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Abstract 

Reverse vaccinology (RV) provides a systematic approach to identifying potential vaccine 

candidates based on protein sequences. The integration of machine learning (ML) into this process 

has greatly enhanced our ability to predict viable vaccine candidates from these sequences. We 

have previously developed a Vaxign-ML program based on the eXtreme Gradient Boosting 

(XGBoost). In this study, we further extend our work to develop a Vaxign-DL program based on 

deep learning techniques. Deep neural networks assemble non-linear models and learn multilevel 

abstraction of data using hierarchically structured layers, offering a data-driven approach in 

computational design models. Vaxign-DL uses a three-layer fully connected neural network 

model. Using the same bacterial vaccine candidate training data as used in Vaxign-ML 

development, Vaxign-DL was able to achieve an Area Under the Receiver Operating 

Characteristic of 0.94, specificity of 0.99, sensitivity of 0.74, and accuracy of 0.96. Using the 

Leave-One-Pathogen-Out Validation (LOPOV) method, Vaxign-DL was able to predict vaccine 

candidates for 10 pathogens. Our benchmark study shows that Vaxign-DL achieved comparable 

results with Vaxign-ML in most cases, and our method outperforms Vaxi-DL in the accurate 

prediction of bacterial protective antigens. 

  

 

Introduction  

Vaccines are vital in preventing infectious diseases by stimulating the immune system. All 

infectious diseases are caused by a microbial organism known as a pathogen. A vaccine works by 

presenting the immune system with a protein that is used to recognize a specific infectious disease. 
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The chosen protein, known as a protective antigen, is typically produced by the organism 

responsible for the infectious disease. However, some vaccines use protective antigens that have 

been modified from the endogenous protein to improve the safety and efficacy of a vaccine (1-3). 

As such, developing an effective vaccine is a complex process that traditionally takes years of 

testing and trials. The emergence of high throughput sequencing and improved computing 

programs have enabled the field of bioinformatics to develop techniques to pre-screen candidate 

protective antigens. The use of the in silico analysis of protective candidates is known as Reverse 

Vaccinology (RV) (4). The successful use of  RV speeds this process, with the most successful 

demonstration being the rapid development of the COVID-19 vaccine (5).  

Reverse Vaccinology approaches can be classified into two categories: filtering-based 

methods such as NERVE (6) and Vaxign (7), and machine learning-based methods such as 

Vaxign-ML (8) and Vaxi-DL (9). Filtering methods simply assess a given protective antigen on a 

selected set of specific criteria to recommend if it is a good vaccine antigen target or not. The 

original Vaxign tool, for example, would filter proteins out if a high number of transmembrane 

helices were found (7). A limitation of filtering is that the algorithm assesses each criterion 

separately instead of holistically, causing potential misclassifications in the data. Machine 

learning, in contrast, is capable of looking at the same set of inputs and providing a more 

comprehensive prediction. The use of these algorithms in neural networks enables the possibility 

of improved performance compared to other conventional RV tools (7). However, the output of a 

machine learning algorithm is dependent on the quality of datasets provided in the study of 

Vaxign-ML, the successor to Vaxign, which utilizes an XGBoost method that emerged as the top-

performing model (8). Vaxign-ML utilized a gold standard set of experimentally verified 

protective antigens (10). 

Vaxi-DL (9) is a web-based deep learning server that predicts potential vaccine candidates 

using a fully connected neural network. Deep learning can leverage larger datasets to identify 

patterns that are not obvious in smaller datasets. Previously, our lab had assumed that the current 

set of known vaccines was too small to be sufficient to predict protective candidates. However, the 

Vaxi-DL paper does not include negative samples in their benchmark dataset. Our prototype data 

testing showed Vaxi-DL indeed generated low specificity records for bacteria samples. As such, 

our lab wanted to assess if the deep learning methodologies were viable for vaccine design and to 

iterate improvement on the dataset.  

In this study, we report our development of Vaxign-DL, a new RV  program based on deep 

learning. Vaxign-DL was developed using the same gold-standard training and testing data as 

recorded in the Vaxign-ML study (8). We also compared the performance of Vaxign-ML 

prediction model with other vaccine design programs including Vaxign (7), Vaxi-DL, VaxiJen 

(11), etc.  

 

Methods 

 

Overall Vaxign-DL pipeline  
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The overall pipeline is described in Figure 1. Positive and negative classes were assigned 

from the dataset previously generated for Vaxign-ML. These sequences were then retrieved and 

processed from Protegen (10) and UniProt databases. The biological and physicochemical 

attributes of these protein sequences were annotated utilizing publicly accessible bioinformatics 

software. Because of the inherent class imbalance in the dataset, we adopted multiple sampling 

strategies. The performance of these strategies was then compared to determine the optimal data 

handling approach. Stratified 5-fold cross-validation was implemented to assess the deep learning 

algorithms, coupled with feature selection and hyperparameter optimization. The model employed 

in this study is a Multi-layer Perceptron (MLP). This model is a category of deep learning 

algorithms, which operate through the sequential layering of nonlinear processing units. This 

mechanism allows the capture and modeling of highly nonlinear data relationships.  

 

 

 
Figure 1. Schematic Representation of the Workflow. 

 

Dataset 

The dataset employed for this study utilized the same feature generation techniques for 

Vaxign-ML (8). Specifically, the dataset used comprises 397 instances of positive samples and 

3,970 instances of negative samples (+:− = 1:10), with 509 distinct features. Features include both 

biological and physicochemical features. We have merged Gram+ and Gram-bacterial data by 

adding a column signifying if it is a Gram+ or Gram-bacteria. The majority of these features 

correspond to physical properties of a given sequence, namely predictions of the hydrophobicity, 

average flexibility, polarizability, mutability, free energy, residue volume, steric pressure, and 

solvent accessibility of the molecule. The remaining major features are biological predictions and 

include localization probability of 6 possible extra-cellular locations, prediction of trans-membrane 

helices using TMHMM (12), and adhesin probability (13).  

 

Balance dataset with resampling 
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The initial dataset presented an imbalanced distribution that skewed towards negative class, 

with a positive-to-negative class ratio of 1:10. This imbalance could pose challenges for deep 

learning models, as they might get biased towards the majority class, leading to suboptimal 

predictions for the minority class. To investigate the impact of class imbalance on deep learning 

models and the efficacy of various resampling methods, we employed three distinct resampling 

techniques. Firstly, we used the under-sampling technique, where instances from the majority 

(negative) class were randomly discarded to equalize its count with that of the minority (positive) 

class, resulting in a balanced ratio of 1:1. Secondly, we incorporated the Synthetic Minority 

Oversampling Technique (SMOTE) (14), resulting in a ratio 10:10. This method was applied 

exclusively to the training dataset and not the validation or testing data, to maintain the integrity of 

our evaluation phases. SMOTE generates synthetic samples for the minority class, in this case, the 

positive class, through an interpolation process between neighboring instances. Thirdly, we 

adopted a balanced approach that combined the principles of both under-sampling and over-

sampling by first downsampling the majority class and then synthesizing the minority class, 

resulting in a ratio 5:5. 

 

Model Construction 

Our Multilayer Perceptron (MLP) model, illustrated in Figure 2, features a layered 

structure starting with an input layer, followed by three fully connected (FC) hidden layers. The 

input features were scaled using a MinMax scaler. The first two hidden layers have 256 hidden 

units each, and the third hidden layer has 128 hidden units. Each FC layer uses the LeakyReLU 

activation function with a slight slope of 0.005 to maintain activity when inputs are negative. 

Following each LeakyReLU function, batch normalization is applied to improve optimization and 

stability. To increase the robustness and prevent overfitting, dropout layers with a dropout rate of 

0.1 are implemented. The final output layer consists of two nodes to identify 'protective' or 'non-

protective' candidates. A softmax activation function is used at this layer to guarantee outputs that 

represent the probabilities for these classes, which sum up to one.  

Weights are initialized using the Glorot uniform initializer. The model is trained using the 

Adam optimizer with learning rate 1e-3 and weight decay 1e-4 for L2 regularization. A learning 

rate scheduler is implemented, which adaptively adjusts the learning rate as the training progresses. 

Cross-entropy loss, enhanced by a label smoothing factor of 0.2, is the loss function. Early 

stopping is employed as a form of regularization to prevent overfitting during the training process.  
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Figure 2. MLP model visualization 

 

Stratified 5-fold cross-validation 

The training dataset is partitioned into 5 distinct subsets while maintaining the proportional 

representation of both positive and negative samples. After the partitioning process, the Synthetic 

Minority Oversampling Technique (SMOTE) is implemented on the training dataset, ensuring that 

the synthetic samples do not leak into the validation set. Among the 5 subsets, 4 parts are dedicated 

to the training process where the model learns and adjusts its parameters, while the remaining part 

is reserved exclusively for the validation phase.  

 

Leave-one-pathogen-out validation 

 To provide a more general estimation of the classification performance and to simulate a 

scenario in which vaccine candidates would be required for a novel pathogen, we utilized the 

Leave-One-Pathogen-Out Validation (LOPOV) method (8). This approach involved testing a set of 

ten pathogens, comprising four Gram-positive pathogens (Mycobacterium tuberculosis, 

Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes) and six Gram-

negative pathogens (Helicobacter pylori, Neisseria meningitidis, Brucella spp., Escherichia coli, 

Yersinia pestis, and Hemophilus influenzae). For each LOPOV process, the positive and negative 

samples from one of these ten pathogens were exclusively held out for testing, and the remaining 

samples from the original dataset were employed for training the model.  

 

Performance evaluation 

Performance evaluation was done by measuring the area under the Receiver Operating 

Characteristic (AUROC) and Precision-Recall Curve (AUPRC), the weighted F1 score, and the 

Matthews correlation coefficient (MCC) of our dataset. The latter two metrics were used to ensure 

that we had good results for all four confusion matrix categories (true positives, false negatives, 

true negatives, and false positives).  

 

Benchmark with an independent dataset 
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We utilized our gold-standard benchmark dataset from the original Vaxign-ML paper (8). 

More specifically, this dataset includes 131 positive protective antigens (59 Gram+ antigens and 

72 Gram- antigens) and 115 negative antigens (40 Gram+ antigens and 75 Gram- antigens). These 

proteins were consolidated from Dalsass et al., 2019 (15) and Heinson et al., 2017 (16). This 

benchmark dataset removed any duplicates or proteins that were orthologs or a subset of a protein 

within our training dataset. In our benchmark evaluation, we merged the Gram+ and Gram- 

datasets together by adding a new feature called Gram staining. The GitHub link to our gold-

standard benchmark data is here: https://github.com/VIOLINet/Vaxign-ML-

docker/tree/master/Benchmark.  

 

Results 
 

Performance analysis of Vaxign-DL model 

We initially trained Vaxign-DL on the original dataset before evaluating the effect of 

resampling methods on Vaxign-DL performance (Table 1). The model achieved high validation 

accuracy (Val accuracy) (0.96 ± 0.01) and specificity (0.99 ± 0.004); the sensitivity is comparatively 

low (0.74  ± 0.07). To improve sensitivity, we first over-sampled the dataset, and the average 

sensitivity increased marginally to (0.78 ± 0.035). Other metrics, including validation accuracy, 

specificity, and AUROC remain relatively unchanged (Table 1, Figure 3). Then, we under-sampled 

the dataset. This showed a more notable improvement in sensitivity (0.86 ± 0.053) and provided a 

slight increase in AUROC to 0.95 (Figure 3). However, there was a decrease in all other 

performance metrics, but other metrics, especially MCC (0.65 ± 0.028), declined. Lastly, we tried 

a balanced sampling method. This further improved sensitivity (0.87 ± 0.053), but other metrics 

remained low. The usage of the original dataset achieved the highest accuracy, specificity, 

weighted F1, MCC, and AUPRC. As such, the final model utilized the original dataset.  
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Table 1. Performance of Vaxign-DL using Vaxign-ML training data  

Original data 

Fold # 

Val 

Accuracy Sensitivity Specificity 

Weighted 

F1 MCC AUPRC AUROC 

Fold 1 0.96 0.74 0.98 0.96 0.76 0.85 

0.94 

Fold 2 0.95 0.64 0.99 0.96 0.74 0.79 

Fold 3 0.96 0.77 0.99 0.96 0.79 0.88 

Fold 4 0.98 0.85 0.99 0.98 0.87 0.91 

Fold 5 0.96 0.70 0.99 0.96 0.77 0.79 

Avg 

0.96 ± 

0.008 

0.74 ± 

0.071 

0.99 ± 

0.004 

0.96 ± 

0.008 

0.78 ± 

0.046 

0.84 ± 

0.049 

Oversampled 

Fold 1 0.96 0.83 0.98 0.96 0.78 0.82 

0.94 

Fold 2 0.95 0.74 0.98 0.96 0.74 0.78 

Fold 3 0.96 0.77 0.98 0.96 0.78 0.86 

Fold 4 0.96 0.82 0.98 0.97 0.82 0.90 

Fold 5 0.96 0.76 0.97 0.95 0.73 0.79 

Avg 

0.96 ± 

0.004 

0.78 ± 

0.035 

0.98 ± 

0.004 

0.96 ± 

0.005 

0.77 ± 

0.030 

0.83 ± 

0.045 

Undersampled 

Fold 1 0.92 0.89 0.93 0.93 0.68 0.79 

0.95 

Fold 2 0.93 0.71 0.95 0.93 0.63 0.74 

Fold 3 0.93 0.86 0.94 0.94 0.69 0.86 

Fold 4 0.94 0.92 0.95 0.95 0.75 0.85 

Fold 5 0.93 0.76 0.95 0.94 0.65 0.71 

Avg 

0.91 ± 

0.009 

0.86 ± 

0.053 

0.92 ± 

0.011 

0.93 ± 

0.007 

0.65 ± 

0.028 

0.80 ± 

0.063 

Balanced 

Fold 1 0.90 0.90 0.91 0.92 0.64 0.77 

0.95 

Fold 2 0.92 0.83 0.93 0.93 0.65 0.79 

Fold 3 0.90 0.90 0.91 0.92 0.63 0.86 

Fold 4 0.92 0.92 0.93 0.93 0.69 0.84 

Fold 5 0.90 0.78 0.91 0.91 0.57 0.76 

Avg 

0.91 ± 

0.010 

0.87 ± 

0.053 

0.92 ± 

0.010 

0.92 ± 

0.008 

0.64 ± 

0.038 

0.80 ± 

0.039 
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For visual representation, Figure 3 shows the mean values for the area under Receiver 

Operating Characteristic (AUROC) across 5-fold under different sampling methods. As clearly 

seen in the figure, the AUROC values for both original and oversampled datasets are 0.94, and the 

values for both undersampled and balanced datasets are 0.95.  

 

 
Figure 3. Mean AUROC across 5-fold cross-validation with the original dataset (A), oversampled 

dataset (B), undersampled dataset (C), and balanced dataset (D). 

 

 

Leave-one-pathogen-out Validation 

 The LOPOV method was used to estimate how Vaxign-DL can be used to predict vaccine 

candidates for a novel pathogen. Performance for LOPOV showed good performance. Although 

the original and oversampled datasets exhibit identical mean AUROC values (Figure 4A, 4C), their 

performance diverges when considering individual pathogens. The original dataset not only 

outperforms the oversampled dataset in terms of mean AUPRC (Figure 4B, 4D) but also 
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demonstrates superior pathogen-specific results. For instance, the performance of Mycobacterium 

tuberculosis, Staphylococcus aureus, Helicobacter pylori, and Neisseria meningitidis notably 

declines in the oversampled dataset.  

 
 

Figure 4. Receiver Operating Characteristic (A) and Precision-Recall Curve (B) with the original 

dataset. Receiver Operating Characteristic (C) and Precision-Recall Curve (D) with the 

oversampling method 

 

Benchmark different reverse vaccine design tools  

We calculated the recall, precision, WF1, and MCC of existing RV tools to compare the 

performance of Vaxign-DL and Vaxi-DL (9) using the Vaxign-ML Benchmark dataset (8) (Table 

2). Both Vaxign-DL (7) and Vaxign-ML tools exhibited significantly better performance than both 

Vaxi-DL and VaxiJen (11). This is caused by Vaxi-DL and VaxiJen having significantly worse 

precision. As we had utilized the same dataset as the previous Vaxign-ML paper (8), we included 

the performance of these prior RV tools. On this public dataset, Vaxign-DL exhibits comparable, 

but not superior performance to Vaxign-ML. Vaxign-DL currently is second on all four metrics we 

have measured.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.569096doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569096
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Table 2. Assessment of Vaxign-DL, Vaxi-DL, Vaxign-ML, and other RV models using Vaxign-

ML Benchmark Dataset.  

 Recall Precision WF1 MCC 

Vaxign-DL 0.83 0.73 0.74 0.49 

Vaxi-DL  0.92 0.67 0.70 0.46 

Vaxign-ML  0.81 0.75 0.76 0.51 

Heinson–Bowman  0.72 0.69 0.68 0.37 

VaxiJen  0.69 0.68 0.66 0.32 

Vaxign  0.32 0.79 0.56 0.27 

Antigenic  0.50 0.52 0.49 -0.02 

Epitope-based  0.63 0.65 0.62 0.24 

 

 

Discussion 

In this study, we developed the deep learning (DL)-based vaccine design program Vaxign-

DL and demonstrated that Vaxign-DL has exhibited good performance in the prediction of 

bacterial protective antigens, showing the importance of integrating both biological and 

physicochemical features in deep learning (DL)-based reverse vaccinology (RV) prediction.  

Compared to the usage of undersampled, oversampled, and balanced datasets, the use of 

the original dataset in our Vaxign-DL development has proven to be more effective, with the 

model demonstrating robustness and high scores performance metrics. The comparative analysis of 

different sampling methods has highlighted distinct advantages and disadvantages in the context of 

model performance. The undersampling method may discard critical data from the majority class. 

In contrast, oversampling does not significantly bring high-quality minority-class samples and 

carries the risk of overfitting.  

Multiple differences exist between Vaxign-DL and Vaxi-DL (9). The training and the 

testing data appear quite different. Vaxi-DL uses the data in the VIOLIN Vaxgen (Vaccine-related 

Genes and Protective Antigens) database. However, not all the genes in Vaxgen are protective. 

Instead, we used the VIOLIN Protegen protective antigen database data (10), in which all genes 

are protective.  

In our future work, we will calculate and investigate additional features. Vaxi-DL used 

epitope prediction for prediction, which is not in our analysis. We will later explore how the 
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inclusion of epitope prediction and other features may help our vaccine design performance in 

Vaxign-DL.  

  

Conclusion 

Our work shows promise and replicability for applying Deep Learning for additional RV 

design. We are currently working on integrating additional features to improve the efficacy of 

prediction. We are also considering the use of DL methodology to include predictions if a 

protective antigen would be a virulence factor as a secondary predictor of vaccine safety. 
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