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This paper proposes a deep learning-based method for mitosis detection in breast histopathology images. A main problem in
mitosis detection is that most of the datasets only have weak labels, i.e., only the coordinates indicating the center of the
mitosis region. This makes most of the existing powerful object detection methods hardly be used in mitosis detection. Aiming
at solving this problem, this paper firstly applies a CNN-based algorithm to pixelwisely segment the mitosis regions, based on
which bounding boxes of mitosis are generated as strong labels. Based on the generated bounding boxes, an object detection
network is trained to accomplish mitosis detection. Experimental results show that the proposed method is effective in
detecting mitosis, and the accuracies outperform state-of-the-art literatures.

1. Introduction

Breast cancer is one of the main threats to woman health and
becomes one of the most leading causes of cancer-related
death all over the world. Early diagnosis is believed to be an
effective way for promoting the prognosis of breast cancer.

Generally, breast cancer can be classified into three levels
in histopathology based on the morphological microstruc-
ture of cancerous and the normal cells, i.e., well differenti-
ated, poorly differentiated, and intermediate. Classification is
important to the diagnosis and prognosis of breast cancer.
The most commonly used classification standard is the BRE
system proposed byWHO, in which three indications are used
to evaluate the differentiation level. The indications are vascu-
logenesis degree, nuclear atypia, and mitotic counting.

Among the indications, mitotic counting is the most
important, which can be described as the number of cells
under mitosis in tumer and around areas. In traditional
methods, mitotic counting is done by pathologists. Since
the nuclei of cells experiencing mitosis are extremely small,
therefore, attention should be highly concentrated. More-
over, the morphology of cells under various stages of mitosis
is different, and there may exist enormous normal cells

which are similar to mitotic cells. Due to these reasons,
mitotic counting is a tedious and error-prone task.

In order to reduce the workload of pathologists, many
computer algorithms and systems are proposed to automat-
ically detect mitosis. Traditional automatic mitosis detection
methods usually extract handcrafted features from breast
histopathology images and train a machine learning algo-
rithm and then perform predictions on testing images based
on the trained model. The key issue of such methods is the
feature definition. Effective features can greatly increase the
accuracy of detection, while badly defined features may dra-
matically influence the accuracy.

Recently, deep learning has attracted the attention of
researchers and becomes a new focus of computer vision.
Convolutional neural networks (CNNs) are applied to images,
and discriminative features are extracted under appropriate
loss functions. Compared with traditional learning-based
methods, the most notable advantage of CNN-based ones is
that no human interventions are needed throughout the whole
procedure. In consideration of the superiority of CNNs, many
researchers begin to employ CNN-based methods to detect
mitosis in breast histopathology images and achieve compe-
tent performances.
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In this paper, a CNN-based mitosis detection method is
proposed. The whole procedure can be separated into two
phases. For the first phase, in consideration of the lack of
strong labels in current datasets, a U-shaped network is
trained over pixellevel-labeled datasets and used to predict
bounding boxes on datasets which only have weak labels.
In the second phase, the predicted bounding boxes are then
taken as strong labels to train a network for mitosis detec-
tion. Contributions of this paper can be summarized as
follows.

(1) A mitosis detection method is proposed aiming at
solving the problem of insufficiency of strongly labeled
breast histopathology image dataset. We propose to
use pixel-wise-labeled datasets to train a segmentation
network, and then, strong labels (bounding boxes) can
be generated based on the prediction of the segmenta-
tion network. Thus, most of the current weakly labeled
datasets can be used for mitosis detection network
training

(2) For mitosis segmentation, a U-shaped network is
trained using a pixelwisely labeled dataset. Benefiting
from the multiple frequency downsampling and
upsampling layers in the network, the ability of seg-
menting small targets is promoted, which is suitable
for the mitosis segmentation task

The rest of this paper will be organized as follows. Sec-
tion 2gives a brief literature review of mitosis detection in
breast histopathology images. Section 3 proposes the mitosis
detection method with detailed network structure. Section 4
provides sufficient experiments and comparisons to show
the effectiveness of the proposed method, and finally in Sec-
tion 5, conclusions are drawn.

2. Related Works

Most of the traditional mitosis detection methods are based
on image features which are manually designed by computer
scientists and pathologists. Huang et al. [1] propose an
exclusive independent component analysis (XICA) algo-
rithm to detect mitosis. It is based on the fact that the
mitotic nucleus is darker; then, it surrenders in color, and
a sparse representation-based classifier is used to extract
mitosis from candidates. Considering there may be distinct
color variations in breast histopathological images, Tashk
et al. [2] propose to use texture features for mitosis detec-
tion. An object-oriented complete local binary pattern is
designed, and the support vector machine (SVM) is used
to separate mitosis from background. Khan et al. [3] propose
to employ a Gaussian mixture model (GMM) to model the
distributions of mitosis pixels and background pixels, and
a context-aware postprocessing is used to reduce false nega-
tives. Tek et al. [4] investigate a set of generic features, i.e.,
color, binary shape-based, Laplacian, and morphological fea-
tures to represent mitosis regions. The AdaBoost algorithm
is then used to detect mitosis. All these methods employ
handcrafted image features and a machine learning algo-

rithm to predict whether image pixels belong to the mitosis
region or not. However, since mitotic morphology may vary
greatly and the collection of tissue sections obtained by dif-
ferent instruments also increases the diversity of the appear-
ances of histopathological images, image features such as
color, texture, and intensity may be incompetent to fully rep-
resent mitosis. Besides, designing of such features requires
rich experiences of computer scientists and pathologists,
and therefore, such methods are not so satisfactory for auto-
matic mitosis detection.

Recently, researchers begin to put their focus on CNN-
based automatic mitosis detection methods. CNNs construct
high-level semantic features from low-level features and
obtain competent performances in many areas of computer
vision such as classification, segmentation, and object detec-
tion [5–9]. Ciresan et al.’s team [10] is one of the earliest
researchers who employ CNNs for mitosis detection. In their
work, a CNN with sliding window and max pooling is pro-
posed, and they achieved the first place in ICPR2012 mitosis
detection competition. Wang et al. [11] propose a mitosis
detection method which combines both handcrafted and
CNN features. Although the computational load is reduced
by incorporating manually designed features, the overall
performance is limited due to the disability of handcrafted
features in representing mitosis morphology. Veta et al.
[12] propose a similar method and obtain the first place in
ICPR2013 mitosis detection contest. Chen et al. [13] use a
cascaded CNN to detect mitosis by constructing a two-
stage deep network. A rough search network is used to
search mitosis candidates and a discriminant network to fur-
ther select mitosis from candidates. Inspired by the residual
conception proposed by He et al. [14], Zerhouni et al. [15]
propose a wide residual network (WRN) for mitosis detec-
tion. Recently, Li et al. [16] employ faster R-CNN [17] as
the detector for mitosis detection. However, since the faster
R-CNN is designed as a general purpose object detection
network, it is hard to get satisfactory performance on mitosis
detection task without sufficient training data.

A main difficulty of mitosis detection is that most exist-
ing datasets only have weak labels, i.e., only center points of
mitotic nucleus are labeled. It is difficult to construct a valid
training set to train a powerful detection network based on
such labels. At most occasions, it is unavoidably for pathol-
ogists to perform a pixel-level or bounding box-level labeling
on such datasets, which is a labor-consuming task. Some
researchers intend to solve this problem. For example, Li
et al. [18], Zerhouni et al. [15], Cai et al. [19], and Yancey
[20] crop a square area around the label point as the region
of interest. However, since mitosis is often heteromorphic in
shape, a large amount of background pixels are included into
the cropped area, which influences the detection performance.

3. Method

Mitosis detection can be seen as a special case of object
detection. In the past few years, along with the successful
employment of CNNs, object detection methods, such as
R-CNN [21], fast R-CNN [22], faster R-CNN [17], SPP-
Net [23], and YOLO [24], achieve reasonable accuracies
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and efficiencies. However, such general purpose object
detection methods are hard to be employed into the mitosis
detection task directly. The main reason is that such
methods usually need to have a training dataset with labeled
bounding boxes indicating regions of interest. In most exist-
ing breast histopathology image datasets, mitosis are weakly
labeled, i.e., only the coordinates indicating the centers of
mitosis regions are labeled. With such weakly labeled sam-
ples, a manual labeling is needed to generate bounding boxes
in order to employ a detection algorithm.

To solve this problem, this paper proposes to generate
bounding boxes for weakly labeled breast histopathology
images and construct a mitosis detection method based on
object detection networks. Firstly, a U-shaped network is
trained using pixel level-labeled dataset, and this network
is used for segmenting mitosis. Based on the segmentation
and weak labels, bounding boxes of mitosis are generated
for training a detection network. Then, the detection net-
work is used to detect mitosis. The whole process is depicted
in Figure 1. In this section, the two stages of the proposed
method will be described in detail.

3.1. Label Generation. CNNs have been successfully used in
biomedical image segmentation. Inspired by the U-Net
[25] and the multilevel wavelet CNN (MWCNN) [26], a seg-
mentation network is used in this paper to promote the abil-
ity of segmenting small targets. The structure of the network
is depicted in Figure 2.

As shown in Figure 2, each CNN block is a 4-layered
fully convolutional network (FCN) without pooling and
takes the discrete wavelet transform (DWT) subband image
as the input except the first layer. Low-frequency and high-
frequency bands of DWT in CNN help to fully explore all
frequency information of the input image, and the inverse
wavelet transform (IWT) plays the role of reconstructing
subband images into whole. Each layer of the CNN block

is composed of 3 × 3 convolution (Conv), batch normaliza-
tion (BN), and rectified linear unit (ReLU) operations. In
fact, this CNN block structure is the one that has been
proven to be effective in network training by He et al. [14].

Similar to the U-Net, the pixelwise cross entropy is used
as the loss function of the network, as defined in

E =〠
x

log pl xð Þ xð Þ
� �

, ð1Þ

where l is the true label of each pixel and pkðxÞ is the softmax
of pixel x in the output feature map, which is defined as

pk xð Þ = exp ak xð Þð Þ
∑K

k′ exp ak′ xð Þð Þ
, ð2Þ

where akðxÞ denotes the activation in feature channel k of
pixel x and K is the number of classes.

The network is trained using the MITOS2012 dataset
[27] which has pixel-level strong labels. Input images and
their corresponding segmentation maps are fed into the net-
work for training. The trained network performs an end-to-
end prediction, and the output feature map shares the same
width and height as those of the input images. The output
feature map indicates a probability of a pixel that it belongs
to mitosis.

After getting the segmented mitosis, the minimum cir-
cumscribed rectangle is labeled as the bounding box of mito-
sis, which will be taken as the ground truth. In this paper, if
the weak label (a point labeled at the center of the mitotic
nucleus) is within the marked bounding box, the sample will
be taken as positive. Figure 3 shows some examples of the
labeled bounding boxes.

3.2. Mitosis Detection. After generating strong labels, the
R-CNN [21] algorithm is employed for mitosis detection.

Dataset with strong label

Dataset with
weak label

Segmentation
mask

Segmentation
network

Detection
network

Detection result Testing sample

Samples with
bounding-box

Training

Training

Predicting

Predicting

Weak ground truth mask
(Enlarged for visual effect)

Label generation

Mitosis detection

Figure 1: Flowchart of the proposed method.
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R-CNN has been a representative and powerful CNN-based
object detection method since recent years. R-CNN performs
a four-step detection routine, i.e., region proposal generation,
CNN-based feature extraction, SVM-based region classifica-
tion, and bounding box regression. A selective search algo-
rithm is employed to generate region proposals, which will
be fed into a CNN to extract features after region wrapping.
During the training phase, the generated bounding boxes in
Section 3.1 are used as the ground truth. 32 positive samples
and 96 negative samples are composed together as a mini-

batch, which is consistent to the original R-CNN, and are
proven to be an optimized combination. It should be noticed
that theoretically any object detection method can be
employed here, and more powerful object detection method
may obtain more accurate results.

4. Experimental Results

4.1. Datasets. In the experiments, three mostly used datasets
for mitosis detection are employed, i.e., AMIDA2013 [12],

160
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256 256 256 256Input Output

160160160 160 160160160

DWT Conv+BN+ReLU

Sum connectionIWT

Figure 2: Architecture of the segmentation network.

(a) (b) (c) (d)

Figure 3: Examples of labeled bounding boxes. (A) Original. (B) Original with mask. (C) Original with bounding box. (a, b) True positives.
(c, d) False positives.
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ICPR2014 [28], and TUPAC2016 [29]. All these datasets
contains H&E-stained breast cancer histopathological sec-
tion view. Figure 4 shows some exemplars from the datasets.

The AMIDA2013 dataset consists of 1083 samples from
23 volunteers, and each volunteer has at least 10 views with
dimension of 2000 × 2000 and resolution of 0:25pixels/μm.
Images from the AMIDA2013 dataset are obtained by
Aperio Scanscope XT slice scanner. Images are labeled by
experts from University Medical Center Utrecht, and each
view is labeled by two experts independently. For the
AMIDA2013 dataset, 550 samples of 12 volunteers are taken
as the training set and others as the validation set.

The ICPR2014 dataset was firstly proposed for the
ICPR2014 mitosis detection competition. It is composed of
two subsets of images scanned by Aperio Scanscope XT
and Hamamatsu Nanozoomer 2.0-HT digital slice scanner,
respectively. The dimension of images from this dataset is
1539 × 1376 and the resolution is 0.2455 pixels/μm. The
dataset is labeled by two pathologists independently, and
749 mitosis are labeled out of 1200 views from 11 volunteers.
In this paper, 816 views are selected as the training set, and
96 are taken as the validation data, which is consistent with
Ref. [18] and Ref. [20].

The TUPAC2016 dataset consists of two parts. The first
part contains samples from 23 volunteers, and this part is
the same as the AMIDA2013 dataset. The second part con-
tains samples from 50 volunteers with dimension of 5657
× 5657, which are scanned using Leica SCN 400 digital slice
scanner. Each image is labeled by two pathologists indepen-
dently. In the experiment, validation samples are selected by
every 7 volunteers from volunteer no.30, and the others are
taken as training samples. This strategy is consistent with
Ref. [18].

4.2. Evaluation Metrics. Evaluation is performed according
to the ICPR2014 contest criteria. A detected mitosis is
counted as correct if its center point is localized within a
range of 8μm from its ground truth. Here, the center point
of detected mitosis is defined as the diagonal intersection
of its bounding box. Three metrics, namely, precision, recall,

and F1-score are employed as the quantitative indicators,
which are defined in

Precision =
TP

TP + FP
,

Recall = TP
TP + FN

,

F1‐score =
2 × Recall × Precision
Recall + Precision

,

ð3Þ

where TP is the number of true mitosis which are detected,
FP is the number of falsely detected mitosis, and FN is the
number of true mitosis which are not detected. Precision
indicates how many true mitosis are detected out of all the
detected instances. Recall indicates how many true mitosis
are detected out of all mitosis. F1-score gives a comprehen-
sive combination of Precision and Recall.

4.3. Implementation Details. The experiments are carried out
on a computer with Intel Core i7 CPU, Nvidia GTX 2080Ti
GPU, and 16GB RAM. All the codes are implemented using
Python 3.6 as the programming language and PyTorch 1.9.0
as the deep learning framework. Both networks are trained
100 epochs with Adam optimizer and batch size of 8. During
training, the learning rate is initialized as 10−3 and decreased
to 10−6 after 100 epochs.

4.4. Results and Comparisons. Detection results and compar-
isons with some state-of-the-art methods considering the
three criteria are listed in Table 1. It should be noticed that
all the results of the referred methods are reported by the lit-
eratures. Some visual results are shown in Figure 5. In
Figure 5, rectangles indicate the bounding boxes of detected
mitosis, and dot marks indicate the ground truth label
(enlarged for visual effect).

From the results, we can see that the proposed method
achieves the best results compared with the referred
methods in most of the cases. Li et al.’s method [18] is a
CNN-based mitosis detection method which uses two con-
centric circles to label a mitosis area. The proposed method

(a) (b) (c)

Figure 4: Exemplars from the datasets: (a) AMIDA2013, (b) ICPR2014, and (c) TUPAC2016.
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outperforms Li et al.’s method on all the three considered
datasets with respect to most of the criteria. Since the pro-
posed method employs a segmentation network to generate
strong labels, the detection network can be better trained
with this more adequate training data, and thus, more com-
petent prediction performance is obtained. The IDSIA [12]
method employs a multicolumn max pooling convolutional
neural network (MCMPCNN) for supervised pixel classifica-
tion. However, only weak labels are used in its network
training, which influences the prediction ability of IDSIA.

4.5. Impact of Label Generation. To further corroborate the
effectiveness of the label generation strategy used in this
paper, an additional experiment is performed on the
TUPAC2016 dataset, and the results are listed in Table 2,
in which Manual means the bounding boxes of mitosis are
marked manually, i.e., the minimum rectangle that can sur-
round the mitosis and include the ground truth point, U-Net

means the mitosis is segmented using the original U-Net
network [25], and Proposed means the mitosis is segmented
using the proposed segmentation network.

From the results, we can see that labels generated by the
proposed segmentation network are slightly better than
the original U-Net, which can be attributed to the fact that
the proposed network can provide a more accurate pixel class
prediction and thus provide a more accurate bounding box.
However, different segmentation methods have similar final
detection results, and they are also similar with that of man-
ual labeling. We can conclude that segmentation-based label
generation is beneficial to mitosis detection with nearly no
accuracy loss.

5. Conclusions

In this paper, a deep learning-based method for mitosis
detection in breast histopathology images is proposed. The
method is aimed at solving the problem of the insufficiency
of strongly labeled samples by incorporating a bounding
box label generation process before mitosis detection. Exper-
imental results show that the proposed label generation
strategy can promote the mitosis detection performance in
a large extent. The main limitation of the proposed method
is that the employed object detection method R-CNN needs

Table 2: Detection results.

Label generation method Recall Precision F1-score

Proposed 0.766 0.843 0.803

U-Net 0.751 0.840 0.793

Manual 0.779 0.850 0.813

(a) (b) (c)

Figure 5: Some detection results. Rectangles indicate the bounding boxes of detected mitosis, and dot marks indicate the ground truth label
(enlarged for visual effect): (a) AMIDA2013, (b) ICPR2014, and (c) TUPAC2016.

Table 1: Detection results.

Datasets Methods Recall Precision F1-score

AMIDA2013

IDSIA [12] 0.612 0.610 0.611

Li et al. [18] 0.677 0.669 0.673

Proposed 0.689 0.690 0.689

ICPR2014

Yancey et al. [20] — — 0.507

Li et al. [18] 0.682 0.541 0.603

Proposed 0.733 0.539 0.621

TUPAC2016
Li et al. [18] — — 0.717

Proposed 0.766 0.843 0.803
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a long time of training, although it can be solved by integrat-
ing a more powerful object detection method into the pro-
posed detection routine.

Data Availability

The data used to support the findings of this study are all
publicly available datasets deposited in the following websites:
(1) AMIDA2013 dataset, https://tupac.grand-challenge.org/
Dataset/. The AMIDA2013 dataset is contained as part of
the TUPAC2016 dataset (also declared in the manuscript).
These two datasets are publish by the same organization, so
the AMIDA2013 dataset cannot be accessed as its own. Any-
one can get the AMIDA2013 dataset through downloading
the TUPAD2016 dataset. Please refer to [29]. (2) ICPR2014
dataset,https://mitos-atypia-14.grand-challenge.org/Dataset/.
(3) TUPAC2016 dataset,https://tupac.grand-challenge.org/
Dataset/. (4) MITOS2012 dataset, http://www.icpr2012.org/
contests.html
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