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Elastic net-based prediction of 
IFN-β treatment response of 
patients with multiple sclerosis 
using time series microarray gene 
expression profiles
Arika Fukushima1, Masahiro Sugimoto2,3,4, Satoru Hiwa   1 & Tomoyuki Hiroyasu1

INF-β has been widely used to treat patients with multiple sclerosis (MS) in relapse. Accurate prediction 
of treatment response is important for effective personalization of treatment. Microarray data have 
been frequently used to discover new genes and to predict treatment responses. However, conventional 
analytical methods suffer from three difficulties: high-dimensionality of datasets; high degree of multi-
collinearity; and achieving gene identification in time-course data. The use of Elastic net, a sparse 
modelling method, would decrease the first two issues; however, Elastic net is currently unable to solve 
these three issues simultaneously. Here, we improved Elastic net to accommodate time-course data 
analyses. Numerical experiments were conducted using two time-course microarray datasets derived 
from peripheral blood mononuclear cells collected from patients with MS. The proposed methods 
successfully identified genes showing a high predictive ability for INF-β treatment response. Bootstrap 
sampling resulted in an 81% and 78% accuracy for each dataset, which was significantly higher than the 
71% and 73% accuracy obtained using conventional methods. Our methods selected genes showing 
consistent differentiation throughout all time-courses. These genes are expected to provide new 
predictive biomarkers that can influence INF-β treatment for MS patients.

Multiple sclerosis (MS) is one of the most common neurological disabilities of the central nervous system1. The 
highest incidences of MS have been reported in North America and Europe (100/100,000), and the lowest occur 
in East Asia and sub-Saharan Africa (2/100,000)2. This disease is the second most common neurological disability 
in young adulthood3. Approximately 80–90% of MS patients initially suffer from relapsing-remitting MS (RRMS) 
where MS repeatedly occurs with a variety of symptoms, including the stages of neurological disability (relapse) 
and recovery (remission)1. The disease gradually shifts to secondary progressive MS (SPMS) which is associated 
with frequent relapses. Therefore, a systematic treatment strategy to prevent and/or delay relapse is important for 
the improvement of the quality of life (QOL) of MS patients.

Interferon-β (INF-β) has been commonly used to prevent relapse of MS4,5 however, INF-β treatment has 
two issues. First, the treatment only works for a limited number of patients, where approximately half of the 
patients relapse within 2 years despite treatment6,7. Second, this treatment can cause side effects, such as spas-
ticity and dermal reaction5. Thus, effective surveillance and appropriate intervention over a long period of time 
post-treatment is required. Although the pathogenesis of MS has yet to be fully elucidated, various genetic factors 
involved in this disease have been reported8. Gene expression data have been intensively analyzed to predict 
INF-β treatment responses4,5,8–12. Hundreds of genes, such as Caspase2, Caspase10, and FLIP, showed promise in 
predicting treatment response5,11; however, these genes were identified by conventional statistical methods which 
showed low prediction accuracies in some cases11,12. The MxA and ISG genes were reported to be predictive for 
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IFN-β treatment response8–10. The expression patterns of these genes, however, were not consistently differen-
tiated throughout all of the time-courses. Given this, any predictions would only be accurate immediately after 
the observation of the gene expression levels, while the accuracy of prediction would be low for subsequent 
responses9. Therefore, the identification of genes showing highly accurate prediction abilities throughout all 
time-courses is needed.

Generally, data analyses to identify biomarkers are categorized into single time-point and time-course-based 
approaches13,14. Prediction using only the currently observable data to predict an outcome of treatment is the most 
useful but most challenging approach for optimizing patient treatment. Single time-point-based analyses13 (Fig. 1a) 
are challenging because the gene expression levels observed during the progression of MS are dynamic14–16. 
Prediction using time-course data consisting of multiple time-points would result in more accurate predic-
tions15,17–22 by eliminating the selection of genes showing inconsistent differentiation throughout the observation 
period (Fig. 1b,c). In particular, the identification of genes showing highly accurate prediction abilities throughout 
all time-courses is important for highly accurate prediction (Fig. 1c; this scenario is termed the “static-longitudinal 
scenario”)22. Microarray data analyses present several difficulties, including the problem of high-dimensionality (a 
higher number of genes compared to sample size) and the high degree of multi-collinearity. Elastic net, a type of 
sparse modelling method, has been commonly utilized to identify differentiated genes to address these issues15,22–25. 
To our knowledge, however, the identification of genes showing highly accurate prediction abilities throughout all 
time-courses for MS patients by sparse modelling has not been reported.

The purpose of this study was to identify new genes showing highly accurate prediction abilities through-
out all time-courses for MS patients. Therefore, sparse modelling methods were modified, and two microarray 
time-course datasets collected from patients with MS were used for predictions of INF-β treatment responses by 
our proposed method.

Methods
Elastic net25, a sparse modelling method, was modified to analyse time-course data. Our method was designed 
to find genes showing consistent differentiation between the two given groups throughout multiple time-points. 
Here, we addressed the following problems:

	(1)	 High dimensionality. Microarray data includes a larger number of genes compared to a small sample size.
	(2)	 Multi-collinearity. Microarray data includes many genes showing highly positive correlations. The use of 

these genes for a prediction model would deteriorate generalization ability26.
	(3)	 Time-courses. Genes showing consistent differentiation throughout multiple time-points should be identified.

Elastic net was designed to analyse single time-point data to identify differentiated genes by preventing 
multi-collinearity25. We modified this method for the time-course data analyses.

Elastic net and stability selection.  Sparse modelling is one of a variety of selection methods suitable for 
high dimensional data analyses25,27. Among the different sparse modelling methods, Least Absolute Shrinkage 
and Selection Operator (LASSO)28 have been commonly used in various studies15,23,24. LASSO, however, is lim-
ited in that it selects only one variable from two variables showing a high correlation (multicollinearity), and the 
other variables are not selected despite being differentiated25. The Ridge regression model is a method capable of 
solving this problem29. This method can construct models from two variables showing a multi-collinearity; how-
ever, this method does not select genes. Elastic net is another sparse modelling method able to reduce those two 
limitations. Elastic net is comprised of LASSO and Ridge26, which selects variable sets, and this method selects all 
variables, even those showing high multi-collinearities26,30,31. Here, we employed Elastic net rather than LASSO 
to select gene candidates showing predictive abilities for subsequent analyses.

Figure 1.  The concepts of prediction using gene expression data. (a) Genes identified by single time-point 
data. (b) Genes showing inconsistent differentiation between the current and the future time-points. (c) Genes 
showing consistent differentiation throughout the data across multiple time-points.
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The proposed method used a logistic regression (eq. 1) to predict the INF-β treatment response based on 
differentiated genes15,30,32.
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where, y = {y1, y2, …, yn; yi ∈ {0, 1}}: yi denotes the response variable that included good responders (labelled as 1) 
or poor responders (labelled as 0) to INF-β treatment, respectively. n denotes the sample size of MS patients. 
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expression levels at time-point t, and p denotes the number of genes. β = {β1, β2, …, βp}: β denotes the regression 
coefficients.

The regression coefficient β in eq. 1 indicates the degree of association between the response to INF-β treat-
ment and each gene. Therefore, a gene with a high absolute value of a regression coefficient was selected as a gene 
bearing the predictive ability of the treatment response. Regression coefficients, however, were difficult to calcu-
late by Ordinary Least Squares (OLS), a general method for calculation of the regression coefficients, due to the 
high dimensionality of the microarray data (the number of genes p ≫ the sample size n). Therefore, a small num-
ber of differentiated genes should be selected prior to the use of OLS. Sparse modelling assumes that only several 
regression coefficients are needed for the prediction model and that the others are not needed. This assumption 
means that the regression coefficient values of several genes which were needed for the prediction model were 
non-zero while the other values were zero. Specifically, genes exhibiting non-zero regression coefficients were 
selected as genes able to predict responses to INF-β treatment. With the use of Elastic net, regression coefficients 
were calculated by adding a penalty term to a least-square loss function (eq. 2).
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where, J(y, Xt) denotes loss of function of OLS, and λ denotes the hyper-parameter for the penalty term of Elastic 
net. The penalty term was given after the second term of the equation. Hyper-parameters were generally set by 
analysts. α (0 ≤ α ≤ 1) denotes the hyper-parameter that indicated the degree between the Ridge β( )j
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2  and 
LASSO ( β| |j ) terms. w = {wt,1, wt,2, …, wt,p} ( ∈ >w 0): w denote the weights of Elastic net as the selection bias of 
each gene at a given time-point t. Thus, genes showing a larger or a lower weight were selected at a lower or a 
higher probability, respectively.

Cross validation is commonly used for optimizing the λ value in eq. 2. Inconsistent genes, however, are gener-
ally selected depending on the λ value. To prevent this problem, Stability Selection (SS)33 was used. SS selects for 
genes according to the following procedures:

	(1)	 A subset of samples was obtained from the gene expression data by random sampling.
	(2)	 An arbitrary λ value was provided to Elastic net to select genes using the data of (1).
	(3)	 (1–2) were repeated with multiple subsets.
	(4)	 The frequency of selection using an arbitrary λ value was calculated for multiple subsets.
	(5)	 (1–3) were repeated using multiple λ values.
	(6)	 For each gene, the maximum of the probability calculated in (4) among multiple λ values was regarded as 

the selection probability of the gene.
	(7)	 Genes showing a selection probability above the threshold θss were selected.

Proposed method: marker identification using time-course data.  The proposed method consisted 
of the following three procedures (Fig. 2):

	(1)	 Screening of gene candidates (Fig. 2a). Due to the difficulties associated with high dimensional problems, 
Elastic net along with SS was used for the screening of gene candidates, known as the gene pool, from the 
data at each time-point. Only genes selected at least one time by Elastic net using SS were selected in the 
gene pool and the rest were eliminated.

	(2)	 Ranking of genes showing consistent differentiation throughout multiple time-points (Fig. 2b). Modified 
Elastic net was used to select genes showing consistent differentiation throughout multiple time-points 
from the gene pool. Initially, Elastic net incorporating SS selected predictive genes from the gene pool at 
the first time-point. Then, at the next time-point t, Elastic net (eq. 2) using SS was conducted with a higher 
selection bias to select genes which were selected at the previous time-point t − 1. Therefore, Elastic net sets 
the weights of genes selected at t − 1 to values smaller than genes not selected (eq. 3). This procedure was 
repeatedly performed at subsequent time-points. Consequently, genes showing consistent differentiation 
throughout multiple time-points were identified using the following:
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where wt,j denotes the weight of the jth gene in Elastic net at t in eq. 2, γ γ ∈ γ >>( ; 1)0  denotes the 
selection bias; gj denotes the jth gene, and GLt−1 denotes a gene list at t − 1. The gene list was constructed 
using selected genes at t − 1.
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Finally, the product SPfinal was calculated by selection probability at each time-point for each gene, and the 
genes were ranked in descending order according to selection probabilities. The product SPfinal denoted 
the probabilities based on the frequency of selection of each gene throughout all time-points (eq. 4). The 
product SPfinal was ranked in descending order. According to this ranking, the gene list for the prediction 
model was created for use in the third step of the model using the following:
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where SPt,j denotes selection probability of the jth gene by stability selection at t.
	(3)	 Construction of a prediction model using the ranked genes (Fig. 2c). Genes for the prediction model were 

identified based on the gene list ranked in the second step. The time-point for data to be used for construct-
ing the prediction model was also selected simultaneously. Here, prediction models of treatment response 
were constructed using combinations of various groups of genes and time-points of gene expression data. 
To identify the genes and select a time-point of data for the prediction model, these models were evaluated 
(Fig. 2d). An evaluation value was calculated by the prediction model that was constructed by one group 
of genes using time-point data. The genes in the group with the best evaluation value were identified as the 
genes showing consistent differentiation. These time-point data were selected for the prediction model. 
This group of genes was created by individually adding genes from the gene list generated in the second 
step in descending order. The prediction models of all gene groups were constructed and evaluated at each 
time-point of the time-course data.

In this step, prediction accuracy, a ratio describing the prediction accuracy of model data against data not used 
for constructing the model, was used as an evaluation value. A prediction model was constructed from a group 
of genes using data at a given time-point, and the prediction accuracy was calculated. Prediction accuracies were 
calculated at each time-point for model construction, as shown in the following two cases.

Case 1: Time-point for model construction = time-point for prediction.  A constructed model was used for the 
prediction of data at identical time-points. Leave-one-out (LOO) was used to evaluate the prediction accuracy 
(ACCo). In LOO, one sample of data was used as test data, and other data were used for model construction. LOO 
was repeated until all the samples became test data.

Figure 2.  The concept of the proposed method. (a) Creating the gene pool by SS using gene expression data 
at each time-point. (b) Gene selection (GS) using candidate genes and calculating selected probability (SP). 
GS used Elastic net with SS assigning weights (w1~t) to gene expression data at each time-point. (c) Identifying 
the genes from gene lists (GLs) with SP. (d) The flow of the third step in the proposed method. In this step, 
prediction models were evaluated by using LOO (time-point for model construction = time-point for 
prediction) and utilizing different data (time-point for model construction ≠ time-point for prediction).
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Case 2: Time-point for model construction ≠ time-point for prediction.  A constructed model was used for the 
prediction of the data at a time-point not used for model construction. The prediction accuracies (ACCT) were 
calculated using the data at time-points for prediction.

The mean of prediction accuracies (ACCmean) was calculated for each group of genes and for each time-point 
of model construction in eq. 5.

∑=





+



∈T

ACC ACCACC 1

(5)D
mean

d
T

d
o

( )

where ACCmean denotes the mean of the prediction accuracy for the prediction model constructed by a group of 
genes and a time-point of data. T  denotes the length of all time-points. ACCT

d( ) denotes the prediction accuracy 
using data at d. D = {t1, tt, …, tT} denotes the time-points of ACCT. t was not included for the time-point used for 
model construction. ACCo denotes the prediction accuracy using data at the time-point used for model 
construction.

The genes in the group with the best ACCmean were identified as the selected genes. This model was constructed 
using the data from a given time-point. This time-point was selected as the time-point for model construction.

Numerical experiments.  The prediction accuracies of the developed models were evaluated for the predic-
tion of INF-β treatment responses. The prediction accuracies of the proposed and conventional methods were 
compared.

Material and pre-processing.  The evaluated data consisted of the time-course gene expression data from two MS 
patients who underwent INF-β treatment. The two datasets of GSE24427 (Dataset A)34 and GSE19285 (Dataset 
B)35 were used. These datasets included time from start of therapy to the first relapse; however, the definition 
of response is different for the two datasets34,35. Table 1 shows the number of time-course points in each data 
platform, and the method of normalization. Log2-fold change and quantile normalization were performed 
for pre-processing of gene expression data. Subsequently, the expression levels of each gene were converted to 
Z-scores.

Conventional method.  The conventional method used only for the gene expression data at a single time-point. 
Elastic net with SS using data at a single time-point was used as the conventional method. Genes were ranked 
according to the selection probabilities by SS. Finally, using the procedures of the proposed method (Fig. 2d), 
ACCmean was calculated using these selection probabilities. Thereafter, the genes in the group with the best 
ACCmean were regarded as identified genes. These genes were regarded as genes with the best performance 
throughout multiple time-points in the conventional method using data from a single time-point.

Evaluation method.  The prediction accuracies were calculated by eq. 6. These were calculated using only 
test data which were not used for model construction. To evaluate the prediction accuracies using the data at the 
time-point used for model construction, LOO was conducted. To evaluate the prediction accuracies using the 
data at the other time-points, all available data were used.

=
+

+ + +
∗

TP TN
TP FP FN TN

ACC [%] 100
(6)

where TP denotes the number of true positives, FP denotes the number of false positives, FN denotes the number 
of false negatives, and TN denotes the number of true negatives in the test data.

First, the prediction accuracies of the construction models were evaluated. In order to compare the prediction 
model of the proposed and the conventional method, the mean prediction accuracy (ACCmean) throughout all 
time-points was calculated using ACCT and ACCo at each time-point using eq. 5. The lowest prediction accuracy, 
specifically the minimum prediction accuracy (ACCmin) throughout all time-points, was selected from ACCT 

Name of dataset Dataset A Dataset B

GEO ID GSE19285 GSE24427

Type of INF-β Intramuscular Interferon beta 1a Subcutaneous Interferon beta 1a

Time-points first (t1), Second (t2), fifth (t3) first (t1), Second (t2), 1 month (t3)
12 month (t4), 24 month (t5)

Number of good responders 15 16

Number of poor responders 9 9

Number of genes 11220 13513

Gene expression Peripheral blood mononuclear cells Peripheral blood mononuclear cells

Platform Affymetrix Human Genome U133A Array Affymetrix Human Genome U133A Array

Preprocessing for microarray MAS5.0 MAS5.0

Table 1.  Summary of gene expression datasets of INF-β treatments for MS patients. In this paper, symbols for 
time-points were presented as “t1”, “t2”, “t3”, etc.
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and ACCo at each time-point. To access the specificity and the sensitivity at each time-point, the receiver oper-
ating characteristic (ROC) curves, the area under the ROC curve (AUC), and the 95% confidence intervals were 
calculated.

Second, bootstrap sampling was performed to evaluate the prediction accuracies of selected genes at 
time-points which had not been selected for model construction36. Bootstrap sampling selected individual sam-
ples from all samples by random sampling with replacement. A prediction model was constructed using selected 
samples and selected genes by either the proposed or conventional method. Prediction accuracies were calculated 
by each data set at different time-points; and this was then repeated. Finally, the mean and standard deviation were 
calculated using the prediction accuracies for each subset at each different time-point. The difference in the predic-
tion accuracies between the conventional method and the proposed method was tested using the Student’s t-test.

Last, the differences between good and poor responders in the expression levels of the genes obtained by the 
proposed method were investigated. The expression levels of these genes at each time-point were classified into 
two groups according to the treatment response, and the differences between the two groups were tested using the 
Wilcoxon rank sum test. The p values in the Wilcoxon rank sum test were adjusted using the Benjamini-Hochberg 
method (BH method). Additionally, the median values of the expression levels of genes at each time-point were 
compared between good and poor responders to assess if the expression levels of the two groups were consistently 
different throughout all time-points. The names of the selected genes were obtained from Gene Cards (http://
www.genecards.org/).

Parameter and implementation.  The number of SS iterations was 500. Random sampling in SS included 12 good 
and 8 poor responder samples, and these were common to dataset A and B. The λ values, a hyper-parameter of 
SS, were changed from 0.01 to 1.00 using 0.01 increments. The threshold θss was 0.5. The hyper-parameter of 
Elastic net in eq. 2 was α = 0.5, and the weight parameter in eq. 3 was γ = 2. The parameters of Elastic net with SS 
used in the conventional method were also the same as the parameters in the proposed method. The responses 
at 24 months after INF-β treatment in dataset A and B (Table 1) were predicted. Bootstrap sampling in the eval-
uation was repeated 50 times per prediction model at a different time-point, and the prediction accuracies were 
calculated.

For the implementation of numerical experiments, R language (ver. 3.2.5; https://cran.r-project.org/bin/win-
dows/base/old/3.2.5/) was used, and the limma and glmnet (ver. 2.0–5) packages were used for quantile normali-
zation and Elastic net, respectively. The source codes are available upon request.

Results
Comparing the proposed method to the conventional method.  The proposed and conventional 
methods were evaluated by the analyses of datasets A and B. The genes showing the most ideal ACCmean were 
identified for each dataset using both the proposed and the conventional method. The prediction accuracies at 
each time-point and their mean from the first evaluation are listed at Tables 2 and 3.

As an analytical result of dataset A, the proposed method identified 11 genes and constructed the prediction 
model using the t1 data. With the conventional method, prediction models were constructed using the t1, t2, 
and t3 data, from which 9, 8, and 21 genes were identified, respectively. Table 2 showed the prediction accuracies 
at each time-point and their mean. The ACCmean and ACCmin values using the proposed method were 86% and 
79%, respectively. From the conventional method using t2 data, the ACCmean was 86% and was comparable to that 
from the proposed method. The ACCmin obtained by the conventional method using the t2 data was, however, 
only 67%, which was lower than that obtained by the proposed method. The ACCmean obtained by the conven-
tional method using the t1 and t3 data was 83% and 79%, respectively. The ACCmean from the proposed method 
was higher than that of the conventional method. Here, we focus on the results at different time-points in the 
first evaluation. The prediction accuracies generated by the proposed method were 92% at t2 and 79% at t3. The 
conventional method using t2 data could predict treatment responses at t3 with 92% accuracy; however, all other 
results were lower than those from the proposed method.

As a result of the use of dataset B, the proposed method identified 8 genes and constructed the prediction 
model using the t1 data. The conventional method identified 5, 19, 7, 6, and 19 genes using t1, t2, t3, t4, and t5 
data, respectively. Table 3 lists the prediction accuracies at each time-point and the ACCmean. The ACCmean and 
ACCmin of the proposed method were 84% and 72%, respectively. The ACCmean values were 77%, 71%, 81%, 69%, 
and 74% using t1, t2, t3, t4, and t5 data for model construction by the conventional method, respectively. The 

Method

Accuracy [%]

t1 t2 t3 Mean (ACCmean)

Proposed method (88) 92 79 86

Conventional method

(100) 71 79 83

67 (100) 92 86

54 83 (100) 79

Table 2.  Accuracy of prediction models by the proposed method and conventional methods with dataset. A. 
Values in () were calculated by leave-one-out at the time-point of data used by the prediction model. “Bold 
accuracy” indicates the top accuracy at each time-point, but top accuracy of t1 was not presented as gene 
expression data at t1 was used data by the proposed method. “Accuracy” was the minimum accuracy (ACCmin) 
of each method.
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ACCmin values were 64%, 60%, 64%, 40%, and 60% using t1, t2, t3, t4, and t5 data for model construction by the 
conventional method, respectively. The ACCmean and ACCmin values of the proposed method were higher than 
those of the conventional method. We focus on the results from different time-points in the first evaluation. The 
prediction accuracies of the proposed method using t1 data were 92%, 84%, and 76% at time-points t3, t4, and t5, 
respectively. The prediction accuracy at t2 by the conventional method using t3 data was 92%, which was higher 
than that obtained from the proposed method. The other accuracies generated by the proposed method were 
higher than those of the conventional method, with the exception of one case.

Bootstrap sampling was performed to evaluate the prediction accuracies at different time-points in the 
second evaluation. Figure 3 shows the mean and standard deviation of prediction accuracies given by the pro-
posed and conventional methods at different time-points. As shown in Fig. 3a, in dataset A the mean accu-
racy of the different time-points (t2 and t3) was 81%. This prediction accuracy was significantly higher than 
65% (p = 2.06 × 10−23), 71% (p = 1.48 × 10−10), and 68% (p = 1.16 × 10−16) at t1, t2, and t3 in the conventional 
method (p < 0.001), respectively. As shown in Fig. 3b, in dataset B the mean accuracy of the different time-points 
(t2, t3, t4, and t5) provided by the proposed method was 78%. The prediction accuracies given by the conven-
tional method at t1, t2, t3, t4, and t5 were 64% (p = 2.41 × 10−40), 57% (p = 1.73 × 10−94), 73% (p = 8.70 × 10−11), 
56% (p = 1.30 × 10−103), and 55% (p = 1.46 × 10−78), respectively. In dataset B, the mean accuracy of the differ-
ent time-points given by the proposed method was significantly higher than those by the conventional method 
(p < 0.001). Therefore, the prediction accuracies at different time-points obtained using the proposed method 
were significantly higher than those given by the conventional method.

To assess the sensitivity and specificity of the prediction model of the proposed method, ROC curves and 
AUC in datasets A and B were measured (Fig. 3c,d). As shown in Fig. 3c, in dataset A the AUCs at t1, t2, and t3 
were 0.95, 0.94, and 0.90 given by the proposed method, respectively, and all of these were higher than or equal 
to 0.9. The lower limits of the 95% confidence interval were 0.88, 0.82, and 0.77 at t1, t2, and t3, respectively. As 
shown in Fig. 3d, in dataset B the AUCs at t1, t2, t3, t4, and t5 were 0.99, 0.76, 0.95, 0.89, and 0.93, respectively. 
The lower limits of the 95% confidence interval were 0.97, 0.56, 0.87, 0.74, and 0.83 at t1, t2, t3, t4, and t5, respec-
tively. In dataset B, the AUC and the lower limits of the 95% confidence interval of the proposed method at t2 
were 0.76 and 0.56, which were lower than or equal to the other time-points as obtained by the conventional 
method (Figs S1 and S2). The AUC and lower limits of the 95% confidence interval of the proposed method were 
the highest in almost every case.

Selected genes by the proposed method.  Eleven genes were identified in dataset A using the pro-
posed method (Table 4) and eight genes were identified in dataset B using the proposed method (Table 5). These 
genes were expected to exhibit consistently higher expression levels of either good or poor responders at each 
time-point. The median levels of 9 genes in dataset A were consistently differentiated throughout all time-points 
(Table 4). In particular, the expression levels of the HPS5 gene in poor responders at t1 and t2 were significantly 
higher than those in good responders (p < 0.05) (Fig. 4a). The median levels of 6 genes at each time-point were 
consistently higher in either group in dataset B (Table 5). In particular, the expression levels of the CDH2 gene in 
good responders at t1 and t3 were significantly higher than those in poor responders (p < 0.05) (Fig. 4b). Given 
this, the proposed method identified a number of genes where the expression levels were consistently different 
throughout all time-points.

Discussion
The genes identified by the proposed method showed consistent differentiation throughout all time-points and 
accurately predicted the responses of MS patients to INF-β treatment.

The ACCmean and ACCmin values given by the proposed method in dataset A were 86% and 79%, respectively. 
The ACCmean value was equal to or higher than that given by the conventional method (Table 2). The prediction 
model obtained from the conventional method using t2 data had a nearly identical ACCmean value to that given 
by the proposed method; however, the ACCmin value of the proposed method was higher than that of the conven-
tional method. The ACCmean and ACCmin values of the proposed method in dataset B were 84% and 72%, respec-
tively (Table 3). These values were higher than those of the conventional method. Thus, the proposed method 
yielded higher and more accurate predictions throughout most time-points in comparison to those given by 

Method

Accuracy [%]

t1 t2 t3 t4 t5 Mean (ACCmean)

Proposed method (96) 72 92 84 76 84

Conventional method

(92) 68 84 76 64 77

72 (84) 76 60 64 71

72 92 (96) 80 64 81

72 64 68 (100) 40 69

68 60 76 72 (96) 74

Table 3.  Accuracy of prediction models by the proposed method and conventional methods with dataset B. 
Values in () were calculated by leave-one-out at the time-point of data used by the prediction model. “Bold 
accuracy” indicates the top accuracy of each time-point, but top accuracy of t1 was not presented as gene 
expression data at t1 were used by the proposed method. “Accuracy” indicates the minimum accuracy (ACCmin) 
of each method.
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the conventional method (Tables 2 and 3). Additionally, the prediction accuracies at different time-points were 
evaluated by bootstrap sampling. Figure 3a,b provide the means and standard deviations of the prediction accu-
racies of different time-points calculated by bootstrap sampling. The mean accuracy of different time-points by 
the proposed method was 81%, which is higher than those obtained by the conventional method (Fig. 3a). This 
result indicates that the proposed method could achieve significantly higher prediction accuracies than the con-
ventional method at different time-points. In dataset B, the mean accuracy of different time-points was 78%, and 
this was significantly higher than those given by the conventional method (Fig. 3b). Additionally, SES algorithm 
analysis of the static-longitudinal scenario is used as a conventional method22, and this is compared with our pro-
posed method. The static-longitudinal scenario in this method is expected to identify genes showing consistent 
differentiation throughout all time-points22. Using the procedures of the proposed method (Fig. 2d), the ACCmean 
of the genes identified by SES algorithm was calculated, and a prediction model was created. The prediction 
accuracies at different time-points using SES algorithm were calculated by bootstrap sampling (Table S1). These 
mean accuracies obtained from our proposed method were higher than those given by this conventional method. 
Therefore, the proposed method using time-course data could achieve a high prediction accuracy compared 
with those provided by the conventional methods. Given this, the proposed method provided higher accuracy 
throughout all time-points.

Figure 3c,d show the sensitivity and specificity of the proposed method; and AUC was approximately 0.90 at 
most time-points in both datasets A and B. The AUC at t2 in dataset B given by the proposed method, however, 
was 0.76, which was lower than the AUC at other time-points and equivalent to the conventional method, as 
shown in Figs S1 and S2. The results at each time-point (Tables 2 and 3 and Fig. S3) revealed that the prediction 
accuracies did not depend upon the order of the time-course sampling, and the prediction accuracies by the 
proposed method were high at most time-points. There was, however, a case where the prediction accuracy was 
lower than that of the conventional method.

As shown in Tables 4 and 5, most genes from the proposed method showed different expression levels con-
sistently throughout all time-points. Changes in those levels differentiated between good and poor responders 
consistently throughout the time-courses significantly (Fig. 4). Given this, the proposed method identified genes 
showing consistent differentiation throughout multiple time-points and could differentiate between good and 
poor responders.

The proposed method did not identify identical genes between datasets A and B. For dataset A, associations 
between MS and ZBTB16 and HOPX were reported36. Th17 cells are a subset of T helper cells involved in several 
immune diseases, including MS. ZBTB16 was reported to activate differentiation of Th17 cells, and this contrib-
uted to the maintenance of the phenotype of Th17 cells in the human body37. In regard to the relationship between 

Figure 3.  Prediction accuracies and ROC curves obtained by bootstrap sampling. (a) Prediction accuracies 
for dataset A. The accuracies are the mean accuracies of different time-points (TPs) obtained without using the 
prediction model. (b) Prediction accuracies for dataset B. As with (a), the accuracies are the mean accuracies. 
(c) ROC curve generated by the proposed method (PM) at each time-point of dataset A. The AUC and 95% 
confidence interval (CI) were calculated by ROC curves at each time-point. (d) ROC curve generated by PM at 
each time-point of dataset B. As with (b), the AUC and 95% CI were calculated.
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the functional defects of T cells and autoimmune encephalomyelitis, many experiments and reviews reported the 
deletion of the HOPX gene as responsible for decreasing suppressor ability of pTreg cells38,39. For dataset B, there 
were reports detailing CDH239. Microglia, a type of glial cell of the central nervous system, are known as central 
immunocompetent cells, and CDH2 is involved in the context of these cells40. Many genes identified in dataset A 
were related to cancer, but their association with MS remains unclear.

The proposed method possessed several limitations. First, there were time-points where the prediction accu-
racy given by the proposed method was lower. Second, the γ value as the weights of Elastic nets must be set ade-
quately to ensure accurate prediction. Finally, we used genes as independent variables; however, the interactions 
of genes could also be considered as explanatory variables to obtain higher accuracy predictions.

INF-β treatment is known to be effective in the prevention of relapses of MS; however, the accurate prediction 
of INF-β treatment responses is still necessary to solve the problem of individual variations and the side effects 
associated with treatment. Microarray has been used to identify genes for predicting treatment responses. There 
are several difficulties, however, associated with microarray analysis, including a high dimensionality and multi-
collinearity. Additionally, the conventional method only allows data analysis at a single time-point. Therefore, a 
new method suitable for time-course data analysis should be developed to identify genes showing highly accurate 
prediction abilities throughout all time-courses. Here, we proposed a method to identify genes using Elastic net 
accommodating time-course data. The three major features include sparse modelling to allow for the efficient 
identification of genes (gene numbers ≫ sample size); Elastic net utilization to prevent the multicollinearity of 
expression levels among genes, and Elastic net modification to identify genes showing consistent differentiation 
throughout the time-course.

Two publicly available datasets were used to identify genes showing highly accurate prediction abilities 
throughout all time-courses. The mean prediction accuracies of different time-points given by the proposed and 
conventional method were compared. The accuracies obtained using two datasets were 71% and 73% for the 
conventional method, and 81% and 78% (significantly higher) for the proposed method. The proposed method 
identified 11 and 8 genes in the two datasets. Differences in the expression levels of 9 and 6 genes between good 
and poor responders were consistent throughout the data at all time-points. Therefore, the genes identified by 

Gene 
symbol Gene name

P value Higher GE levels 
at all time-pointst1 t2 t3

ZBTB16 Zinc Finger and BTB Domain Containing 16 0.064 0.013 0.137 good

ZFP37 ZFP37 Zinc Finger Protein 0.070 0.220 0.013 —

HPS5 HPS5, Biogenesis of Lysosomal Organelles Complex 2 Subunit 2 0.013 0.013 0.084 poor

HOPX HOP Homeobox 0.105 0.005 0.090 good

ARFGAP3 ADP Ribosylation Factor GTPase Activating Protein 3 0.013 0.162 0.105 good

CALML5 Calmodulin Like 5 0.077 0.013 0.126 good

VPS26A VPS26, Retromer Complex Component A 0.026 0.090 0.205 good

SLC5A4 Solute Carrier Family 5 Member 4 0.190 0.022 0.190 good

MBL2 Mannose Binding Lectin 2 0.149 0.013 0.640 —

DLGAP4 DLG Associated Protein 4 0.007 0.115 0.390 good

CACNA1C Calcium Voltage-Gated Channel Subunit Alpha1 C 0.064 0.382 0.390 poor

Table 4.  Identified genes of dataset A by the proposed method. P values were adjusted using the BH method, 
and “Bold accuracy” exhibited significantly different gene expression (GE) levels between good and poor 
responders (p < 0.05). If GE levels of good responders at each gene were higher than those of poor responders at 
all time-points (TPs), “good” was represented in the final column.

Gene symbol Gene name

P value Higher GE levels 
of all TPst1 t2 t3 t4 t5

SMA4 Survival of Motor Neuron 1, Telomeric 0.072 0.250 0.009 0.082 0.082 good

MIR7114_NSMF MicroRNA 7114/NMDA Receptor Synaptonuclear 
Signaling and Neuronal Migration Factor 0.072 0.082 0.005 0.130 0.314 good

LSM8 LSM8 Homolog, U6 Small Nuclear RNA Associated 0.452 0.009 0.082 0.082 0.441 —

FLAD1 Flavin Adenine Dinucleotide Synthetase 1 0.071 0.009 0.344 0.056 0.072 poor

RRN3P1 RRN3 Homolog, RNA Polymerase I Transcription 
Factor Pseudogene 1 0.419 0.179 0.082 0.082 0.023 poor

RASL10A RAS Like Family 10 Member A 0.033 0.334 0.344 0.452 0.314 —

IER3IP1 Immediate Early Response 3 Interacting Protein 1 0.115 0.072 0.005 0.216 0.082 poor

CDH2 Cadherin 2 0.250 0.033 0.397 0.043 0.082 good

Table 5.  Identified gene list of dataset B by the proposed method. P values were adjusted using BH method, 
and “Bold accuracy” represents significantly different gene expression (GE) levels between good and poor 
responders (p < 0.05). If GE levels of good responders at each gene were higher than those of poor at all time-
points (TPs), “good” was represented in the final column.
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the proposed method were identified as capable of high-accuracy prediction throughout multiple time-points. 
Additionally, these genes included genes previously reported to be related to MS. The proposed modified Elastic 
net method for the time-course data analyses was used to identify genes showing consistent differentiation 
between two outcome groups throughout time-courses. Here, we demonstrated the use of this modified Elastic 
net for the prediction of INF-β treatment responses in patients with MS. Additionally, this method could also be 
used for microarray time-course data analyses.
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