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Abstract: Coenurus cerebralis, the metacestode of Taenia multiceps, causes coenurosis, a disease
severely affecting goat, sheep, cattle and yak farming and resulting in huge economic losses annually.
Annexins bind calcium ions and play an important role in flatworm parasite development. To explore
potential functions of annexins in T. multiceps, three homologous genes, namely, TmAnxB2, TmAnxB3
and TmAnxB12, were screened from the transcriptome dataset, amplified from C. cerebralis cDNA
and subjected to bioinformatics analysis. Then, polyclonal antibodies recognizing the recombinant
TmAnxB2 (rTmAnxB2) and rTmAnxB3 were prepared for localization of TmAnxB2 and TmAnxB3
in different tissues and developmental stages by immunofluorescence. The transcription of all
three genes was also measured by relative fluorescent quantitative PCR. The sizes of rTmAnxB2,
rTmAnxB3 and rTmAnxB12 were 58.00, 53.06 and 53.51 kDa, respectively, and rTmAnxB12 was
unstable. Both rTmAnxB2 and rTmAnxB3 were recognized by goat-positive T. multiceps sera in
Western blots. Immunofluorescence revealed that TmAnxB2 and TmAnxB3 were localized in the
protoscolex and cyst wall and TmAnxB3 was also detected in adult cortex. TmAnxB2 and TmAnxB12
mRNA levels were determined to be highest in oncospheres and protoscolex, whereas transcription
of TmAnxB3 was highest in scolex and immature segments. Taken together, these findings indicate
that TmAnxB2 and TmAnxB12 may play critical roles in T. multiceps larvae, while TmAnxB3 may
have important functions in adults. These results will lay the foundation for functional research of
annexins in T. multiceps.

Keywords: Taenia multiceps; annexins; prokaryotic expression; immunofluorescence localization;
qRT-PCR

1. Introduction

Taenia multiceps is a flatworm parasite that is widely distributed around the world, and its eggs
enter the environment via feces of its definitive hosts such as dogs, wolves, foxes and other canids [1–3].
Intermediate hosts, such as goats, sheep, cattle and yaks, are infected with coenurosis following
ingestion of pasture containing parasite eggs. Metacestodes of T. multiceps, known as Coenurus cerebralis,
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then parasitize the central nervous system and intermuscular, subcutaneous, and liver tissues of these
intermediate hosts [4–6] and cause clinical manifestations such as circling symptoms, depression
and even death [7,8], which lead to serious economic losses to farming, especially in economically
developing countries within Africa and Southeast Asia [9–11]. Furthermore, this parasite also causes
zoonotic infections in humans and poses severe threats to public health [12–14].

Annexins are a class of phosphatide binding proteins with calcium binding activity. These proteins
are widely expressed in all eukaryotes and play important roles in various biological activities such as
cell membrane transport, signal transduction, and calcium channel formation [15,16]. Furthermore,
these proteins have been known to regulate the biological responses related to inflammation and
help to maintain the stability of biofilm structure [15–17]. In parasites, annexins are thought to have
important functions in maintaining cell structural integrity and regulating parasites to host immune
responses [18]. However, there is very little information available on annexins in the parasitic cestode
T. multiceps. In the present study, based on available transcriptome data of adult T. multiceps that were
sequenced in our laboratory [12], we screened three annexin homologous genes, namely, TmAnxB2,
TmAnxB3 and TmAnxB12, and further amplified and expressed these three recombinant proteins
TmAnxB2 (rTmAnxB2), rTmAnxB3 and rTmAnxB12 using a prokaryotic expression system. Due to
instability of the rTmAnxB12, only TmAnxB2 and TmAnxB3 proteins were investigated for their
localization in different tissues and developmental stages of T. multiceps by immunofluorescence.
Meanwhile, the transcriptional differences of all three genes were also analyzed by the relative
fluorescent quantitative PCR. These findings will lay a foundation for the future functional analysis of
annexins in T. multiceps.

2. Materials and Methods

2.1. Ethical Approval

This study was reviewed and approved by the Animal Ethics Committee of Sichuan Agricultural
University (AECSCAU; Approval No. 2011-028). Animals were handled strictly in accordance with
the animal protection law of the People’s Republic of China (released on 18 September 2009) and the
National Standards for Laboratory Animals in China (executed on 1 May 2002).

2.2. Parasites and Animals

Coenuri larvae were isolated from the brains of naturally infected goats at a slaughterhouse in
Sichuan Province, China. Adult worms were derived from a four-month-old beagle dog infected
with C. cerebralis cysts at 45 days post-infection. The dog was kept alone in a clean cage, with
clean food and water supplied ad libitum. Gravid proglottids from dog feces were collected before
sacrifice. T. multiceps oncospheres were obtained as previously described [19]. All parasite materials
were washed four times with sterile saline and stored in liquid nitrogen or 4% paraformaldehyde.
In addition, T. multiceps-positive and negative goat serum samples were provided by the Department
of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University (Sichuan, China).

2.3. Bioinformatics Analysis

The open reading frames (ORFs) of genes encoding TmAnxB2, TmAnxB3 and TmAnxB12
were predicted using ORF finder with 300-bp minimal ORF in length and “ATG only” of ORF
start codon (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Basic physicochemical properties and
stability coefficients of these annexins were predicted by ProtParam with default parameters
(http://web.expasy.org/protparam/), and signal peptides were assessed using SignalP (http://
www.cbs.dtu.dk/Services/SignalP/). BaCelLo (http://gpcr.biocomp.unibo.it/bacello/pred.htm)
was used to predict the subcellular localization of the three proteins, and the protein secondary
was predicted using the NPSA_server (http://npsa-pbil.ibcp.fr/). Tertiary (3D) structures were
modeled through SWISS-MODEL (http://swissmodel.expasy.org/) and by referring to the 2.5 Å

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://web.expasy.org/protparam/
http://www.cbs.dtu.dk/Services/SignalP/
http://www.cbs.dtu.dk/Services/SignalP/
http://gpcr.biocomp.unibo.it/bacello/pred.htm
http://npsa-pbil.ibcp.fr/
http://swissmodel.expasy.org/


Genes 2018, 9, 559 3 of 14

resolution crystal structure of Schistosoma mansoni annexin (PDB accession No. 4MDV) for TmAnxB2,
1.42 Å crystal structure of annexin V (PDB accession No. 1yii.1.A) for TmAnxB3 and 2.8 Å crystal
structure of annexin XII (PDB accession No. 1aei.1.A) for TmAnxB12. Phosphorylation sites were
predicted by Motif Scan with default parameters (https://myhits.isb-sib.ch/cgi-bin/motif_scan),
and phylogenetic analysis was conducted using maximum-likelihood (ML) method and plotted by
PhyML 3.1 (http://www.atgc-montpellier.fr/phyml/versions.php) using the Jones–Taylor–Thornton
(JTT) model selected under the AIC criterion by ProtTest 3 (http://darwin.uvigo.es/our-software/).
Support for nodes was estimated by analyzing 1000 bootstrap replicates for each locus.

2.4. Cloning, Expression and Purification of Recombinant TmAnxB2, TmAnxB3 and TmAnxB12

Total RNA was extracted from oncospheres, coenuri, scolex, immature proglottids, mature
proglottids, and gravid proglottids using an RNA Extraction Kit (Tiangen, Beijing, China) according to
the manufacturer’s instructions, and template cDNAs were synthesized using a RevertAid First Strand
cDNA Synthesis Kit (Fermentas, ON, Canada). Based on the assembled T. multiceps transcriptome
dataset (Unigene 18519) and the AnxB2 sequence of Taenia solium (GenBank accession No. AY998562.1),
specific primers for TmAnxB2 were designed. Primers for TmAnxB3 were designed based on the
T. multiceps transcriptome dataset (Unigene 19512) and the AnxB3 sequence of T. solium (GenBank
accession No. DQ010543.1). Gene-specific primers for TmAnxB12 were designed using the T. multiceps
transcriptome dataset (Unigene 17682) and an annexin from Echinococcus granulosus (GenDB No.
EgrG_000237700). All three pairs of primers are listed in Table 1. Notably, apart from these
three TmAnxBs, no other homologs were found within such T. multiceps transcriptome. After PCR
amplifications, the products were digested with restriction enzymes, gel-purified and sub-cloned into
the pET32a (+) expression vector, and the resultant constructs were transformed into competent
Escherichia coli BL21 (DE3) cells. E. coli cells containing pET32a-TmAnxB2, pET32a-TmAnxB3
and pET32a-TmAnxB12, respectively, were cultivated at 37 ◦C for 4 h, induced with 1 mM
isopropyl-β-D-1-thiogalactopyranoside (IPTG), and cultured for further 6 h. Then, the recombinant
TmAnxB2 (rTmAnxB2), rTmAnxB3 or rTmAnxB12 with a ≈18-kDa His-tag protein was harvested
and purified using Ni2+ affinity chromatography with NGC 10 system (Bio-Rad Laboratories, Inc.,
Hercules, USA). Protein purity was analyzed by 12% sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE).

Table 1. Primers used for PCR amplification of Taenia multiceps annexins.

Genes Primers Restriction Enzyme Sites Reference Sequences

TmAnxB2
F: CGCGGATCCATGGCAAAAAATACTCGCTC BamHI Unigene18519
R: CCGCTCGAGTTAGGATTCATTCAGTAGTGCG XhoI Ts AY998562.1

TmAnxB3
F: CCGGAATTCATGGCGACTGTCAAGCTTT EcoRI Unigene19512
R: CCGCTCGAGTCACTCCAGTATGGTGAGCA XhoI Ts DQ010543.1

TmAnxB12
F: CGCGGATCCATGAATGGGCGTCCAACTA BamHI Unigene17682
R: CCGGAATTCTTATGCATTCCCCTCTACAA EcoRI EgrG_000237700

Note: Black and bold italics signify restriction enzyme sites.

2.5. Western Blotting

Given that the purified rTmAnxB12 was unstable, only rTmAnxB2 and rTmAnxB3 were
included in the Western blotting and subsequent immunohistochemical localization. Along with
total worm extract, rTmAnxB2 and rTmAnxB3 were separated by 12% SDS-PAGE and transferred
onto a nitrocellulose (NC) filter membrane (Bio-Rad). Membranes were washed three times with
TRIS-buffered saline Tween-20 buffer, blocked with 5% (w/v) skim milk solution in phosphate-buffered
saline (PBS) for 2 h at room temperature, and T. multiceps-positive goat serum (1:100 v/v dilution in
PBS buffer) was added and incubated overnight at 4 ◦C. After three washes, horseradish peroxidase
(HRP)-conjugated rabbit anti-goat IgG (Bio-Rad) diluted in PBS (1:3000 v/v dilution) was added and
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incubated at room temperature for 2 h. After four washes, blots were visualized using an Enhanced
HRP-DAB Chromogenic Substrate Kit (Tiangen) according to the instructions.

2.6. Fluorescence Immunohistochemistry

Fresh worm tissues including oncospheres, coenuri, scolex, immature proglottids, mature
proglottids, and gravid proglottids of T. multiceps were embedded in paraffin and sectioned at 5 µm
thickness. After deparaffinization, slices were placed in citrate buffer (0.01 M, pH 6.0) at 95 ◦C for 15
min. After three washes with PBS buffer (0.01 M), 3% H2O2 was added to the slices and incubated
at 37 ◦C for 30 min. After three washes, rabbit anti-rTmAnxB2 or anti-TmAnxB3 IgG as well as
naïve rabbit serum diluted with PBS (1:100 v/v) were added to slices and incubated at 4 ◦C for 14 h.
Fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG diluted 1:100 in 0.1% Evans Blue
was then incubated with the slices at 37 ◦C in a dark environment for 1 h. After washing with PBS,
stained samples were viewed under an Olympus BX50 fluorescence microscope (Olympus, Tokyo,
Japan) using the red light as its sole light source.

2.7. Quantitative Real-Time PCR

Expression profiles of these three homologous TmAnxB2, TmAnxB3 and TmAnxB12 genes in
oncospheres, protoscolex, scolex, immature proglottids, mature proglottids, and gravid proglottids
were probed using quantitative real-time PCR (qRT-PCR). The actin gene was simultaneously used as
an internal control for normalization. The qRT-PCR was performed using a CFX manager (Bio-Rad)
according to the manufacturer’s instructions. The cycling conditions comprised a pre-incubation at
95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s, 57.4 ◦C /55.7 ◦C for 20 s, and 72 ◦C for 20 s.
The primer sequences are provided in Table 2. Relative expression values were calculated using the
2−∆∆Ct method. Each gene was tested in quadruplicate.

Table 2. Primers used for quantitative real-time PCR (qRT-PCR) amplification of T. multiceps annexins.

Gene Primers Size (bp)

TmAnxB2
F: GGTTCAACACGCCGTAGACAGAC

101R: TGAGGACTCGCATGAGGAGGAAG

TmAnxB3
F: TGCACCGCCACCAACAACG

114R: CACTCGCTTGAAGTCGCCAGAG

TmAnxB12
F: AGGAGGTGACGGAGATGAAGGC

94R: GCAACGGCGATGATCTGGATGAG

Actin
F: CTAAGGCGAACCGTGAGAAGATGAC

188R: GGCATGAGGCAAGGCGTAACC

3. Results

3.1. Molecular Features of Taenia multiceps Annexins

Sequencing analysis showed that genes for TmAnxB2, TmAnxB3 and TmAnxB12 contained
ORFs of 1065 bp, 933 bp and 957 bp, respectively, encoding predicted polypeptides of 354, 310 and
318 amino acids, respectively. None of the annexins showed signal peptides or transmembrane
domains, however, the signature sequence K-G-X-G-T was observed in all these three annexins.
The predicted molecular weights of TmAnxB2, TmAnxB3 and TmAnxB12 were 40.00, 35.06 and
35.51 kDa, respectively, and the predicted isoelectric points (pIs) were 6.42, 5.53 and 6.14, respectively.
In addition, the stability of these proteins was also predicted, and the results showed that a higher
instability index (40.05) was observed in TmAnxB12, indicating the relative instability of this protein.
Similarity comparison of three annexins revealed a sequence similarity of 27.89–42.77% at the amino
acid level. Multiple sequence alignment revealed that TmAnxB2 shares 96.33% identity with AnxB2
from T. solium (TsAnxB2; GenBank accession No. AAY17503.1), 86.46% with E. granulosus annexin
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(GenBank accession No. CDS21833.1), and 85.88% with Echinococcus multilocularis annexin (GenBank
accession No. CDI98110.1). TmAnxB3 shares 89.03% identity with AnxB3 from T. solium (TsAnxB3;
GenBank accession No. AAY27744.1), 61.94–80.65% identity with other Taeniidae annexins, and only
38.71% identity with S. mansoni annexin (GenBank accession No. AAC79802.3). TmAnxB12 shares
more than 85% identity with its orthologs in E. granulosus and E. multilocularis, and 43.22–43.99%
identity with the equivalent proteins in Trematoda (Figure 1).
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(CDI98110.1); Eg, Echinococcus granulosus (CDS21833.1); Ts, Taenia solium (AAY17503.1); Ht, 
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Figure 1. Sequence alignment analyses of: AnxB2 (A); AnxB3 (B); and AnxB12 (C) in T. multiceps and
other species. (A) The following sequences were retrieved from the GenBank protein sequence database
(accession numbers are indicated in parentheses): Em, Echinococcus multilocularis (CDI98110.1); Eg,
Echinococcus granulosus (CDS21833.1); Ts, Taenia solium (AAY17503.1); Ht, Hydatigena taeniaeformis
(A0A0R3X1T1); Mc, Mesocestoides corti (A0A0R3UMC3); Hm, Hymenolepis microstoma (CDS30725.1);
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Se, Spirometra erinaceieuropaei (ADM26238.1); Sj, Schistosoma japonicum (AAW25344.1); Sm, Schistosoma
mansoni (AAC79802.3); Hs, Homo sapiens (AAH00871.1); Cs, Clonorchis sinensis(GAA48684.1); (B) The
following sequences were retrieved from the GenBank protein sequence database (accession numbers
are indicated in parentheses): Ts, Taenia solium (AAY27744.1); Em, Echinococcus multilocularis
(CDI98572.1); Eg, Echinococcus granulosus (EUB59082.1); Mc, Mesocestoides corti (A0A0R3UJ25); Hm,
Hymenolepis microstoma (CDS27549.1); Cs, C. sinensis (GAA33818.2); Sh, Schistosoma haematobium
(KGB40261.1); Ch, Capra hicus (XP_013824596.1); Hs, Homo sapiens (CAG46637.1); Mm, Mus musculus
(NP_081487.1); Sm, S. mansoni (AAC79802.3); (C) The following sequences were retrieved from the
GenBank protein sequence database (accession numbers are indicated in parentheses): Ta, Taenia
asiatica (A0A0R3W340); Eg, E. granulosus (EUB63408.1); Em, Echinococcus multilocularis (CDI98522.1);
Hd, Hymenolepis diminuta (A0A0R3SPK4); Hm, Hymenolepis microstoma(CDS26802.2); Sh, Schistosoma
haematobium (XP_012800019.1); Sm, S. mansoni (XP_018651719.1); Sj, Schistosoma japonicum (CAX69693.1);
Hs, Homo sapiens (AAH00871.1). The yellow arrow in the figure represents the K-G-X-G-T sequence;
the black box is the KGD sequence.

Based on sequence alignment of multiple annexins from Taeniidae and Trematoda, a ML
phylogenetic tree was constructed, in which three annexins of T. multiceps were located on different
branches. Specifically, TmAnxB2 and TmAnxB3 showed relatively close relationships to annexin
B2 and B3 of T. solium, respectively; however, TmAnxB12 was more closely related to orthologs in
Echinococcus spp. and Hymenolepis microstoma (Figure 2).
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Figure 2. Phylogenetic analysis of annexin proteins. Phylogenetic analysis of the full-length amino
acid sequences of T. multiceps annexins (in red boxes) and their homologs. The tree was constructed by
the maximum-likelihood (ML) method and plotted with PhyML 3.1 with the Jones–Taylor–Thornton
model selected by ProtTest 3 (http://darwin.uvigo.es/our-software/). Bootstrap values are indicated
at the nodes (1000 replications). The scale indicates an estimate of substitutions per site, using the
optimized model setting.
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3.2. Structural Analysis of Taenia multiceps Annexins

Using the SWISS-MODEL database, TmAnxB2, TmAnxB3 and TmAnxB12 were modeled, and
their predicted tertiary structures are depicted in Figure 3. Structural analysis revealed a common
repeated alpha-helical domain. In addition, a unique α-helical element between repeats II and III
was observed in the 3D structure of TmAnxB2 (purple box in Figure 3A), but not in TmAnxB3 or
TmAnxB12. Further analysis revealed that both TmAnxB3 and TmAnxB12 have calcium binding sites
in domains III and I, respectively, unlike TmAnxB2. Specifically, a type II calcium ion binding motif
(K-G-X-G-T-D-E-38 amino acid residues-D/E) was found in the repeat domain III of TmAnxB3, and a
type III calcium binding motif (K-G-X-G-T-D-E) was observed in the repeat domain I of TmAnxB12
(grey boxes in Figure 3B,C), while a KGD motif was found between repeat domains II and III of
TmAnxB2 instead of a calcium ion binding region. These observations therefore highlight that the
structures of TmAnxB3 and TmAnxB12 are more similar to each other than to TmAnxB2.
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Figure 3. Predicted 3D structural models of: TmAnxB2 (A); TmAnxB3 (B); and TmAnxB12 (C). (A) The
structure of TmAnxB2 is based on the crystal structure of S. mansoni Annexin (PDB accession code
4mdu1.A); (B) The structure of TmAnxB3 is based on the crystal structure of chicken annexin V (PDB
accession code 1yii.1.A); (C) The structure of TmAnxB12 is based on the crystal structure of annexin
XII (PDB accession code 1aei.1.A). The repeats in core domains of three molecules are coloured blue
(repeat I), cyan (repeat II), yellow (repeat III) and red (repeat IV). The N-terminal domains are coloured
sapphire blue, and the I/II linker regions are shown in sea green, the II/III linker in green and the
III/IV linker in orange. Black spheres indicate the calcium ions.

TmAnxB2, TmAnxB3 and TmAnxB12 display typical characteristics of members of the annexin
family, and have four repetitive domains of 57–72 amino acids. TmAnxB2 also has one tyrosine
kinase phosphorylation site, two cAMP- and cGMP-dependent protein kinase phosphorylation
sites, three protein kinase C phosphorylation sites, and four casein kinase II phosphorylation sites.
TmAnxB3 has one cAMP- and cGMP-dependent protein kinase phosphorylation site, one tyrosine
kinase phosphorylation site, six protein kinase C phosphorylation sites, and twelve casein kinase II
phosphorylation sites. TmAnxB12 has four protein kinase C phosphorylation sites, 10 casein kinase II
phosphorylation sites, and one protease weight complex region. Furthermore, both TmAnxB3 and
TmAnxB12 have an EF-hand calcium ion binding region (grey boxes in Figure 3B,C) that is absent
in TmAnxB2.

3.3. Expression, Purification and Western Blotting of Taenia multiceps Annexins

Recombinant rTmAnxB2, rTmAnxB3 and rTmAnxB12 were expressed with a ≈18 kDa His-tag, but
rTmAnxB12 was unstable and readily degraded, consistent with the ProtParam prediction. Therefore,
subsequent immunolocalization and Western blotting experiments were carried out only on rTmAnxB2
and rTmAnxB3. The molecular masses of rTmAnxB2 and rTmAnxB3 were ≈58 kDa and 53 kDa,
respectively, close to the expected values. Rabbit anti-rTmAnxB2 and anti-rTmAnxB3 antibodies were
prepared using purified rTmAnxB2 and rTmAnxB3, respectively. The native TmAnxB2 protein in
adults was recognized using the rabbit anti-rTmAnxB2 antibody, yielding a single band of ≈40 kDa
that was absent in the negative control (Figure 4). Likewise, the native TmAnxB3 protein in adults was
recognized by the rabbit anti-rTmAnxB3 antibody, yielding a single band of ≈35 kDa (Figure 5).
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Furthermore, immunoblotting showed that both rTmAnxB2 and rTmAnxB3 were identified by
T. multiceps-positive goat sera, suggesting the strong immunogenicity and immunoreactivity for
both rTmAnxB2 and rTmAnxB3.
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Figure 4. Purification and Western blotting of recombinant rTmAnxB2. M, Protein markers;
1, pET32a-vector; 2, pET32a-TmAnxB2; 3, Purified rTmAnxB2; 4, rTmAnxB2 detected by
T. multiceps-positive goat serum; 5, rTmAnxB2 detected by T. multiceps-negative goat serum; 6, Western
blot of T. multiceps extracts detected by rabbit anti-rTmAnxB2-IgG; 7, Western blot of T. multiceps
extracts detected by healthy rabbit serum (controls).
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Figure 5. Purification and Western blotting of recombinant rTmAnxB3. M, Protein markers;
1, pET32a-vector; 2, pET32a-TmAnxB3; 3, Purified rTmAnxB3; 4, rTmAnxB3 detected by
T. multiceps-positive goat serum; 5, rTmAnxB3 detected by T. multiceps-negative goat serum; 6: Western
blot of T. multiceps extracts detected by rabbit anti-rTmAnxB3-IgG; 7, Western blot of T. multiceps
extracts detected by healthy rabbit serum.

3.4. Immunolocalization of TmAnxB2 and TmAnxB3

Immunohistochemical analysis showed that TmAnxB2 and TmAnxB3 were distributed in the
hooks of protoscolex and the germinal layers of the cyst wall of protoscolex (Figures 6 and 7).
However, compared to TmAnxB2, a larger amount of TmAnxB3 was present in the cyst wall of
protoscolex. Notably, no fluorescence signal was detected for TmAnxB2 in the scolex, neck, immature
proglottids, or mature proglottids of adults; however, a weak fluorescence signal was detected in
the eggs of gravid proglottids (Figure 6). Conversely, a strong fluorescence signal was observed for
TmAnxB3 in all segments of adults, indicating the evidence of tissue specificity. For instance, TmAnxB3
was highly localized in the tegument zone (TZ) of adults, widely distributed in the parenchymatous
zone (PZ) and sucker of scolex, and present in all areas of the neck (Figure 7).
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Figure 6. Immunofluorescence localization of TmAnxB2 in T. multiceps. Against the red background,
the green fluorescent color shows the location of the native TmAnxB2 protein: (A) protoscolex with
positive serum; (B) protoscolex with negative serum; (C) cyst wall with positive serum; (D) cyst wall
with negative serum; (E) gravid proglottids with positive serum; and (F) gravid proglottids with
negative serum; GL, germinal layer; HL, horny layer; Eg, eggs.
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Figure 7. Immunofluorescence localization of TmAnxB3 in T. multiceps. Against the red background,
the green fluorescent color shows the location of the native TmAnxB3 protein: (A) protoscolex with
positive serum; (B) protoscolex with negative serum; (C) cyst wall with positive serum; (D) cyst wall
with negative serum; GL, germinal layer; HL, horny layer; (E) scolex with positive serum; (F) scolex
with negative serum; (G) neck with positive serum; (H) neck with negative serum; (I) immature
proglottids with positive serum; (J) immature proglottids with negative serum; (K) mature proglottids
with positive serum; (L) mature proglottids with negative serum; (M) gravid proglottids with positive
serum; and (N) gravid proglottids with negative serum. Abbreviations: S, suckers; GL, germinal
layer; HL, horny layer; TZ, tegument zone; PZ, parenchymatous zone; ED, excretory duct; U, Uterus;
Eg, eggs.



Genes 2018, 9, 559 10 of 14

3.5. Transcriptional Profiles of Taenia multiceps Annexins

The qRT-PCR results showed that TmAnxB2 was transcribed in both adults and larvae. As for the
expression of TmAnxB2 in adults, no significant differences (p > 0.05) were observed in transcriptional
level between the segments. However, the relative amount of TmAnxB2 mRNA in immature
proglottids was 1.6-, 3- and 3.6-fold higher compared to scolex, mature proglottids and gravid
proglottids, respectively. Meanwhile, in the larval stage, the mRNA levels of TmAnxB2 were highest
in oncosphere, 2.78-fold higher than in protoscolex and 5–20 times higher than in the adults (p < 0.05;
Figure 8). These results suggest that TmAnxB2 may play important roles in parasite development and
host invasion of T. multiceps oncospheres.
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were statistically significant at p < 0.05.

Additionally, the TmAnxB3 gene was transcribed across all developmental stages of T. multiceps,
with the highest expression in immature proglottids, 1.4–5.1-fold higher compared to other
developmental stages or segments (p < 0.05). Interestingly, relative TmAnxB3 mRNA levels increased
gradually from oncospheres to adults, suggesting that TmAnxB3 may be critical for T. multiceps
development from larvae to adult stages (Figure 8). Similarly, TmAnxB12 gene expression was highest
in oncospheres of T. multiceps, 3–50 times higher than in other stages and tissues (p < 0.05). Furthermore,
relative TmAnxB12 mRNA levels in protoscolex were 3–15 times higher than in proglottids (p < 0.05,
Figure 8). These findings indicate that TmAnxB12 may have an important role in growth and
development of T. multiceps, and possibly the host invasion.

4. Discussion

Annexins are a multigene protein family with typical conserved sequence characteristics.
Members of this family have four homologous repeat domains, each of ≈70 amino acid residues, and
these domains generally include a typical K-G-X-G-T motif and a typical annexin type II binding
site [20]. Structural prediction of TmAnxB2, TmAnxB3 and TmAnxB12 revealed that all these share the
typical characteristics of annexin family members. However, TmAnxB2 appears to lack the calcium
binding sites, which are replaced by a unique KGD motif in some repeats. This feature has been
reported in other cestode homologs such as Ts-AnxB2, Eg-Anx, Em-Anx, Ht-Anx and Mc-Anx [21–23].
Nevertheless, it is worth noting that such structure was just modeled by referring to the available crystal
structure of S. mansoni annexin and needs to be examined further in future. Moreover, the ML-based
phylogeny placed these three annexin homologs of T. multiceps in different groups, in which TmAnxB2
and TmAnxB3 clustered with annexin B2 and B3 of T. solium, respectively. Interestingly, in a recent
genome-based study, Cantacessi and colleagues showed that among six distinct annexin clades (I–VI)
found across parasitic plathyhelminthes and nematodes, T. solium annexin B2 and B3 were positioned
in Clade I [20]. Therefore, it is reasonable to infer that TmAnxB2 and TmAnxB3 of T. multiceps might
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also be positioned under such clade. Previous reports have demonstrated that protein phosphorylation
plays a key role in parasitic flatworms, including coordination of differentiation of cells and organs
and mediation of signal transduction [24–27]. Our predictions revealed numerous phosphorylation
sites in TmAnxB2, TmAnxB3 and TmAnxB12, suggesting their potential implication in development
and signal transduction. Moreover, by comparing the functional sites, we observed that TmAnxB3
has more protein kinase C phosphorylation sites and casein kinase II phosphorylation sites compared
to TmAnxB2 or TmAnxB12. Meanwhile, TmAnxB3 was most highly expressed in adult T. multiceps.
Evidence from previous studies indicates that protein kinase C and casein kinase II phosphorylation
sites can play an important role in growth and development via catalytic phosphorylation of serine
and threonine [24]. Similarly, our results suggest that TmAnxB3 may be an important protein having
potential implication in growth and development in T. multiceps.

Annexins are calcium-dependent phospholipid binding proteins with calcium binding capacity
that participate in various biological activities related to biofilm development via membrane
phospholipid binding [15]. In parasites, Leishmania promastigotes bind annexin V to ensure the
viability of promastigotes due to the lack of phosphatidylserine [28]. Meanwhile, annexin B1 of T. solium
can induce calcium-dependent eosinophil apoptosis and diminish host immune responses [29–31].
Moreover, ANXB33 in E. granulosus is located in host inflammatory cells and fibroblasts, suggesting
its potential involvement in reactions between hosts and parasites [21]. In the congeneric T. solium,
previous studies showed that annexin B2 has a procoagulant effect in vitro, whereas annexin B1 binds
to human eosinophils and generates a calcium current, thereby resisting attack by the host immune
system [32,33]. In our present study, fluorescence immunolocalization showed that TmAnxB3 was
expressed in both larvae and adults in T. multiceps, whereas TmAnxB2 was only expressed during
the coenurus and oncosphere stages, suggesting that TmAnxB2 may be an important protein in the
development of larvae, while TmAnxB3 may play a key role in the development of adult stages.

TmAnxB3 was mainly distributed in the tegument of each segment in T. multiceps, and was also
widely distributed in the parenchymatous zone of the scolex and neck. These findings are consistent
with the known distribution of annexins in E. granulosus, Clonorchis sinensis and S. mansoni [21,22,34].
The tegument of parasitic cestodes not only plays a key role in escaping the attack from host immune
system, it is also an important organ for nutrient acquisition and signal transduction during long-term
parasitic life [12]. In this study, TmAnxB3 was mainly distributed in the adult tegument, indicating
its implication in nutrition and interaction between parasites and hosts. Furthermore, TmAnxB2 was
mainly distributed in the cyst wall of T. multiceps, similar to AnxB1 in T. solium [30,35].

During parasitism, annexins can protect parasite tissues and help them escape attack from the
host immune system [18]. Importantly, these proteins contribute to physiological functions in taeniidae
in a tissue-specific manner [36,37]. For instance, AnxB30 of C. sinensis is transcribed at high levels in
metacercaria and at lower levels in adults and eggs compared to other stages [34]. However, ANXB33
of E. granulosus is mainly transcribed in the germinal layer and protoscoleces, but not expressed
in the cystic fluid or cyst wall [21]. In the present study, all three Tm annexins were expressed at
relatively high levels in the metacestode stage, including oncosphere and coenurus stages. Notably,
from coenurus to scolex, the relative transcription levels of TmAnxB2 and TmAnxB12 showed a
downward trend, while the relative transcription of TmAnxB3 showed an upward trend. These
findings suggest that TmAnxB3 may play a significant role in growth and development of adults. By
contrast, TmAnxB2 and TmAnxB12 were transcribed at higher levels during the oncosphere period,
and levels were statistically different from those in coenurus and scolex (p < 0.05), suggesting that
these two proteins may play important roles in larvae of T. multiceps. Nevertheless, further studies are
awaited to confirm these findings, but the recent report by Li et al. on genome of T. multiceps provides a
comprehensive profile of annexins in this worm [1]. These enticing findings, to a certain extent, suggest
that more annexin genes should be considered for elucidating their common and/or specific roles in
different tissues (e.g., scolex-neck proglottids, immature-mature proglottids and gravid proglottids)
and developmental stages (e.g., oncospheres, protoscolexes and adults) of T. multiceps. In addition,
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the development of tapeworms is dominated by the development of segments, hence newly emerged
segments are closer to the scolex [38,39]. Similar to other metazoans, protein phosphorylation in
tapeworms coordinates the differentiation of cells and organs [24], and the numerous phosphorylation
sites in TmAnxB2, TmAnxB3 and TmAnxB12 observed in our study are consistent with this, suggesting
the potential implication of annexins in regulating the important biological functions i.e., growth and
development in T. multiceps.

5. Conclusions

In this study, the full-length cDNAs encoding three homologous annexins (TmAnxB2, TmAnxB3
and TmAnxB12) were identified and characterized in T. multiceps. From these, TmAnxB2 and
TmAnxB3 proteins were localized in the oncosphere, protoscolex, scolex, immature proglottids,
mature proglottids, and gravid proglottids, as demonstrated by fluorescence immunohistochemistry.
Furthermore, TmAnxB2 was demonstrated to possibly play an important role in the larval stage of
T. multiceps, while TmAnxB3 appears to be more important in adults. Taken together, these enticing
findings of our study provide the reasonable basis for future studies focusing on exploration of
potential functions of annexins in T. multiceps.
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