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Abstract: High-ring polycyclic aromatic hydrocarbons (PAHs, Benzo[b]fluorathene (BbFA), etc.) are
difficult to biodegrade in the water environment. To address this issue, an innovative method for
the preparation of MnO2 nanoflower/graphene oxide composite (MnO2 NF/GO) was proposed for
adsorption removal of BbFA. The physicochemical properties of MnO2 NF/GO were characterized
by SEM, TEM, XRD, and N2 adsorption/desorption and XPS techniques. Results show that the
MnO2 NF/GO had well-developed specific surface area and functional groups. Batch adsorption
experiment results showed that adsorption capacity for BbFA was 74.07 mg/g. The pseudo-second-
order kinetic model and Freundlich isotherm model are fitted well to the adsorption data. These
show electron-donor-acceptor interaction; especially π-π interaction and π complexation played vital
roles in BbFA removal onto MnO2 NF/GO. The study highlights the promising potential adsorbent
for removal of PAHs.

Keywords: MnO2 nanoflower; graphene oxide; PAHs; adsorption

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) refer to aromatic hydrocarbons containing
two or more benzene rings which are formed by the incomplete combustion or pyrolysis of
fossil fuels such as coal, oil and natural gas, wood, paper, and other hydrocarbons under
reduced conditions [1]. The toxicity, genotoxicity, mutagenicity and carcinogenicity of
PAHs cause a variety of harms to the human body, such as damage to the respiratory
system, circulation system, nervous system, liver, and kidney damage [2,3]. PAHs have
recently attracted much attention in studies on water, soil and air pollution as a result
of the United States Environmental Protection Agency blacklisting 16 PAHs as “priority-
controlled pollutants” [4,5]. Currently, many different techniques, such as liquid-phase
adsorption, photocatalytic degradation, bioremediation, and electrochemical remediation,
have been extensively investigated in treating PAH-contaminated water environments in
wastewater reclamation [6–9]. Among them, adsorption technology seems to be a potential
method for PAH control due to its selectivity, low operating cost, affordability, simplicity,
high efficiency, and the adsorbent reusability [10,11]. Kumar et al. used pyrolysis-assisted
potassium hydroxide-induced palm shell activated carbon to remove PAHs from aqueous
solution and the maximum adsorption capacity was 131.7 mg/g [12]. Bhadra et al. proved
the adsorption capacity of MOF-derived carbons on naphthalene (237 mg/g), anthracene
(284 mg/g), and pyrene (307 mg/g) [13].
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Among all kinds of adsorbents, graphene has a high specific surface area, strong hy-
drophobicity and a unique delocalized large π bond, lending it broad application prospects
in the adsorption and treatment of aromatic pollutants from wastewater [14]. Huang
et al. [15] synthesized a reduced graphene oxide-hybridized polymeric high-internal phase
emulsion with an open-cell structure and hydrophobicity to absorb PAH (47.5 mg/g). How-
ever, the complex preparation process, limited adsorption capacity and high cost remain
significant obstacles to the large-scale application of graphene in wastewater treatment [16].
Sun et al. compared the adsorption capacity of graphene oxide (GO), reduced graphene
oxide (rGO) and graphite (G) for naphthalene, anthracene and pyrene in aqueous solution,
and the rGO had the optimal adsorption capacity [17]. Herein, the development of the
excellent performance adsorbents had always been the research hotspot in removing PAHs
from wastewater.

The previous research show that the metal cations could be the adsorption-active
component which could interact with the aromatic ring [18]. Furthermore, the hybridization
of metal cations to the adsorption substrate could form the π- complexation interaction
which could efficiently realize the extraction of PAHs [19]. The hybridization of metal
cations to the graphene materials could be an innovative technology to improve the strength
of π complexation in carbon-based materials [20]. MnO2 nanoflowers (MnO2 NFs) are
regarded as optimal nanostructures because of their rational open structure, increasing the
adsorption point between the adsorbent and the contaminant [21,22]. At the same time,
due to the stable properties and large specific surface area, graphene oxide (GO) can also
serve as a porous backbone to support functional materials, thus leading to much mass
loading of MnO2 NFs for pollutant removal [23,24]. In addition, there is little literature on
the performance and mechanism of PAHs using MnO2 NFs/GO synthetic materials.

In this study, Benz[b]fluorathene (BbFA) was chosen as the model PAH. It is one of
the carcinogenic PAHs, which was included in the list of carcinogenic 2B carcinogens by
the International Agency for Research on Cancer (IARC, World Health Organization) in
2017 [25]. In this work, an innovative preparation method of MnO2 nanoflower/graphene
oxide (MnO2 NF/GO) composites was developed to remove BbFA from wastewater. The
objectives of the research are (1) to prepare MnO2 NF using a direct reduction of KMnO4
with poly-(dimethyl diallyl ammonium chloride) (PDDA) and to synthesize MnO2 NF/GO
in a hydrothermal reactor; (2) to characterize the physicochemical properties of MnO2
NF/GO; and (3) to evaluate the BbFA adsorption performance and mechanism of the MnO2
NF/GO composite by batch adsorption experiment.

2. Results
2.1. Structural and Morphology Characterization of MnO2 NF/GO Composites

Based on the SEM and TEM observations and analyses of MnO2 NF, the nano-
agglomerated structure can be observed in Figure 1a,b, which is consistent with the
experimental anticipation and similar research results [26]. As displayed in Figure 1c,
the morphological characteristics of MnO2 NF/GO composites showed an irregular porous
structure with a distributed rippled and crumpled morphology, which may increase the
surface area of the adsorbent. The HRTEM image (Figure 1d) demonstrated that the lattice
distance of 0.341 nm corresponds to the (002) plane of the as-prepared composite [27].
Notably, the STEM and X-ray elemental mappings (Figure 1e) confirm that the MnO2 NFs
are homogeneously deposited and distributed into the GO.

The XRD pattern of as-synthesized composites was used to analyze the precise crystal
structure and the results are demonstrated in Figure 2a. MnO2 NF had weak diffraction
peaks ascribed to the fact that MnO2 NF possess insufficient crystalline property. The peaks
at 2θ values of 37.28 and 67.94 in MnO2 NF were observed, which could be assigned to
the (−111) and (114) planes of the MnO2 structure (JCPDS card No: 80-1098) [26]. The
diffractogram peak at 2θ the value of 23.5 in MnO2 NF/GO composites is attributed to the
amorphous carbon with low graphitization, corresponding to the highly ordered laminar
structure with an interlayer distance of 0.34 nm along with the (002) orientation [28]. The
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diffraction peak at the 2θ value of 45 in MnO2 NF/GO composites indicates a short-range
order in stacked graphene layers. The results were consistent with the previous SEM results.
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Figure 2. XRD (a); the pore size distributions and N2 adsorption/desorption isotherms (b) of as-synthesized composites.

As displayed in Figure 2b, the adsorbent pores of MnO2 NF and MnO2 NF/GO
composites mainly contain micro-mesoporous structures (diameter < 2 nm) according
to the IUPAC classification [29]. The N2 adsorption/desorption isotherms for MnO2 NF
and MnO2 NF/GO composites showed a sharp increase at low relative pressure (P/P0),
consistent with the typical curve (type I and IV) with H4 hysteresis loop, which was
the microporous structure characteristic [29]. The detailed textural parameters of the
as-synthesized composites are shown in Table 1. The SBET of MnO2 NF/GO composites
(694.30 m2/g) was larger than that of MnO2 NF (87.78 m2/g), and the volume adsorbed
(Vtot) of MnO2 NF/GO composite is higher than MnO2 NF at a high P/P0 value. These
results suggest that MnO2 NF/GO composites could facilitate pollutant adsorption due to
the nano-agglomerated structure and the large specific surface area and volume adsorbed
of MnO2 NF/GO composites.
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Table 1. Textural parameters of as-synthesized composites.

Identification MnO2 NF MnO2 NF/GO

SBET
[a] (m2/g) 87.78 694.30

Smic
[b] (m2/g) 11.40 182.19

Sext
[c] (m2/g) 76.38 512.11

Vtot
[d] (cm3/g) 0.3584 0.9606

Vmic
[e] (cm3/g) 0.0046 0.0778

Vmes
[f] (cm3/g) 0.3538 0.8828

[a] BET surface area, [b] micropore surface area, [c] external surface area, [d] total pore volume, [e] micropore volume,
[f] external volume.

2.2. Chemical Characteristics of MnO2 NF/GO Composites

The surface chemical characteristics of as-synthesized composites were further ana-
lyzed with the typical XPS spectra. As displayed in Figure 3a, C, O and Mn were the major
elemental compositions on the surface of MnO2 NF/GO composites. Moreover, the Mn 2p
spectrum for MnO2 NF/GO illustrated the successful fabrication of MnO2 NF on the GO
surface. The high-resolution O 1s spectrum (Figure 3b) shows peaks at 530.6 and 532.2 eV,
attributed to Mn-O-Mn and Mn-O-H bonding [30]. The ratio of Mn-O-Mn/Mn-O-H was
4.05 based on the peak area ratios calculation results. These findings suggest that Mn
primarily exists in the oxide form (MnO2) on the MnO2 NF/GO composites, consistent
with experimental expectations. As displayed in Figure 3c, the high-resolution wide-range
Mn 2p1/2 (652.9 eV) and Mn 2p3/2 (641.1 eV) peaks using the XPS best peak fitting with
Gaussian modes were caused by the overlap of Mn3+ and Mn4+ ions [31]. Additionally, the
separation value (>5.9 eV) between Mn 2p3/2 and Mn 2p1/2 was consistent with published
reports [32]. The presence of carboxyl group and hydroxyl group was conductive for
the pollutant adsorption according to the wide-range C 1s spectrum of MnO2 NF/GO
composites in Figure 3d.
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Figure 3. XPS survey spectra of MnO2 NF and MnO2 NF/GO composites (a); O 1s (b); Mn 2p (c);
and C 1s (d) spectra of MnO2 NF/GO composites.
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2.3. Effect of Contact Time and Adsorption Kinetics

Figure 4a showed the effect of contact time for BbFA adsorption capacity on as-
synthesized composites. It could be seen that BbFA was rapidly adsorbed onto adsorbents
during the initial 30 min, which can be explained by the rapid diffusion speed of BbFA
due to the higher initial BbFA concentration and the initial sufficient adsorption sites of
adsorbents. In addition, the large number of aromatic ring structures of BbFA determine the
adsorption rate. The BbFA concentration and diffusion speed decrease continuously with
continuous contact reaction, while the BbFA adsorption capacity on as-synthesized compos-
ite increased. At the same time, the BbFA adsorption capacity on MnO2 NF/GO composites
was six times higher than that of MnO2 NF due to MnO2 NF/GO composites’ larger spe-
cific surface area and volume adsorbed. To identify the possible rate-controlling steps and
reaction mechanisms in the BbFA adsorption process, the pseudo-first-order model and the
pseudo-second-order model were used to simulate the experimental data [33].
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as-synthesized composites (d); the linear plots of Langmuir isotherm (e) and Freundlich isotherm (f). (dosage = 0.2 g/L,
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The pseudo-first-order model, which is based on solid capacity, was defined as follows
(Equation (1)):

ln(qe − qt) = lnqe − k1t (1)

The pseudo-second-order model, which predicts the behavior of the whole adsorption
range, was defined as follows (Equation (2)):

t
qt

=
1

k2q2
e
+

1
qe

t (2)

where qe (mg/g) and qt (mg/g) are adsorption capacities at equilibrium and time t, respec-
tively. k1 (1/h) are the rate constants of the pseudo-first-order model, and k2 (g/(mg·min))
are the rate constants of the pseudo-second-order model, respectively.

Figure 4b and c present the plots for the BbFA adsorption of as-synthesized composites
by applying the kinetic models in this study, and the slopes and intercepts of these curves
were used to determine the fitting parameters. The calculated constants of the kinetics and
the corresponding linear regression correlation are shown in Table 2. The high correlation
coefficients value (R2 > 99%) and the excellent agreement between the experimental (qe)
and calculated values (qcal) indicate that the pseudo-second-order model resulted in a
better fit than the pseudo-first-order model. Therefore, the pseudo-second-order model
was more suitable for describing the adsorption of BbFA onto MnO2 NF/GO composites,
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and the critical rate-controlling steps were multiple processes, especially the activated or
chemisorption processes [34].

Table 2. Parameters of kinetics models for the BbFA adsorption by as-synthesized composites.

Kinetic Models Constants MnO2 NF MnO2 NF/GO

Pseudo-first-order parameters
Qe,cal (mg/g) 5.272 40.62
K1 (1/min) 0.042 0.053

R2 0.9522 0.9721

Pseudo-second-order parameters
Qe,cal (mg/g) 9.9 74.07

K2 (g/mg/min 10−4) 299 48.73
R2 0.998 0.9986

2.4. Adsorption Isotherm

The adsorption isotherms were generated by changing the initial concentration of
BBFA, and the mechanism is that the higher initial concentration of BBFA provides a
prominent driving force to control the resistance of BBFA transfer from liquid to solid part
in the adsorption system. As displayed in Figure 4d, the adsorption isotherms showed a
sharp initial slope due to the fact that the amount of BbFA could not meet as-synthesized
composites’ abundance of available adsorption sites in low equilibrium BbFA concentra-
tion, resulting in a weakening maximum adsorption capacity. As the equilibrium BbFA
concentration increased further, the maximum adsorption capacity increased gradually as
its active sites were gradually occupied by BbFA.

The Langmuir isotherm model assumed monolayer coverage of the adsorbate over a
homogenous adsorbent surface [35]. The Freundlich equation described the adsorption
from low and medium concentrations, when the monolayer was not filled, and the parame-
ter n described the heterogeneity of adsorption sites [36]. In this study, the Langmuir and
Freundlich isotherms were used to describe the adsorption isotherm in detail (Figure 4a,e,f).
The isotherm models were given by Equations (4) and (5):

Qe =
Q0KLCe

1 + KLCe
(3)

lnQe = lnKF +
1
n

lnCe (4)

where Qe (mg/g) is the maximum adsorption capacity of adsorbents; Ce (mg/L) is the
equilibrium BbFA concentration; Q0 (mg/g) is the initial adsorption capacity; KL (L/mg)
and KF ((mg/g)/(L/mg)1/n) are the Langmuir isotherm constant and Freundlich affinity
coefficient, respectively; and n is the adsorption intensity.

The isotherm lines, isotherm constants, and correlation coefficients of isotherm models
are summarized in Figure 4b,c and Table 3. The Langmuir isotherm model exhibited a
better fit to the BbFA adsorption process of the MnO2 NF (Figure 5), which indicated that
the BbFA adsorption tended to be homogeneous and showed monolayer coverage due to
the strong interactions between the surface of MnO2 NF and BbFA. Further, the Freundlich
model was the best for describing the BbFA adsorption process onto the MnO2 NF/GO
composites, explaining the complex chemical and multi-layer adsorption process due to
the metal oxides’ hybridization in MnO2 NF/GO composites. In addition, the Freundlich
constant 1/n values were in the range of 0–1, suggesting that the MnO2 NF/GO composites
can actively adsorb BbFA. As displayed in Table 3, the maximum adsorption capacities (Qe)
of MnO2 NF/GO composites (74.07 mg/g) were higher than those of MnO2 NF (9.9 mg/g),
which were consistent with 2.3 results.
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Table 3. Langmuir and Freundlich constants related to the adsorption isotherms of BbFA for as-
synthesized composites.

Isotherm Models Constants MnO2 NF MnO2 NF/GO

Langmuir
KL (L/mg) 5.364 74.07
Qm (mg/g) 10.13 1.824

R2 0.9973 0.9964

Freundlich
KF (mg/g·(L/mg)·1/n) 8.701 49.11

1/n 0.0582 0.1878
R2 0.9647 0.9976
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2.5. BbFA Adsorption Mechanism

Despite the destruction of the graphene conjugated structure during the GO oxidation
process, GO still retains a unique delocalized π bond and surface hydrophobic properties.
The π bond on the MnO2 NF/GO surface could form π–π interactions with the aromatic
ring of BbFA. Many studies have also shown that π–π interaction was an essential way
for adsorbents to adsorb PAHs. GO could be used as a metal oxide carrier to synthesize
compounds, the compounds can prevent agglomeration from taking place and form π

complexing bonds due to metal oxide doping; the adsorption capacity of BbFA on MnO2
NF/GO was improved by π complexation. The hydrophobic properties and multilayer
structure characteristics of MnO2 NF/GO provide sufficient adsorption sites for BbFA.
Many oxygen-containing functional groups (carboxyl and hydroxyl) are introduced into
MnO2 NF/G during GO synthesis and metal oxide doping. At the same time, the adsorp-
tion of BbFA molecules would lead to changes in the morphology of the MnO2 NF/G, thus
generating new adsorption active sites for BbFA removal. The BbFA adsorption capacity of
these active sites still needs to be further studied. In general, the results of batch adsorption
experiments and model fitting showed that the adsorption of BbFA onto MnO2 NF/G was
dominated by chemisorption, and the π-π interaction, π complexation, and hydrophobicity
of nanoflowers have played a role in the adsorption of BbFA.

3. Methods
3.1. Materials

Poly dimethyl diallyl ammonium chloride (PDDA, 20%) and potassium permanganate
(KMnO4, analytical grade) were purchased from ALADDIN Co. Ltd. (Shanghai, China).
The fabrication method of graphene oxide (GO) is provided in the Supporting Information
Text S1. Benzo[b]fluorathene (BbFA) solid (purchased from Aladdin Industrial Corporation)
was of 98% purity. Benzo[b]fluorathene (BbFA) was analyzed with GC-MS (please refer
to Table S1 for details of method parameters). Additionally, all solutions necessary for
analytical procedures were prepared with distilled water, and all the chemicals used were
of analytical grade.
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3.2. Fabrication of MnO2 NF/GO Composites

As displayed in Figure 6, the 4.5 mL PDDA was mixed with 20 mL ultrapure water
and heated to 120 ◦C. Afterward, 4.0 g of KMnO4 was added to the mixed solution while
stirring at 220 rpm for 60 min until the aqueous dispersion mixture turned dark brown,
which was defined as MnO2 nanoflower aqueous dispersion. The partial MnO2 nanoflower
aqueous dispersion was centrifuged at 8000 rpm for 10 min and further washed twice
with ethanol and three times with distilled water, respectively. Furthermore, the resultant
product was dried at 60 ◦C for 12 h to obtain MnO2 nanoflower particles, which were
defined as MnO2 NFs. The rest of the MnO2 nanoflower aqueous dispersion was mixed
with the prepared GO (2 g) under continuous stirring at room temperature for 10 min.
Then, the resultant mixture was transferred into a hydrothermal reactor and heated to
120 ◦C for 4 h. Subsequently, the dark precipitate powders were collected and washed with
distilled water several times. Finally, they were dried at 60 ◦C for 12 h to obtain the MnO2
NF/GO composite.

Materials 2021, 14, x FOR PEER REVIEW 9 of 11 
 

 

and washed with distilled water several times. Finally, they were dried at 60 °C for 12 h 
to obtain the MnO2 NF/GO composite. 

 
Figure 6. Fabrication of MnO2 NF/GO composites. 

3.3. Characterization Methods 
The characterization methods are provided in the Supporting Information Text S2. 

3.4. Adsorption Experiments 
The kinetic experiments were conducted to investigate the effect of contact time and 

evaluate the kinetic properties. The as-synthesized composites (0.2 g) were added into 1 
L of BbFA solution with initial concentrations of 0.3 mg/L. The mixture solution had nat-
ural pH, which was detected using a pH meter (Model PHS-3C, Shanghai, China). The 
mixture solution was agitated on the magnetic stirrers (Model 78-1) at a 250 ± 10 rpm 
speed with control of 25 ± 1 °C. The flasks were wrapped in aluminum foil to prevent 
photolysis. The 5 ± 0.5 mL samples were taken and filtered at desired adsorption duration 
(0–240 min), then the mixture was filtered from the liquid phase using a Millipore mem-
brane filter (0.45 μm), and the residual BbFA concentrations were enriched into 10 mL 
CH2Cl2 through solid-phase extraction, followed by concentration determination of BbFA 
using GCMS. 

The adsorption capacities of adsorbent were calculated using the following (Equation 
(5)): 

Q = (C0 − Ce)V/M (5) 

where Q (mg/g) represents the remove capacities; C0 and Ce (mg/L) are the initial and 
equilibrium concentrations of BbFA, respectively; V (L) is the volume of the BbFA solu-
tion; and M (g) is the mass of adsorbent added. 

In the batch adsorption experiments, the stock solution of BbFA (1 g/L) was prepared 
by dissolving 0.05 g of powder BbFA in a 500 mL CH2Cl2 solution, and the desired con-
centrations were obtained by dilution, followed by magnetic stirring to ensure the com-
plete dissolution of BbFA in water solutions. The batch equilibrium BbFA adsorption 
studies were performed with a series of brown conical flasks (500 mL) containing a vol-
ume of 100 mL of the fixed initial concentration of BbFA (0-350 mg/L). Subsequently, the 
adsorbents (20 mg) were added to each flask, and the flasks were shaken at 200 ± 10 rpm 
in a shaded water bath shaker (SHZ-88) at 25 ± 1 °C for 24 h until the equilibrium achieved. 
The residual BbFA concentration was analyzed using the same method described above. 

4. Conclusions 
MnO2 NF aqueous dispersion composed of PDDA and KMnO4 was used to produce 

MnO2 NF/GO in a hydrothermal reactor. MnO2 NF/GO composites showed excellent re-
moval performance of BbFA from wastewater. The batch adsorption experiments re-
vealed that the adsorption isotherms agreed well with Freundlich isotherm and kinetics 
obeyed the pseudo-second-order kinetics model and adsorption capacity of 74.07 mg/g. 
The result was related to the well-developed physicochemical properties of MnO2 NF/GO 
composites. The first reason is that it has a larger specific surface area and adsorption sites, 
and another important reason is that it has strong electron donor–acceptor interaction 
(EDA interaction, especially π–π interaction and π complexation). Thus, MnO2 NF/GO 

Figure 6. Fabrication of MnO2 NF/GO composites.

3.3. Characterization Methods

The characterization methods are provided in the Supporting Information Text S2.

3.4. Adsorption Experiments

The kinetic experiments were conducted to investigate the effect of contact time and
evaluate the kinetic properties. The as-synthesized composites (0.2 g) were added into 1 L
of BbFA solution with initial concentrations of 0.3 mg/L. The mixture solution had natural
pH, which was detected using a pH meter (Model PHS-3C, Shanghai, China). The mixture
solution was agitated on the magnetic stirrers (Model 78-1) at a 250 ± 10 rpm speed with
control of 25 ± 1 ◦C. The flasks were wrapped in aluminum foil to prevent photolysis. The
5 ± 0.5 mL samples were taken and filtered at desired adsorption duration (0–240 min),
then the mixture was filtered from the liquid phase using a Millipore membrane filter
(0.45 µm), and the residual BbFA concentrations were enriched into 10 mL CH2Cl2 through
solid-phase extraction, followed by concentration determination of BbFA using GCMS.

The adsorption capacities of adsorbent were calculated using the following (Equation (5)):

Q = (C0 − Ce)V/M (5)

where Q (mg/g) represents the remove capacities; C0 and Ce (mg/L) are the initial and
equilibrium concentrations of BbFA, respectively; V (L) is the volume of the BbFA solution;
and M (g) is the mass of adsorbent added.

In the batch adsorption experiments, the stock solution of BbFA (1 g/L) was prepared
by dissolving 0.05 g of powder BbFA in a 500 mL CH2Cl2 solution, and the desired
concentrations were obtained by dilution, followed by magnetic stirring to ensure the
complete dissolution of BbFA in water solutions. The batch equilibrium BbFA adsorption
studies were performed with a series of brown conical flasks (500 mL) containing a volume
of 100 mL of the fixed initial concentration of BbFA (0-350 mg/L). Subsequently, the
adsorbents (20 mg) were added to each flask, and the flasks were shaken at 200 ± 10 rpm in
a shaded water bath shaker (SHZ-88) at 25 ± 1 ◦C for 24 h until the equilibrium achieved.
The residual BbFA concentration was analyzed using the same method described above.
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4. Conclusions

MnO2 NF aqueous dispersion composed of PDDA and KMnO4 was used to produce
MnO2 NF/GO in a hydrothermal reactor. MnO2 NF/GO composites showed excellent
removal performance of BbFA from wastewater. The batch adsorption experiments re-
vealed that the adsorption isotherms agreed well with Freundlich isotherm and kinetics
obeyed the pseudo-second-order kinetics model and adsorption capacity of 74.07 mg/g.
The result was related to the well-developed physicochemical properties of MnO2 NF/GO
composites. The first reason is that it has a larger specific surface area and adsorption
sites, and another important reason is that it has strong electron donor–acceptor interaction
(EDA interaction, especially π–π interaction and π complexation). Thus, MnO2 NF/GO
composites could be cost-effective functional materials for BbFA removal. However, further
studies are required to improve oxidative degradation of MnO2 NF/GO composites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14164402/s1, Text S1: The fabrication method of graphene oxide (GO). Text S2: The
characterization methods. Table S1: Shimadzu GCMS-QP 2010 method parameters for BbF concentra-
tion determination. The Supporting Information is available free of charge on the ACS Publications
website at DOI.
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