic reactions [28–

32]. Superparamagnetic nanoparticles have been usually used to avoid their agglomeration

due to magnetic dipole-dipole interactions. Nevertheless, at a small size (below ~20 nm) the

magnetic force acting on the individual superparamagnetic nanoparticle in a magnetic field

gradient is usually too weak to enable a quick separation of the biocatalyst from the reaction

media. Aiming for an efficient separation, many superparamagnetic nanoparticles can be

therefore assembled into larger magnetic nanoparticle clusters (mNC) [33,34].

Regarding FSA immobilization, some authors have reported successful methodologies

based on an enzyme embedding in layered double hydroxide (LDH) nanoplatelets or by

means of a modification of this method based on an encapsulation of FSA-LDH in a carra-

geenan polymer [35–37].

In the present work, the synthesis of (3S,4R)-6-[(Benzyloxycarbonyl)amino]-5,6-dideoxy

hex-2-ulose, a precursor of D-fagomine (pre-D-fagomine), by soluble and immobilized FSA

A129S has been studied (Fig 1). Several methods have been screened for FSA immobilization

using both mesoporous carriers and magnetic nanoparticle clusters. The most promising

immobilized derivatives have been tested for the synthesis of pre-D-fagomine, and their opera-

tional stability in subsequent reaction cycles has been evaluated.
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Materials and methods

Materials

Recombinant FSA A129S was produced and purified according to the literature with an activ-

ity of 15.0 U mg-1 FSA (S1 Fig) [38]. N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide

(EDAC), α-glycerophosphate dehydrogenase–triosephosphate isomerase (GPD-TPI), D-fruc-

tose-6-phosphate (F6P) and 3-[(benzyloxycarbonyl)amino]propionaldehyde (β-CHO) were

purchased from Sigma Aldrich (St. Louis, USA). Nicotinamide adenine dinucleotide (NADH)

was purchased from BONTAC Bio-engineering (Shenzhen, China). 6% cross-linked agarose

gels, MANA-agarose gels and High-density metal free sepharose were purchased from ABT-

beads (Torrejón de Ardóz, Spain). Dihydroxyacetone (DHA) was purchased by Merck (Darm-

stadt, Germany). Iron (III) sulfate hydrate, iron (II) sulfate heptahydrate (ACS, 99%), citric

acid (99%), tetraethoxysilane (TEOS, 99.9%), NH4OH (28–30%) were supplied by Alfa Aesar

(Lancashire, UK). (Hydroxy(polyethyleneoxy)propyl) triethoxysilane (silane-PEG), triethoxy-

silylpropylmaleamic acid (silane-COOH), 3-mercaptopropyltrimethoxy silane (silane-SH), N-

(trimethoxysilylpropyl) ethylenediaminetriacetate (silane-EDTA) were purchased by Gelest

(USA). All other reagents were commercial products of analytical grade. Silane-C�CH and

silane-N3 were kindly supplied by Dr. Stane Pajk (Jožef Stefan Institute, Ljubljana, Slovenia)

[39].

FSA activity assay

The activity assay followed the cleavage of F6P to D-glyceraldehyde-3-phosphate (G3P) and

DHA by using the auxiliary enzymes α-glycerophosphate dehydrogenase and triosephosphate

isomerase (GPD-TPI) [8]. TPI converts G3P into DHAP, which is further reduced by GPD

using NADH. FSA activity was monitored by the decrease in absorbance due to the conversion

of NADH to NAD+ at 340 nm and 30 oC with a UV/visible Cary 50 (Varian, Palo Alto, USA)

spectrophotometer (ε340nm = 6.2 mM-1 cm-1). The reaction mixture (1 mL of total volume)

contained 50 mM imidazole, 0.1 mM NADH, 5 mM F6P and 10 U mL-1 of GPD-TPI and

50 μL of the sample in distilled water under pH 8. One activity unit of FSA is defined as the

amount of enzyme required for the conversion of 1 μmol of F6P per minute at pH 8.0, 30˚C.

The standard deviation of the FSA activity test was calculated from measurements performed

by duplicate. Activity assays were carried out using 1.5 mL cuvettes suitable for UV. When the

activity of immobilized FSA derivatives was measured, double of each volume was added and

3 mL cuvettes were used with magnetic stirring to maintain a proper suspension of the deriva-

tives during the measurement.

For the determination of the low enzyme load at the mNC, an alternative activity test was

proposed in this study. The activity was determined by following the DHA aldol addition reac-

tion by HPLC. The immobilized enzyme was concentrated up to 50 μL by removing of super-

natant using a magnetic field. This volume was added to the reaction mixture, containing 40

mM β-CHO and 100 mM DHA in 50 mM HEPES (pH 8.0), in a final volume of 1 mL. It was

left for 90 min at 30˚C, 1000 rpm of orbital stirring. The reaction was stopped by acidification

Fig 1. Enzymatic system for the synthesis of D-fagomine.

https://doi.org/10.1371/journal.pone.0250513.g001
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(pH 2). After neutralization, the percentage of activity was determined by HPLC analysis of

the preFagomine concentration. This test showed great linearity (S3 Fig).

Enzyme immobilization onto functionalized mNC

Magnetic nanoparticle clusters (mNC) were obtained by the self-assembly of primary maghemite

nanoparticles followed by coating of the magnetic clusters with a layer of silica (mNC-Si)

(120 ± 15 nm mNC size, density 4300 kg m-3, 2 silane nm2) [40–42]. To enable the conjugation

of the enzyme, mNC-Si was functionalized by grafting different functional silanes, such as silane-

PEG, -NH2, -COOH, -SH, -N3, -C�CH, and -EDTA, onto their surfaces yielding mNC-PEG,

mNC-NH2, mNC-COOH, mNC-SH, mNC-N3, mNC-C�CH, and mNC-EDTA, respectively.

Functionalization procedures were described in detail elsewhere and the same strategy was fol-

lowed for all silane bindings to silica surfaces [39,43]. Functionalized mNC are fully characterized

and also commercially available by Nanos SCI company under trademark iNANOvative™.

For the preparation of mNC-CHO, 3 mg mNC-PEG was suspended for 19 h in 5 mL of a

solution containing 64 mM NaOH, 28 mM NaBH4, 408 mM glycidol. NaIO4 (2 mM for exper-

iments at pH 5.0; 90 mM for pH 8.0) was added to oxidize the aldehyde groups. Finally,

mNC-CHO was washed with 10 volumes of distilled H2O.

For all non-covalent conjugations, 0.5 g of mNC was suspended in 1 mL of 10 mM sodium

phosphate. The buffer pH was set at 5.0 and at 8.0 to study the immobilization in an acid and a

basic media. For a preliminary screening, FSA (0.02 U mL-1) was left to immobilize for 60 min

to mNC-Si, mNC-PEG, mNC-NH2, mNC-COOH, mNC-CHO, mNC-SH, mNC-C�CH,

mNC-N3, mNC-EDTA. For the formation of a covalent bond between mNC-NH2 and FSA, a

3-hour incubation with EDAC (1–25 mM) was carried out, followed by addition of 0.5 M

NaCl to eliminate the electrostatic interactions. All immobilizations were performed at 25˚C

under mild orbital stirring. Final mNC-FSA conjugates were washed with buffer to remove the

remaining reagents.

In this case due to the low enzymatic activity, the immobilization yield was determined

from the protein concentration in the supernatant by Bradford quantification, using bovine

serum albumin as a reference [44]. The retained activity was calculated from the aldol addition

test analyzed by HPLC.

Immobilization in mesoporous carriers

Co-IDA. Cobalt chelated agarose (Co-IDA) beads (50–150 μm, density of 10.7 g mL-1)

were prepared from high-density metal-chelated supports (20–40 μmol divalent metal mL-1 gel,

with IDA as the residue to chelate the metal). In order to load the metal, 100 mL of IDA-sephar-

ose were incubated with 300 mL of 0.2 M CoCl2 (pH 4.7) for 12 h. After washing with distilled

water to remove the excess of metal, the support was stored in EtOH 20% v v-1 at 4˚C [45]. FSA

immobilization in Co-IDA was carried out as follows: 1 mL of Co-IDA-sepharose support was

suspended in 9 mL of buffer (50 mM sodium phosphate at pH 8.0 with 300 mM NaCl and 20

mM imidazole). 0.8–500 units of FSA were added to the mixture and incubated under mild agi-

tation on a roller at 25˚C for 30 minutes. The support was finally washed with buffer.

Immobilization studies were performed using an immobilized derivative of 8 U mL-1 sup-

port since no mass transfer limitations are detected at this enzyme load (mass transfer limita-

tions are detected above 10 U mL-1).

MANA-agarose. FSA immobilization in MANA-agarose (50–150 μm, density of 1.07 g

mL-1, 200 mmol amino groups mL-1 of carrier) was carried out as follows: 9 ml of 10 mM

sodium phosphate at pH 6.0 were mixed with 1 mL of MANA-agarose gel. 0.5–380 units of

FSA were added to the mixture and incubated in mild agitation on a roller at 25˚C for 30 min.
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When no activity was detected in the supernatant, different concentrations of EDAC were

added and the enzymatic mixture was incubated under mild agitation for 3 hours. Then 1 M

NaCl was added and left for 1 hour. The support was finally washed with buffer.

Immobilization studies were performed using an immobilized derivative of 4 U mL-1 sup-

port since no mass transfer limitations are detected at this enzyme load (mass transfer limita-

tions are detected above 6 U mL-1).

Glyoxal-agarose. The glyoxal-agarose support was prepared by etherification and oxida-

tion of 6% cross-linked agarose beads (17 aldehyde residues per 1000 Å2 of gel surface),

according to the protocol reported by Guisán et al. [46].

Immobilization of FSA was carried out as follows: 1 mL of glyoxal-agarose was mixed with

9 mL of 50 mM bicarbonate at pH 10.0. 1–380 units of FSA were added and incubated under

mild agitation on a roller at 25˚C for 3 hours. When no activity was detected in the superna-

tant, NaBH4 was added at a final concentration of 1 mg mL-1 and incubated in mild agitation

for 30 minutes. Finally, the carrier was washed with buffer.

Immobilization studies were performed using an immobilized derivative of 4 U mL-1 sup-

port since no mass transfer limitations are detected at this enzyme load (mass transfer limita-

tions are detected above 5 U mL-1 support).

Determination of immobilization yield and activity recovery. Immobilizations were

characterized by immobilization yield (Eq 1) [47] and retained activity quantification (Eq 2).

Samples of supernatant (SN) and suspension (SP) were periodically taken during the immobi-

lization process to determine the FSA activity. In parallel, FSA activity in a blank without sup-

port was monitored over time. Once the immobilization is finished, the immobilized

derivative was washed twice with the corresponding immobilization buffer and re-suspended

in fresh immobilization buffer. The activity of the resuspension (RSP) was analyzed to deter-

mine the retained activity. Experiments were carried out in duplicate and the standard error

was determined (S.D.).

Immobilization yield %ð Þ ¼
ðInitial activity� SN activityÞ

ðInitial activityÞ
� 100 ð1Þ

Retained activity %ð Þ ¼
ðRSP activityÞ
ðInitial activityÞ

� 100 ð2Þ

Synthesis of pre-D-fagomine

10 U of FSA was added to a final volume of 10 mL of reaction medium (1 U mL-1 reaction)

containing 30 mM β-CHO, 45 mM DHA and 50 mM HEPES buffer at pH 8.0. The reaction

was carried out at 25˚C, under orbital stirring. Samples were taken periodically and analyzed

by HPLC in order to quantify β-CHO and pre-D-fagomine concentrations.

When immobilized derivatives were used, biocatalysts were previously prepared in

mNC-NH2, in MANA-agarose, in glyoxal- and in Co-IDA beads at 10.0 ± 1 U mL-1 support.

These derivatives were added in the reaction mixture to reach 1 U mL-1 of reaction to a final

reaction volume of 10 mL, except for the evaluation of the mNC-NH2 derivative which was

performed in a final reaction volume of 1 mL. Experiments were carried out in duplicate and

the standard error was determined (S.D.).

To evaluate the performance of the immobilized FSA on multiple synthesis cycles, immobi-

lized derivatives were added to the reaction medium with a final volume of 10 mL to reach 1 U

mL-1 reaction and after each cycle the support was recovered and washed with 50 mM HEPES

buffer at pH 8.0, then new reaction medium was added. Substrate conversion and product

yield were quantified.
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Cbz-aldehyde and pre-D-fagomine quantification

The concentrations of β-CHO and pre-D-fagomine were measured by HPLC analysis in a Dio-

nex UltiMate 3000 with a variable wavelength detector. The reversed-phase column CORTECS

C18+ 2.7 μm 4.6×150 mm from Waters was employed. Reaction samples were dissolved in

acetonitrile. The analyses were performed by injecting 15 μL of the sample at a flow rate of 0.7

mL min-1, 30˚C. The solvent system consisted of solvent A –0.1% (v v-1) trifluoroacetic acid

(TFA) in H2O– and solvent B –0.095% (v v-1) TFA in acetonitrile/H2O 4:1 (v v-1)–. Samples

were eluted using a gradient from 5 to 28.5% B in 0.5 min, and an isocratic elution at 28.5% B

over 15 min (λ = 254 nm) [39]. Prior calibration with standards of known concentration was

used for quantitative analysis of β-CHO. The standard deviation was calculated from dupli-

cated measurements of a single sample.

The pre-D-fagomine product was characterized and confirmed by HPLC-MS analysis (S2

Fig).

Results and discussion

Immobilization to functionalized mNC

A primary screening on the immobilization of FSA onto mNC was performed by the incubation

of the enzyme with functionalized mNC (-Si, -PEG, -NH2, -COOH, -CHO, -N3, -C�CH,

-EDTA). The protein concentration in the supernatant was evaluated by Bradford quantification

due to an enzymatic activity too low to be quantified in an activity assay (S1 Table). The immobili-

zation strategy was successful through both amino and carboxylic groups from the enzyme. This

was caused by the enzyme structure (Fig 2): NH2 and COOH groups are similarly distributed and

available along the FSA surface. The attachment through the amino groups of the enzyme pro-

duced a total or partial loss of the activity. This could be explained by a possible linkage between

mNC-COOH and Lys85 of FSA, which has a key role in the catalysis of this enzyme [8].

In all cases (S1 Table), almost all the enzyme was released from the particles after washing

with buffer (final immobilization yield <10%). Thus, their use for catalysis is not recom-

mended without further modification steps. To that end, the well-explored EDAC chemistry

approach was used to covalently bind the amine-functionalized nanoparticle clusters with the

carboxyl group of the enzyme (S2 Table). EDAC at about 5 mM (2.5–10 mM range) was the

pseudo-optimal concentration, leading to a final retained activity of 29%. The activity loss in

Fig 2. Tridimensional structure of fructose-6-phosphate aldolase (FSA). The entrances to the two active sites are located between the Lys85 from five subunits, in

yellow. Acid residues are colored in red; basic residues are in blue. His-tag is not shown; not included in the file used from the Protein Data Bank (PDB) [7]. View: (A)

front, (B) back, (C) side. Represented using UCSF Chimera software.

https://doi.org/10.1371/journal.pone.0250513.g002
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comparison to the electrostatically immobilized derivative can be related to higher bond rigid-

ity, and also to cross-linking of the enzyme. Further modifications on the active derivatives on

S1 Table (for instance, reduction of the Schiff base) could enable the preparation of catalyti-

cally-valuable derivatives.

Immobilization in mesoporous carriers

FSA immobilization was also studied by different methods using agarose-based supports. Sup-

ports based on agarose matrixes have been extensively reported as efficient carriers for enzyme

immobilization [48–53]. Two different attachment strategies were tested: i) affinity interaction

by means of the His-tag of the FSA and ii) covalent binding by different functional groups of

the enzyme (-COOH or -NH2).

Co-IDA was used for studying the immobilization by affinity interaction (Table 1). Results

showed high immobilization yield (>99 ± 2.1%) and retained activity (93.8 ± 3.2%). Due to

the promising results, the maximum loading capacity of the support was tested obtaining an

immobilized derivative with 466.7 U mL-1.

Immobilization by means of the -COOH groups of the biocatalyst was carried out using

amino-functionalized agarose (MANA-agarose). The linkage takes place in two steps. Firstly,

an ionic interaction between the positively charged amino groups of the support and the nega-

tively charged carboxyl groups of the enzyme occurs. Then, EDAC is used as the agent to pro-

mote a covalent bond formation. Finally, the non-covalently attached enzyme is desorbed by

increasing the ionic strength of the solution. Three different EDAC concentrations were tested

(5, 15 and 25 mM) resulting in higher immobilization yields as the EDAC concentration is

increased (Table 1). The corresponding retained activities showed that 5 mM of EDAC is not

enough to promote the required covalent binding of the ionically adsorbed FSA (53%).

Increasing EDAC concentration up to 15 and 25 mM leads to retained activities above 85%.

Considering the immobilization yields and retained activities results, 25 mM was selected as

the most suitable covalent bond promoting agent concentration for FSA immobilization in

MANA-agarose. Applying these conditions, a maximum loaded immobilized derivative was

obtained with 336.4 U mL-1, a 28% lower than the derivative obtained with Co-IDA.

When FSA was immobilized by its -NH2 groups, aldehyde functionalized agarose was used

as a carrier (glyoxal-agarose). The linkage between the enzyme and the carrier takes place in a

first step by a Schiff base formation. Then, a reducing agent (NaBH4) is added to form the

covalent linkage by the amide bond formation. Following this methodology, all the enzyme

offered to the support was immobilized (Table 1). However, the retained activity only reached

54%, indicating an activity loss during the immobilization procedure. When the maximum

Table 1. Immobilization yield and retained activity of FSA immobilized by different methods on mesoporous supports. The immobilizations were performed at

room temperature under mild agitation.

Carrier Conditions Method Immobilization yield ± S.D. (%) Retained Activity ± S.D. (%)

Co-IDA� 0.3 M NaCl, 20 mM imidazol Affinity >99 ± 2.1 93.8 ± 3.2

MANA-agarose�� 5 mM EDAC Covalent 80.9 ± 3.1 52.7± 2.9

15 mM EDAC Covalent 90.2 ± 2.1 87.8 ± 4.2

25 mM EDAC Covalent 93.4 ± 1.6 89.7 ± 6.1

Glyoxal-agarose��� 1 mg mL-1 NaBH4 Covalent >99 ± 0.9 53.9 ± 1.1

Immobilization buffers

�50 mM Sodium phosphate pH 8,0

��10 mM Sodium phosphate pH 6.0

���50 mM bicarbonate pH 10.0.

https://doi.org/10.1371/journal.pone.0250513.t001
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loading capacity of this support was studied, an immobilized derivative of 174.1 U mL-1 was

obtained, 2.7-fold and 1.9-fold less active than the Co-IDA and the MANA-agarose derivative,

respectively. Again, the low retained activity obtained by -NH2 linkage of the FSA to the

glyoxal-agarose could be related to a covalent bond formation between a lysine located in the

active center of the enzyme and the support. This non-desired interaction could lead to a

decrease in the FSA activity once it is immobilized.

Other authors have reported high retained activities of FSA by using Mg2Al–NO3 (90%),

Mg2Al (92%), Zn2Al (72%) or MgZnAl (88%) layered double hydroxide (LDH) as support.

These results, especially for Mg2Al–NO3, Mg2Al, and MgZnAl, are similar to those reported in

the present work for Co-IDA (93.8%) and MANA-agarose (89.7%) [35,37]. It has also been

reported a successful immobilization of FSA by encapsulation of FSA-LDH in a carrageenan

polymer obtaining an activity recovery of over 40% [36].

Pre-D-fagomine synthesis by aldol addition

The synthesis of pre-D-fagomine was studied using the immobilized FSA derivatives:

mNC-NH2, Co-IDA, MANA-agarose (25 Mm EDAC) and glyoxal-agarose. The results were

compared with the performance of the reaction using soluble FSA (Fig 3, Table 2). Aiming to

compare all immobilized derivatives, 1 U mL-1 of reaction was applied since it was the maxi-

mum load that can be achieved using the immobilized derivative with the lowest maximum

retained activity, (mNC-NH2).

Soluble FSA led to full substrate conversion and> 99% yield reaching an initial reaction

rate of 0.80 mM min-1.

Co-IDA and glyoxal-agarose derivatives showed no mass transfer limitation according to the

initial reaction rates, 0.79 and 1.01 mM min-1, respectively. In both cases, conversion and yield

were> 95%, thus performing as the soluble enzyme. Regarding MANA-agarose, even though

the initial reaction rate was only 20% lower compared to the soluble enzyme and 95% conversion

was achieved, a lower yield was obtained (68%). These results could be related to a side-reaction

of the β-CHO and the–NH2 of the support leading to a Schiff base formation [39]. This side-

reaction effect could be seen comparing the initial substrate reaction rates between the synthesis

catalyzed by soluble and immobilized FSA (Fig 3C). The substrate concentration decreases at

higher rates when MANA-agarose is used, achieving a 30% conversion after 2 minutes which

corresponds to the imbalance between conversion and yield at the end of the reaction.

Regarding mNC-NH2 derivative, lower reaction rate and conversion were obtained (0.43

mM min-1 and 87%). As already mentioned, low retained activities were achieved in FSA immo-

bilization to mNC-NH2 (29%), leading to an immobilized derivative with low specific activity.

Therefore, high derivative load was required in the reaction mixture to reach 1 U mL-1, causing

an increase of the media viscosity. According to other authors, the catalytic properties of

enzymes immobilized in nanoparticles depend on the particle size and the media rheology since

these parameters are linked to diffusion and particle interaction [29]. Therefore, the low catalytic

performance of the mNC-NH2 derivative could be related to an increase in media viscosity.

Reusability of FSA immobilized derivatives to perform pre-D-fagomine

synthesis

One of the main advantages of enzyme immobilization is the possibility to re-use the biocata-

lyst in subsequent reaction cycles. Thus, the operational stability of the obtained FSA deriva-

tives in the synthesis of pre-D-fagomine was evaluated. The obtained results are depicted in

Fig 4.
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FSA immobilized onto mNC-NH2, in addition to lead the lowest reaction rate and conver-

sion in the first reaction cycle (Table 2), it also showed the lowest operational stability (Fig 4).

The obtained yield in the second and third cycle only reached 20% and 2%, respectively and

Fig 3. Aldol addition reaction of DHA and β-CHO (•) producing pre-D-fagomine (■) catalyzed by soluble FSA and FSA immobilized in mNC-NH2 (A),

in Co-IDA (B), in MANA-agarose (C) and in glyoxal-agarose (D). The reaction catalyzed by soluble enzyme is represented with the dashed line in all the

reaction plots. The reaction medium contained: 45 mM DHA, 30 mM β-CHO and 1 U mL-1 of reaction. The aldol addition was performed at 25˚C and pH 8.0

and 10 mL total reaction volume (1 mL reaction volume for the mNC-NH2 derivative).

https://doi.org/10.1371/journal.pone.0250513.g003
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no conversion was detected in the subsequent cycles. Therefore, this derivative was discarded

for further analysis.

Regarding FSA Co-IDA derivative (Fig 4), even though it showed promising results in the

first cycle in terms of initial reaction rate, yield and conversion (Table 2), the operational sta-

bility was low. The reaction yield strongly decreased in the subsequent cycles reaching only

40% and 20% in the second and third cycle and lower than 10% from the fourth to the sixth

reaction cycle.

When MANA-agarose was evaluated, higher operational stability than Co-IDA and

mNC-NH2 was observed, reaching yields higher than 60% in the two first cycles with a slight

decrease in the subsequent reactions (Fig 4). However, as already mentioned, the substrate

reacts with the support, reason why the yield in the first cycle is lower compared to the other

derivatives.

Finally, glyoxal-agarose FSA derivative stood up as the best candidate for the synthesis of

pre-fagomine (Fig 4). In addition to high reaction rate, conversion and yield obtained in the

first cycle, the operational stability was the highest compared to the other immobilized biocata-

lysts. Yields were higher than 80% in the second and third cycle and higher than 20% up to the

sixth cycle.

Aiming to validate that glyoxal-agarose derivative was the best option in terms of process

metrics for pre-D-Fagomine synthesis, the total product quantity (μmol of pre-D-fagomine),

Table 2. Reaction yield, conversion and initial reaction rate of pre-D-fagomine synthesis catalyzed by FSA. Reactions conditions: 1 U mL-1, 10 mL reaction volume�,

30 mM β-CHO, 45 mM DHA and 50 mM HEPES buffer, pH 8.0, 25˚C, orbital stirring.

Biocatalyst Yield ± S.D. (%) Conversion ± S.D. (%) Initial reaction rate ± S.D. (mM product min-1)

Soluble >99 >99 0.8±0.03

mNC-NH2 92±1.6 87±5.6 0.43±0.01

Co-IDA 96±3.6 97±1.9 0.79±0.04

MANA-agarose 68±2.9 95±0.8 0.64±0.04

Glyoxal-agarose >99 98±0.8 1.01±0.05

�1 mL reaction volume for the mNC-NH2 derivative.

https://doi.org/10.1371/journal.pone.0250513.t002

Fig 4. Pre-D-fagomine reaction yields catalyzed by FSA immobilized in mNC-NH2, Co-IDA, MANA-agarose and

Glyoxal-agarose in subsequent reaction cycles. The reaction medium contained: 45 mM DHA, 30 mM β-CHO and 1

U mL-1 of reaction. The aldol addition was performed at 25˚C and pH 8.0 for 5 hours.

https://doi.org/10.1371/journal.pone.0250513.g004
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the total reaction yield (%) and the biocatalyst yield (μmol of pre-D-fagomine obtained by 1 U

of FSA) were evaluated and compared with the performance of the soluble FSA, Co-IDA and

MANA-agarose derivatives (Table 3).

According to the obtained process metrics, the use of immobilized derivatives led to a

reduction of total reaction yield. However, an increase in both total product quantity and bio-

catalyst yield is obtained with all immobilized derivatives. Both Co-IDA and MANA-agarose

led to a 1.6-fold and 2.2-fold increase in biocatalyst yield, respectively. Glyoxal-agarose resulted

in the highest product amount and biocatalyst yield reaching a 4-fold increase in both parame-

ters. Therefore, glyoxal-agarose was considered as the best immobilized derivative to perform

the synthesis of pre-D-fagomine.

Other authors have also reported a decrease in reaction conversion when FSA has been

immobilized and reused in other aldol condensations. FSA immobilized in Mg2Al–NO3 lay-

ered double hydroxide (LDH), reached a 70% conversion in the first cycle of the condensation

of hydroxyacetone and formaldehyde and it decreased to 61% in the fourth cycle. After four

reaction cycles, the FSA activity was maintained at over 87% [35]. FSA immobilized by encap-

sulation of FSA-LDH in a carrageenan polymer was also reported to catalyzed the aforemen-

tioned condensation maintaining over 80% of the initial activity after four cycles reaching a

60% conversion in the first reaction and 50% in the next reaction cycles [36].

Conclusions

The mutant FSA A129S efficiently catalyzes the synthesis of pre-D-fagomine by the aldol addi-

tion of DHA and β-CHO. An immobilization screening of FSA on mNC and agarose-based

carriers was performed aiming to select the most suitable biocatalyst to be reused in consecu-

tive aldol addition reactions. The results showed that FSA immobilized on Co-IDA beads was

the best biocatalyst for the synthesis of pre-D-fagomine in one unique reaction. However,

when biocatalysts were recovered and reused in several reaction cycles, the biocatalyst immo-

bilized in glyoxal-agarose was the best candidate, especially due to its high operational stability.

The glyoxal-agarose derivative could be reused in 6 consecutive reaction cycles reaching a

4-fold biocatalyst yield improvement compared to the soluble enzyme.

Supporting information

S1 Fig. SDS-PAGE gel from FSA sample purified using Co-IDA agarose. Lane 1: Precision

Plus ProteinTM standard (10–250 kDa, Bio-Rad Laboratories). Lane 2: FSA band of approxi-

mately 23 kDa. Image Lab© (Bio-Rad) was used for band determination.

(PDF)

S2 Fig. MS–ESI+ (Na+) spectra of preFagomine (m/z = 320.1106).

(PDF)

Table 3. Total product quantity, total reaction yield and biocatalyst yield for the synthesis of pre-D-fagomine using immobilized FSA in 6 reaction cycles and solu-

ble FSA in a single cycle. Reactions conditions: 1 U mL-1, 10 mL reaction volume, 30 mM β-CHO, 45 mM DHA and 50 mM HEPES buffer, pH 8.0, 25˚C, orbital stirring.

Biocatalyst Total product quantity (μmol) Total reaction yield (%) Biocatalyst yield (μmol product U-1)

Soluble 300.0±15 > 99 30.0±1.5

Co-IDA 498.6±45 27.7±9 49.9±4.6

MANA-agarose 667.8±37 37.1±5 66.8±3.7

Glyoxal-agarose 1206±43 67.0±3 120.6±4.3

https://doi.org/10.1371/journal.pone.0250513.t003
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S3 Fig. The relation between percentage of FSA activity and product formation in the

activity test of the DHA aldol addition to β-CHO. %FSA stands for the initial active amount

of FSA used in the screening of FSA onto mNC (0.02 U ml-1).

(PDF)

S1 Table. Screening of the FSA immobilization onto functionalized mNC. IY: immobiliza-

tion yield, RA: retained activity. No NaCl was added in any case; n.d.: not determined; S.D. is

calculated from more than two replicas in each case.

(PDF)

S2 Table. Screening of the EDC concentration for the covalent immobilization of FSA

onto mNC-NH2. Immobilization conditions: 3 h in 10 mM phosphate buffer (pH 5.0), 25˚C.

Washing corresponds to two 5-minute consecutive washing cycles with 0.25 M NaCl.

(PDF)

S1 Raw images.

(TIF)
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The authors acknowledge Dr. Stane Pajk (Jožef Stefan Institute) for nanoparticles providing

and for the advice support.

Author Contributions

Conceptualization: Gerard Masdeu, Luis Miguel Vázquez, Josep López-Santı́n, Gloria Cam-
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52. Solé J, Brummund J, Caminal G, Schürman M, Álvaro G, Guillén M. Ketoisophorone Synthesis with an

Immobilized Alcohol Dehydrogenase. ChemCatChem. 2019; 11: 4862–4870. https://doi.org/10.1002/

cctc.201901090
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