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Introduction
The relationship between cancer and inflammation were 
observed in the nineteenth century and the most of 
tumors often occurred in chronic inflammatory sites.1 In 
fact, inflammatory microenvironment has been identified 
as an integral component of carcinogenesis.2 The hallmark 
of tumor-promoting inflammation include the presence 
of inflammatory cells and inflammatory mediators in 
the tumor stromal cells. The formation of inflammatory 
microenvironment mediates by genetic events and immune 
cells such as regulatory T cells, myeloid-derived suppressor 
cells (MDSCs), tumor-associated neutrophils (TANs), 
regulatory B cells and tumor-associated macrophages 
(TAMs). These heterogeneous cells interact with tumor 
cells to contribute the tumor initiation, promotion and 
metastases.3 TAMs are the major component of tumor-
associated stromal cells that orchestrated cancer-related 
inflammation.4 The main features of macrophages are 
heterogeneity and plasticity in tumor microenvironment 
and TAMs have either tumor-promoting or prevention role 

upon different stimuli. Macrophages can be polarized into 
different phenotypes: classically activated macrophages 
M1 and alternatively activated macrophages M2 in 
tumors. M1-like macrophages activated by interferon-γ 
(IFN-γ) and lipopolysaccharide (LPS) which produced 
pro-inflammatory cytokines like IL-12, IL-23, TNF-α 
and IL-6 that promote Th1 responses. In contrast, IL-4, 
IL-10, IL-13 and TGF-β stimulated M2-like macrophages 
which induce Th2 responses.5 TAMs enhance tumor 
angiogenesis, metastases, tissue repair, extracellular matrix 
(ECM) degradation and suppress immune responses.6 
However, the extremely complicated relationship between 
TAMs and malignant tumor cells remains a subject of 
controversy. On the other hand, the multifaceted role 
of TAMs in tumor progression, they are now being as a 
therapeutic target, diagnostic and prognosis markers for 
cancer. In this review, we discuss how TAMs mediated 
tumor progression and we summarized novel molecule 
and mechanism involved in macrophage polarization and 
recruitment offers novel therapeutic approaches. 
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Abstract

Tumor microenvironment consists of malignant and non-malignant cells. The interaction of 
these dynamic and different cells is responsible for tumor progression at different levels. The 
non-malignant cells in TME contain cells such as tumor-associated macrophages (TAMs), cancer 
associated fibroblasts, pericytes, adipocytes, T cells, B cells, myeloid-derived suppressor cells 
(MDSCs), tumor-associated neutrophils (TANs), dendritic cells (DCs) and Vascular endothelial 
cells. TAMs are abundant in most human and murine cancers and their presence are associated 
with poor prognosis. The major event in tumor microenvironment is macrophage polarization 
into tumor-suppressive M1 or tumor-promoting M2 types. Although much evidence suggests 
that TAMS are primarily M2-like macrophages, the mechanism responsible for polarization 
into M1 and M2 macrophages remain unclear. TAM contributes cancer cell motility, invasion, 
metastases and angiogenesis. The relationship between TAM and tumor cells lead to used them 
as a diagnostic marker, therapeutic target and prognosis of cancer. This review presents the 
origin, polarization, role of TAMs in inflammation, metastasis, immune evasion and angiogenesis 
as well as they can be used as therapeutic target in variety of cancer cells. It is obvious that 
additional substantial and preclinical research is needed to support the effectiveness and 
applicability of this new and promising strategy for cancer treatment.
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Origins of TAMs
The first line of defense mediated by innate immune 
response like macrophages, which participate in immune 
responses, tissue repair and homeostasis.7 Recent studies 
in pancreatic cancer shows skepticism about the origin of 
TAMs from hematopoietic stem cells and they proved that 
TAMs derived from embryonic precursors or primitive 
yolk sac precursors referred to tissue-resident macrophages 
with self-renewal capability.8 Movahedi and colleagues 
described that which two main circulating monocytes, 
“Ly6C+ inflammatory” or “Ly6C- resident” monocytes, is 
the major source of TAM in mice.9 They injected labeled 
Ly6Chi and Ly6Clo monocytes into tumor-bearing mice. 
They found that inflammatory monocytes contain TAM 
precursor cells.10 A comparative gene expression profiling 
from murine tumor microenvironment revealed that 
TIE-2 expression monocytes (TEM) and TAM profiles 
were related each other. Resident macrophages and TIE-2 
embryonic macrophages express a gene signature closely 
related to circulating TEM. On the other hand, TAMs 
express a gene profiling more related to inflammatory 
macrophages and compared to TAM, TEM show enhanced 
angiogenic activity with lower pro-inflammatory activity. 
However, the relationship between TAM and TEM are 
elusive and additional studies are needed.11 Metastatic 
breast cancer patients have elevated level of TEM which 
monocytes express (CD11b+, CD14+CD45+ cells, TIE-
2) in their peripheral blood and in the breast tumor 
microenvironment.12 In gliomas, TAMs derived from 
resident microglial cells of embryonic origin, infiltrated 
blood monocytes and monocytic M-MDSCs.13 STAT3 
is a key transcription factor induce the polarization of 
M-MDSCs into mature TAMs.14 The polarization of 
mouse inflammatory monocytes (Ly6C+/CCR2+cells) 
into TAMs mediated by a major transcriptional effector 
of Notch signaling like RBPJ and down regulation of this 
protein in TAMs reduced the tumor size in mouse breast 
cancer.15 Chemoattractants, cytokines such as CSF-1, 
VEGF, and IL-34, chemokines like CCL2 and CCL5, 
and complement components (C5a) responsible for 
recruitment of inflammatory monocytes and monocytic 
myeloid-derived suppressor cells (M-MDSCs) into the 
tumor microenvironment.16 Indeed, such chemotactic 
factors activate transcriptional factors that contributes the 
differentiation of macrophage. The binding of CCL18 to 
its receptor PITPNM3 recruits macrophages in human 
breast cancer model with the collaboration of CSF2 
mediators.17 An important player in the recruitment of 
monocytes to the tumor, is considered CCL2-CCR2 axis 
that has been proposed as a new therapeutic target.18 
There is controversial debate about the exact origin of 
CCL2 within tumor. Zhou et al found that TANs as a main 
source of CCL2 and CCL17 in HCC, which adsorbed the 
macrophages and CCR4+ Treg cells to the tumor tissue.19 
In return, Spary et al identified CCL2 derived fibroblasts 
recruited the monocytes in prostate cancer.20 On the other 

hand, CCL2 induce the production of CCL3 in human 
and murine macrophages, which this CCL3-CCR1 axis 
promotes metastasis in the mouse model21 (Figure 1).

Polarization of TAMs
Based on their presence in the tumor microenvironment, 
TAMs associated with phenotypic plasticity, intratumor 
and intertumor diversity, ultimately, they polarized toward 
immunosuppressive phenotype. TAMs characterized as 
M2-like macrophage, which express surface molecules 
include CD204 ( macrophage scavenger recep tor A ), 
CD163, CD206 (MRC1), CD301, stabilin-1 (scavenger 
receptor and adhesion molecule), dectin-1, DC-SIGN 
(dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin), chemokine (such as CCL17, 
CCL18, CCL22 ), cytokine (such as IL-10, IL-1ra, decoy 
IL-1RII), vascular endothelial growth factor (VEGF), 
arginase I, Fizz1 (resistin-like beta, also known as Fizz1) 
and Ym1 (chitinase 3-like 3, also known as Ym1). M2-
like macrophage polarization induce by IL-4, IL-13, 
Toll-like receptor and IL-10.22,23 M1-like macrophages 
polarized with (for example, LPS, IFN-γ and TNF-α), 
usually express high level of HLA-DR, iNOS which 
produced proinflammatory cytokines like TNF-α, IL-
1β, IL-6 and IL-12.24 TAMs by bidirectional interaction 
can promote immunosuppressive of regulatory T cells.25 

Figure 1. Schematic representation of the origin and polarization of TAMs in 
tumor microenvironments. Blood monocytes, tissue resident macrophages 
and monocytic myeloid-derived suppressor cells (M-MDSCs) can be recruited 
to tumour stroma in response to diverse chemokines and cytokines. Blood 
monocytes and M-MDSCs are recruited and polarized into macrophages in 
response to various chemokines and cytokines including, CSF-1, VEGF, IL-34, 
CCL2, CCL5and complement components (C5a) which produced by stromal 
and tumor tissues. Local tissue-resident macrophages and tumour-infiltrating 
monocytes differentiate into TAMs. Moreover, distinct populations of TAMs in 
some tumours can be proliferated.
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TAMs facilitated tumor proliferation and metastasis 
by production of MMPs, cathepsins, FGF, VEGF, 
PDGF and various chemokines like CXCL8.26 CSF-
1, is a monocyte attractant in TME, which promote 
tumorigenesis that derive macrophages polarization 
toward M2-like phenotypes. In contrast, GM-CSF activate 
antitumor activity of macrophages.27 In pancreatic ductal 
adenocarcinoma, cancer-associated fibroblasts in TME 
produced GM-CSF and induce M2 polarization.28 A 
recent study showed that the anti-inflammatory lectin 
REG3β enhanced the polarization of M2-like phenotype 
in an orthotopic pancreatic cancer of mouse model.29 
REG4 another lectin, involved in macrophage polarization 
toward M2 phenotype in pancreatic cancer by induction 
of EGFR/AKT/CREB signalling pathway.30 Exosomal 
miR-301a-3p maintain M2 phenotype during hypoxic 
condition via activation of PTEN/PI3Kγ signaling 
pathway in pancreatic cancer metastasis.31 Biglycan and 
hyaluronan, Tumor-derived ECM components, induced 
TAM polarization via TLR2 and TLR4.32 Recently, micro-
RNAs as regulator of gene expression could be used as a 
biomarkers in pathogenesis of cancer and inflammatory 
diseases. M1 macrophages express miR-125, miR-155 
and miR-378 and M2 macrophages upregulated miR-
9, miR-21, miR-146, miR-147, miR-187 and miR-511-
3p.33 In particular, miR-155 induce the polarization of 
macrophages toward M1 phenotype by regulation of NF-
Kβ signaling pathway in response to LPS and IFN-γ.34 
Bouhlel et al found that PPAR-γ (peroxisome proliferator-
activated receptor gamma) as a type-II nuclear receptor 
differentiated monocytes toward M2-like macrophages. 
PPAR-γ express in adipose tissue, colon and macrophages 
and regulate fatty acid storage and glucose metabolism.35 
TLR4 agonist like heat-treated Mycobacterium indicus 
pranii (Mw) in combination with DTA-1(an agonistic 
antibody for glucocorticoid-induced TNFR-related 
protein (GITR)) induce the repolarization of TAMs into 
M1-like macrophages by a significant increase in IL-12, 
iNOS and HLA-DR in a mouse model of advanced stage 
melanoma.36

TAM functions in tumor microenvironment
TAM in inflammation
The relationship between inflammation and cancer can 
be classify into two pathways: the intrinsic pathway and 
the extrinsic pathway. The intrinsic pathway driven by 
genetic events include the activation of proto-oncogene 
by mutation, inactivation of tumor-suppressor gene, 
chromosomal amplification and deletion. The extrinsic 
pathway is activated by inflammatory conditions at 
certain anatomical sites (such as colon, pancreas, 
prostate). The converging of two pathways resulting in 
the activation of NF-KB transcription factor, HIF-1α) 
and signal transducer and activator of transcription 3 
(STAT3) in tumor cells. These transcription factors induce 
the production of inflammatory cytokines, chemokines 

as well as prostaglandins. These mediators recruited 
leukocytes, mostly monocytes, resulting in the production 
of cancer-related inflammatory microenvironment.37 
TAMs are an important leukocyte infiltration in TME that 
connected inflammation and cancer.38 TAMs in mouse 
and human tumors have M2 phenotype, which promote 
tumor progression, angiogenesis, remodeling tissues, 
metastasis and suppression of adaptive immunity. Signals 
derived from regulatory T cells and tumor cells like IL-10, 
TGF-β and M-CSF differentiated M2 phenotype in tumor 
tissue.39 Cancer related inflammation have dual potential 
features and may be affected by tissue type. Psoriasis is 
a chronic inflammatory disease that is not related to an 
increased risk of skin cancer because it is a T helper1-cell-
mediated disease. In some tumor subtypes like eosinophils 
in colon tumors, TAMs in a subset of breast tumors and 
pancreatic tumors, the presence of inflammatory cells 
associated with better prognosis.40 Evidences showed 
that NF-KB determine protumour and anti-tumour 
responses in macrophages.41 More recently, patients with 
bladder cancer treated by administering Mycobacterium 
bovis bacillus Calmette–Guerin. This treatment induced 
the polarization macrophages toward M1 phenotype by 
triggering of TLR receptors.42 Multiple evidence indicated 
that immune inflammatory cells in neoplasia can be 
promote tumor progression, angiogenesis and invasion. 
Necrotic cells can release pro-inflammatory factors, 
such as IL-1α into tumor microenvironment.5 TAMs 
promote the survival of inflammatory breast cancer IBC 
by expression of gene encoding the AXL/GAS6 (growth 
arrest- specific protein 6) signaling.43 Versican, an 
extracellular proteoglycan, which activate macrophages 
via TLR2 and TLR6 in lung cancer. TLR2/6 enhanced LLC 
metastasis growth by secretion of TNF-α from myeloid 
cells44 (Figure 2).

TAM in angiogenesis
Like healthy tissues, tumors need to create a bloodstream 
to supply their oxygen and nutrients and other metabolic 
functions.45 This achieved through angiogenesis, which 
consists of formation a new blood vessel from circulating 
endothelial progenitor cells and pre-existing vessels.46 
HIF is an important signals regulating angiogenesis 
process because they transcribed the genes responsible for 
inducing angiogenesis like vascular endothelial growth 
factor (VEGF-A). The pro-angiogenesis capacity of TAMs 
depended on secretion of growth factors and inflammatory 
cytokines by promoting EC survival, proliferation and 
activation.47 TAMs are a major source of VEGF-A in 
mice and human. The elimination of VEGF-A in TAMs 
hindrance angiogenic switch and weaken the formation of 
tumor-associated blood vessels in mouse cancer models.48 
Another pro-angiogenic factors secreted by TAMs include 
placental growth factor (PIGF), VEGF-C, IL-1β, IL-6, 
TNF, CXCL8 (IL-8) and fibroblast growth factor 2.49 
TAMs express WNT signaling pathway and the deletion 



     TAM in inflammatory tumor microenvironment

Advanced Pharmaceutical Bulletin, 2020, Volume 10, Issue 4 559

of WNT7b in TAMs decreased the vascular density in 
mouse mammary carcinomas.50 TAMs secret soluble 
and membrane-bound proteases include MMP2, MMP9, 
MMP12 and cathepsin that degrade ECM to release the 
sequestered pro-angiogenic factors.51 Accordingly, TAMs 
that express ANGPT receptor TIE2 (also known as TEK) 
increased the vascular density and metastasis in some 
tumors.52 Hypoxia induce the expression of CXCL12 and 
ANGPT2 in tumor tissue, which recruited the CXCR4 
+TIE2 + TAMs.53 Genetic deletion of TIE2 block ANGPT2-
TIE2 signaling pathway in TAMs, result in decrease 
angiogenic interaction.54 Notch signaling in TAMs 
associated with pathological angiogenesis but the role of 
this pathway in tumor angiogenesis were not elucidated.55 
TAMs express semaphorins, vascular guidance molecules, 
which mediate EC survival and migration.56 TAMs by 
induction of IL-10 and STAT3/Bcl-2 signaling pathway 
are able to inhibit breast cancer apoptosis upon paclitaxel 
treatment.57 Wenes and colleague reported that TAM 
metabolism and REDD1 are as the first potential target 
for blood vessel formation. Hypoxia induce the expression 
of regulated in development and DNA damage response 
1 (REDD1), which orchestrate the tumor angiogenesis.58 
Toge et al investigated that TAM counts were increased in 
renal-cell carcinoma, showing the elevated level of TAM 
counts and VEGF among angiogenic factors like PyNPase 
(pyrimidine nucleoside phosphorylase), MVD (factor 
VIII), CD34 and pTstage.59

TAM in metastasis
The great majority of cancers arise from epithelial cells, 
yielding carcinomas. In order to carcinomas cells acquire 
motility and invasiveness, they undergo alteration of 
the epithelial–mesenchymal transition. The hallmark of 
epithelial cells, E-cadherin and cytokeratins, is repressed, 
while the component of mesenchymal cells, vimentin and 

Figure 2. The effect of TAMs on tumor promotion. The protumor function 
of TAMs including: angiogenesis, metastasis and invasion, epithelial-to-
mesenchymal transition, proliferation, immune evasion and inflammation.

N-cadherin, is induced. In general, studies shown that the 
interaction between TAMs and malignant cell are required 
for invasion and metastasis. The movement of cancer cells 
depend on secretion of EGF from TAM and production of 
CSF-1 from tumor cells.60 In breast cancer, CSF-1 secreted 
from tumor cells recruit monocytes from circulation and 
these cells differentiated into TAMs, its in turn produced 
the EGF.61 Local secretion of EGF stimulate EGF receptor 
on breast cancer cells, which induce the SOX-2 gene 
through activation of STAT3 signaling pathway.62 The 
expression Wiskott–Aldrich syndrome protein in TAMs 
induce mammary carcinoma metastasis and invasion 
by induction of EGF production from macrophages and 
migration of macrophages toward CSF-1 from cancer 
cells.63 Finally, cancer cell derived GM-CSF induce the 
secretion of CCL18 from mammary TAMs, which trigger 
integrin clustering in cancer cells and mesenchymal-like 
phenotype via activation of NF-KB that mediate adherence 
to the ECM.64 Metastasis required dissemination of cells 
from primary tumor, intravasate into lymphatic and blood 
microvessels, extravasate at distant sites. In breast cancer, 
invasive isoform, MENAINV cancer cells and TAMs migrate 
toward blood vessels by EGF-CSF1 paracrine loop. Mena-
overexpressing tumor cell, proangiogenic TIE2Hi/VEGFHi 
macrophage and the endothelial cell make TMEM (tumor 
microenvironment of metastasis).65 A unique population 
of monocytes in pritumoural stroma of HCC express 
c-Met molecule, which associated with poor survival of 
patients. These monocytes produced MMP-9 in response 
to the HGF derived tumor stromal.66 Macrophages that 
support metastatic of cancer cells express surface markers 
like VEGFR1, CCR2, and CX3CR1, which different from 
angiogenic macrophages express molecules (such as TIE2 
or CXCR4).11 Recent studies demonstrated that CCR2 
trigger the production of CCL3 from macrophages in 
breast cancer mouse model. CCL3 via CCR1 signaling 
promote metastasis in lung and breast cancer 21. Recent 
studies indicated that hypoxic mammary tumors secret 
lysyl oxidase (LOX) to recruit CD11b+ myeloid cell at 
metastasis sites and these cells produce MMP-2 to disport 
collagene IV in experimental breast cancer metastasis 
models. Additionally, the elimination of LOX prevent 
metastasis burden into pulmonary.67

TAM in immune evasion
Immune system plays an important role in eradicating 
formation of incipient neoplasias and micrometastasis, 
but solid tumors managed to avoid detection. TAMs 
derived CCL17, CCL18 and CCL22 adsorbed Treg 
to tumor stroma, which result in the promoting of 
immunosuppressive activity of regulatory T cells by 
immunosuppressive cytokines, including IL-10 and 
TGFβ.68 Indoleamine 2, 3-dioxygenase in the tumor 
microenvironment and TAM breakdown tryptophan, 
which result in the suppression of T cell and dendritic 
cell activity.27 Prostaglandins like COX-1 and COX-2 in 
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TAMs have immunosuppressive effects on T cells.69 PD-
L1 and PD-L2 to be expressed in TAMs and tumor cells, 
which promote the inhibitory function of PD-1 immune 
checkpoint, B7-H4 and VISTA in T cells.70 Oncogenic 
MYC in cancer cells induce the expression of CD47, and 
the immune-checkpoint protein PD-L1. CD47 perform 
as a ‘don’t eat me’ signal that suppress innate immunity 
through phagocytic activity of macrophage and PD-
L1 inhibit adaptive immune responses.71 In pancreatic 
cancer, infiltrating Treg in tumor microenvironment 
upregulated CTLA-4 (cytotoxic T-lymphocyte antigen 4) 
and PD-1, thus, blockage of these pathways enhance anti-
tumor immunity.72 TAMs with CD120a, CD120b secret 
NO, resulting in promoting the apoptosis of activated 
T cells in tumor tissue.73 In pancreatic cancer, CD11b+ 

myeloid cells inhibit CD8+Tcells by induction of PD-L1 
in tumor cells in an epidermal growth factor receptor 
(EGFR)/mitogen-activated protein kinases-dependent 
manner.74 TAM derived TGF-β reduced dendritic cells 
migration, antigen presentation and adaptive immune 
responses. Recent studies indicated that TAMs trigger 
CD27low CD11bhigh-exhausted NK-cell phenotype and 
inhibit cytolytic activity of NK cells by TGF-β depended 
manner.75 Additionally, hypoxia promote TAM derived 
CCL20 via activation of NF-KB signaling pathway. CCL20 
induce the recruitment of Vα24-invariant NKT cells 
to the hypoxic TME, where the antitumor function and 
viability of NKT cells were repressed.76 TAMs produce 
CCL2 which induce CCR2+ monocytic MDSCs migration 
from bone marrow to tumor. However, tumor infiltrating 
MDSCs polarized toward TAM by CSF-1 and HIF-1α. In 
human glioblastoma, elevated level of CCL2 correlated 
with increased counts of TAMs and reduced survival of 
patient.77

TAM in therapeutic target in cancer
TAM- targeting immunotherapy represent an effective 
strategy for cancer treatment. These immunotherapeutic 
strategies include interference with TAM survival, 
limiting of macrophage recruitment, targeting TAMs with 
radiotherapy and reprogramming of tumor-promoting 
M2- like TAMs to antitumor macrophages (Figure 3).

Interference with TAM survival
Trabectedin (ET-743) induce apoptosis in monocytes. This 
function mediated by activation of caspase-8, which plays 
pivotal role in the extrinsic apoptotic signaling pathway 
via Fas and TNF-related apoptosis inducing ligand 
receptors.78 Liposome-encapsulated bisphosphonate 
clodronate can be phagocytized by macrophages leads to 
macrophages deletion and inhibit tumor progression. In 
contrast, liposomal trabectedin induce the apoptosis of all 
macrophages by activation of caspase-8.79 M2pep target 
specially with high affinity for M2-like macrophages in 
murine and subsequently improve the survival of tumor-
bearing mouse.80 Legumain express in TAM in murine 

Figure 3. A schematic representation of the clinical approaches of agents 
that target TAMs. These immunotherapeutic strategies include interference 
with TAM survival, limiting of macrophage recruitment, targeting TAMs with 
radiotherapy and reprogramming of tumor-promoting M2- like TAMs to 
antitumor macrophages.

breast cancer tissue. A legumain-based DNA vaccine 
promote the activation of CD8+Tcells and override M2-
like macrophage in the metastasis of breast, colon and 
lung in mice.81 An RNA aptamer activate CD8+Tcells by 
targeting murine or human IL4Rα/CD124 on TAMs.82 
IL-27 induce the apoptosis of M2-like macrophages and 
proliferation, invasion of pancreatic cells. It is also as a 
novel therapy when combine with gemcitabine and both 
of them target TAMs in pancreatic cancer.83

Limiting of macrophage recruitment
CCL2 synthesis by tumor cells, stromal and bone 
marrow osteoblasts, subsequently mediate tumorigenesis, 
metastasis and recruitment of inflammatory monocytes 
that express CCL2 receptor CCR2 to the tumor 
sites. Blockage of CCL2 and CCR2 suppresses M2 
macrophage migration. A CCL2 blockage agent (anti-
human CNTO888, carlumab and anti-mouse C1142) in 
combination with docetaxel induce tumor regression in 
prostate cancer. A CCR2 kinase antagonist PF-04136309 
inhibit M2 macrophage migration in murine pancreatic 
cancer.84 CSF1-CSF1R regulate macrophage recruitment, 
proliferation and differentiation. A CSF1R inhibitors 
PLX6134, GW2580 and PLX3397 inhibit TAM infiltration 
by induction of CD8+Tcells activity. Additionally, the 
monoclonal antibody (mAb) RG7155 against CSF1R 
reduce TAM recruitment.85 The CSF1R inhibitor 
BLZ945 reduced M2-associated genes such as arginase 
1 and CD206 in a mouse proneural glioblastoma model. 
BLZ945 inhibit the activity and proliferation TAMs 
and reprograme tumor promoting TAMs to antitumor 
macrophages.86
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Reprogramming of M2- like TAMs to M1-like phenotype
Repolarization of M2-like macrophages to anti-tumor 
phenotype under physiological conditions is a crucial 
strategy for cancer therapy. In Lewis lung carcinoma mice 
model tumor, introduction of polyinosinic:polycytidylic 
acid (polyI:C) into mice activate the TLR3/Toll–IL1 receptor, 
which reprogrammed M2-like macrophage toward tumor 
suppressor phenotypes.87 Injection of attenuated Listeria 
monocytogenes into the tumor stroma of ovarian cancer 
mice model induce tumor cell lysis through synthesis of 
nitric oxide, resulting in the switch of TAM toward anti-
tumor phenotypes.88 Similarly, in B16F10 melanoma 
tumors, introduces of heat-killed Mycobacterium indicus 
pranii in TME induce the repolarization of M2-like 
phenotype into M1 macrophages.36 In spontaneous 
mammary carcinogenesis, the anti-angiogenic agent like 
zoledronic acid induce reprogramming of pro-angiogenic 
TAMs toward tumor suppressor phenotype by vascular 
normalization.89 The STAT3 phosphorylation inhibitor 
such as hydrazinocurcumin switch M2-like phenotype 
to an M1-like phenotype to inhibit angiogenesis and 
metastasis in breast cancer.90 In mouse models of non-
small-cell lung cancer, 5, 6-dimethylxanthenone-4-acetic 
acid switch TAM into M1-like phenotype by promoting 
the vascular disrupting via STING 

Activation.91 In gastric carcinoma progression in mice, 
Pseudomonas aeruginosa strain (PA-MSHA) induce the 
switch of M2-like phenotype toward M1 macrophages 
upon activation of NF-KB signaling pathway.92 
Introduction of anti-CD40 in spontaneously develop 
pancreatic ductal adenocarcinoma in KPC mice promote 
the polarization of TAMs toward M1-phenotypes upon 
activation of IL12, TNFα and INF-γ.93

Targeting of TAM with radiotherapy 
Radiotherapy is used for treatment of more than 50% 
cancer patient and associated with tumor regression 
in majority of cancers. However, macrophages have 
radioresistance property because of having a manganese 
superoxide dismutase, ROS, RNS and a scavenger of 
superoxide ions. On the other hand, RT can induce the 
recruitment of macrophages into the tumor tissue by 
stimulation of CCL2, CSF1 production and promote 
the tumor progression. Depletion of macrophages by 
liposomal clodronate before IR and the inhibition of CSF1 
receptor with PLX3397 can promote the anti-tumor effect 
of RT.94 Crittenden and his colleagues reported that high 
doses of irradiation produce M2 phenotype through p50–
p50 NFκB homodimer activation and IL-10 production. 
Similarly, low doses of irradiation reduce the translocation 
of p50–p65 NFκB into nucleus in M1 macrophages. 
Moderate doses of irradiation shift macrophages toward 
M1 phenotype by the activation of NF-κB p65.95

Conclusion
Monocyte-macrophage lineage an important component 

of TME has been identified as a crucial factor in the 
proliferation and cancer cell progression. Moncytes can 
be recruited into tumor sites by chemotactic factors, 
which produce from tumor cells and tumor stroma. 
Monocytes transformed into M2-like TAM to facilitate 
tumor angiogenesis, invasion and metastasis. These 
distinctive phenotype derived from the plasticity nature of 
macrophages in the tumor microenvironment. TAMs to 
apply clinically, as a diagnosis and prognosis marker and a 
therapeutic target as well. Anti-tumor therapeutic strategy 
include reducing TAM survival, limiting macrophage 
recruitment and skewing M2-like TAMs into an M1-
like phenotype. Among these strategies, switching TAM 
toward M1 macrophages is most promising because 
these therapies do not destroy macrophages also can 
be useful method for tumoricidal activity in the tumor 
tissue to reduce tumor progression. Recent study identify 
that TLR ligands promote repolarization of macrophage 
in mouse models.96 Additionally, combination of TAM 
repolarization with checkpoint inhibitors (PD1 or 
CTLA4 antagonists), stimulating antibodies (CD40 or 
GITR agonists) and radiotherapy displayed a remarkable 
strategies for cancer treatment.97 Vessel normalization 
susceptible tumor cells to chemotherapy agents. Anti-
VEGF and anti-angiopoietin treatment leading to vessel 
normalization, reduce hypoxia, induce TAM repolarization 
and improve CTL, NK cell infiltration.98 Several drugs 
are used clinically targeting TAM such as trabectedin 
reduce TAM survival and alemtuzumab eliminates TAMs 
by targeting a TAM surface protein.99 Therefore, more 
investigation are required to assess the elevated ratio of 
M1-like macrophage to M2-like macrophage to identify 
tumor prognosis and prevent tumor progression. In 
addition, TAM population associated with poor prognosis 
in patient, well-define criteria are essential to evaluated 
macrophage population.
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