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Approximately 40% of patients admitted to the medical intensive care unit (ICU) require mechanical ventilation. An accurate
prediction of successful extubation in patients is a key clinical problem in ICU due to the fact that the successful extubation is highly
associated with prolonged ICU stay.The prolonged ICU stay is also associated with increasing cost and mortality rate in healthcare
system. This study is retrospective in the aspect of ICU. Hence, a total of 41 patients were selected from the largest academic
medical center in Taiwan. Our experimental results show that predicting successful rate of 87.8% is obtained from the proposed
predicting function. Based on several types of statistics analysis, including logistic regression analysis, discriminant analysis, and
bootstrapmethod, threemajor successful extubation predictors, namely, rapid shallow breathing index, respiratory rate, andminute
ventilation, are revealed. The prediction of successful extubation function is proposed for patients, ICU, physicians, and hospital
for reference.

1. Introduction

In recent years, human activities, such as burning of fossil
fuels and coal, have led to dust-storm, frog, and haze [1].
Several epidemiological studies have shown the effects of
chronic exposure to air pollution (e.g., PM2.5, nitrogen
dioxide, and NO2) on lung function [2]. Air pollution is
closely related to both the development and exacerbation of
pulmonary disease. In the worst case, approximately 40% of
all pulmonary disease patients in medical intensive care unit
(ICU) require mechanical ventilation [3, 4]. Many of them
are extubated in 2 to 4 days after the start of ventilation,
whereas up to 25% require mechanical ventilation for more
than 7 days [5]. In spite of weaning protocols, automated
systems, daily spontaneous breathing trials, and pressure-
support ventilation, it is estimated that 20–30% of patients
cannot be extubated upon the first weaning attempt [6]. 29%

met the criteria for extubation failure [7], and 40% extubation
failure was found in acute ischemic stroke patients [8].

The rapid shallow breathing index (respiratory fre-
quency/tidal volume,𝑓/𝑉𝑇) and spontaneous breathing trials
(SBT) have been recognized as useful markers in predicting
successful weaning from mechanical ventilation. However,
they are imperfect, and clinicians always incorporate other
factors for final extubation decision. The traditional extuba-
tion decision is solely based on expert clinical judgment. For
instance, continuous positive airway pressure could be toler-
ated at 5 to 7 cm H2O without fatigue for 12 hours, arterial
PO2 > 80mmHg on room air, and bulbar paresis improved.
Some studies have predicted the timing of extubation [9].
The factor predicting extubation success in patients in neu-
rocritical care units is addressed [10], and early predictors of
extubation success in acute ischemic stroke are studied [8].
Farghaly andHasan [11] proposed diaphragm ultrasound as a
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new method to predict extubation outcome in mechanically
ventilated patients. A prospective observational cohort study
is performed to predict extubation failure after successful
completion of a SBT [12]. Zettervall et al. [13] aimed to
evaluate the effect of extubation time on patient’s outcomes
after endovascular aneurysm repair and open repair. Miu et
al. [14] proposed two predictionmodels for extubation failure
in subjects who have passed an SBT: one for failure at any time
and another for failure in the first 24 hours after extubation.
Savi et al. [15] evaluated the potential of weaning predictors
during extubation. All of above-mentioned methods are not
always precise. Therefore, a precise prediction of successful
extubation for patients is an important issue and worthy of
study.Adelay in extubation can increase the risk of ventilator-
related complications such as pneumonia, tracheobronchitis,
or barotrauma. A premature extubation may lead to the
necessity of reintubation with an associated increase in the
risk of ventilator-associated pneumonia and airway trauma.
The delay or premature extubation may lead to prolonged
ICU stay [16]. The prolonged ICU stay is also associated
with increased cost and decreased mortality rate in health-
care systems. Therefore, accurate prediction of successful
extubation is a key clinical problem. However, no prior
work has been done to provide a good prediction function
of successful extubation for decision making. In order to
provide more precise prediction of successful extubation in
ICU, the retrospective study is conducted.Hence, the purpose
of this study is to find the key predictors of the successful
extubation in critically ill patients. In addition, this study aims
to develop a prediction function of successful extubation for
effective decision making of extubation

2. Material and Methods

2.1. Data Collection. This study was conducted at the Chang
Gung Memorial Hospital (CGMH) in Taiwan that was
approved by the Institutional Review Board (number 103-
6085B) of the hospital. CGMH is one of the world’s leading
medical centers and currently Taiwan’s largest hospital with
3700 beds. In order to meet the requirements of medical
services, CGMH has set up many hospitals in Taiwan and
China. For this study, 10 weaning indices are reviewed and
analyzed, as shown in Table 1. 41 critically ill patients under
ICU weaning protocols are randomly selected. Although the
sample size is relatively small, the minimum acceptance level
is defined as 30 samples [10, 11]. The mean age was 74 ±
2 years. 27 patients were men (65.8%) and 14 were women
(34.1%). Other demographic details are listed in Tables 2
and 3. First, we discussed assessment success factors and
weights of extubation with professional doctors. Then, we
obtained necessary critical data for all patients from ICU
staff screening to facilitate the experimental study. In order to
filter out successful extubation predictors, following weaning
protocols, we used the Delphi method with face-to-face
interviews and consultationwith 8 professional doctors in the
department of chest diseases at CGMH, who helped to obtain
the most important 9 successful extubation predictors, such

as (1) gender; (2) GlasgowComa Scale (GCS): E (eye), V (ver-
bal), and M (motor) score; (3) respiratory rate (RR) (𝑓); (4)
minute ventilation (MV); (5) maximal inspiratory pressure
(PiMax orMIP); (6) rapid shallow breathing index (RSBI); (7)
arterial blood gas (ABS) and PH; (8) arterial carbon dioxide
tension (PaCO2); and (9) partial pressure of oxygen (PaO2).
In order to solve this problem, an experimental procedure is
conducted, as shown in Figure 1.

2.2. Statistical Analysis. Among the 41 patients included
in this study, 23 (56%) were successfully extubated. All
statistical analyses are considered significant when 𝑝 < 0.05
in two-tailed 𝑡-tests. Statistical calculations are performed
using the IBM Statistical Package for the Social Sciences
(SPSS) software.The extubation failure is defined as reintuba-
tion within 48 hours of extubation. Table 4 shows the
successful extubation as well as extubation failure groups.
Three predictors, GCS, MV, and RSBI, reach the significance
level of 0.05. To find the relative importance weights among
the 9 successful extubation predictors, multivariate logistic
regression analysis is used to obtain a correlation matrix,
as shown in Table 5. Then, unstandardized beta coefficient
values (𝑦), −0.049, 0.569, −0.046, 0.151, −0.092, 0.529, −0.862,
0.302, and −0.307, and standardized beta coefficients values
(𝑦),−0.047, 0.560, −0.592, 0.930, −0.055, 0.664, −0.094, 0.146,
and −0.140, are used in the multiregression correlation
matrix to obtain the rescaled relative weights, as shown
in Table 6. Based on the method proposed by Braun and
Oswald [33], the standardized beta coefficients and rescaled
relative weighting values of RSBI (32.5%), RR (22%), and
MV (18%) were found as the top three predictors. Others
predictors are gender (10%), PaO2 (8%), PH (6%), GCS (2%),
PiMax (1%), and PaCO2 (0%).

2.3. Logistic Regression Analysis. Logistic regression analysis
is used to obtain the rate of successful extubation, as shown
in Table 7. The overall model is significant, 𝜒2 = 24.516 (𝑝
value = 0.004 < 0.05), while the Hosmer and Lemeshow test
= 16.17 (p value = 0.04 < 0.05) reached a significant level.
Cox-Snell 𝑅2 = 0.450 and Nagelkerke 𝑅2 = 0.603. The results
show that moderate association exists. The Wald values of
GCS, MV, and RSBI are 6.261, 4.094, and 3.009, respectively.
The p values of GCS, MV, and RSBI equal 0.012, 0.043, and
0.083 (close to 0.05), respectively. The odds ratios of three
key predictors, namely, GCS, MV, and RSBI, are 0.029, 8.011,
and 7487.943, respectively. Thus, the prediction of successful
extubation function (PSEF) can be obtained as

ln( 𝑝𝑖1 − 𝑝𝑖) = 0.058 ∗ Gender – 3.551
∗ GCS – 0.758 ∗ RR + 2.081 ∗MV

+ 0.471 ∗ PiMax + 8.921
∗ RSBI – 8.891 ∗ PH + 3.818
∗ PaO2 – 2.855 ∗ PaCO2 + 23.404,

(1)

where 𝑝𝑖 is the probability of successful extubation.
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Table 2: Demographic details of critically ill patients.

Total number of patients 41
Age (mean ± SD), years 74 ± 2.495
Gender (M/F) 27/14
Successful, failed extubation 23/18
Glasgow Coma Scale (GCS) E (mean ± SD) 3.71 ± 0.106
Glasgow Coma Scale (GCS) V (mean ± SD) 4.44 ± 0.148
Glasgow Coma Scale (GCS) M (mean ± SD) 5.54 ± .149
RR (𝑓) (mean ± SD) 23 ± 1.021
Tidal volume (mean ± SD) 0.312 ± 0.0283
Minute ventilation (mean ± SD) 6.568 ± 0.4845
PiMax (MIP, NIF) (mean ± SD) −37.88 ± 2.202
RSBI (f /TV) (mean ± SD) 99.98 ± 10.355
Arterial blood gas pH (mean ± SD) 7.44 ± 0.0085
PaO2 (mean ± SD) 112.076 ± 4.279
PaCO2 (mean ± SD) 41.944 ± 1.5901

Table 3: Underlying diseases patient characteristics.

Chronic obstructive pulmonary disease (COPD) 6 (15%)
End stage renal disease (ESRD) 2 (5%)
Old stroke 8 (20%)
Cervical cancer 1 (2%)
Cirrhosis 2 (5%)
Hepatitis B virus (HBV) 1 (2%)
Heart failure 3 (7%)
Esophageal cancer 2 (5%)
Prostate cancer 2 (5%)
Hypertension 1 (2%)
Pneumoconiosis 1 (2%)
Hepatocellular carcinoma (HCC) 1 (2%)
Congestive heart failure (CHF) 1 (2%)
Cerebral palsy 1 (2%)
Systemic lupus erythematosus (SLE) 2 (5%)
Colon cancer 1 (2%)
Deep vein thrombosis (DVT) 1 (2%)
Old tuberculosis (TB) 1 (2%)
Pulmonary tuberculosis (TB) 1 (2%)
Renal cell carcinoma (RCC) 1 (2%)
Nil 2 (5%)
Total 41 (100%)

The PSEF is solved using IBM SPSS software syntax to
obtain the successful rate of the observation as 87.8%, as
shown in Table 9. As a result, a high accuracy rate of the
PSEF is obtained. Only 5 observations are misjudged. The
reasons for classification of logistic regression analysis are
shown in Table 8.The values of sensitivity, specificity, positive
predictive, negative predictive, false positive rate, and false

negative rate can be obtained as 0.957, 0.778, 0.846, 0.933,
0.153, and 0.066, respectively.This indicates that the PSEF has
a high rate of successful classification.

2.4. Comparing the Classification Rates of the Two Methods.
The summary of classifications of 9 extubation predictors by
discriminant analysis and logistic regression analysis is used
to validate the classification results, as shown in Table 10.The
logistic regression analysis offers a successful classification
rate of 80.5% and discriminant analysis gives a successful
classification rate of 87.8% for prediction of extubation.

2.5. Discriminant Classification Function. The factor of the
successful extubation predictors for the classification of
Fisher’s linear discriminant functions (see Table 11) affects
the PSEF. The fail function of classifying groups is given as
follows:
𝐷1 = 𝑓 (𝑥)
= −152.053 ∗ Gender + 100.671 ∗ GCS + 3.258
∗ RR + 16.664 ∗MV + 172.336 ∗ PiMax

+ 45.964 ∗ RSBI + 3305.766 ∗ PH – 3.363
∗ PaO2 + 156.543 ∗ PaCO2 – 13085.09,

(2)

and the success function of the classifying groups is given as

𝐷2 = 𝑓 (𝑥)
= −152.399 ∗ Gender + 104.655 ∗ GCS + 2.940
∗ RR + 17.718 ∗MV + 171.695 ∗ PiMax

+ 49.667 ∗ RSBI + 3299.738 ∗ PH – 1.253
∗ PaO2 + 154.393 ∗ PaCO2 – 13057.793.

(3)

IBM SPSS software with Fisher’s linear discriminant function
is used to obtain the probability values. Figure 2 shows
the scatter plot of the probability of classification for top
three predictors in different functions, when the default cut-
off point is 0.5 and the prediction probability is greater
than 0.5. Top three predictors reveal very little difference in
the distance (0 and 1). It is observed that the classification
function can be accurately predicted. Figure 3 shows the 8
misjudged observations and 33 correctly predicted obser-
vations in discriminant classification function. In order to
verify the correctness of the classification of Fisher’s linear
discriminant functions, we use Press’ 𝑄 formula to test the
predictability of the clustering results and get a Press’ 𝑄
value = 15.24 > 3.84. Indeed, it is a good classification. As
seen in Figure 4, there are four misclassified samples (which
actually should be attributed to fail extubation group). There
are four othermisclassified samples, which actually should be
attributed to the successful extubation group [34].
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Data collection
41 random critically ill patients under ICU weaning protocols are selected. 

Delphi method with face-to-face interviews and consultation with 8 professional 
doctors are performed to obtain 9 extubation predictors.

Filtering the successful extubation index

(1) Logistic regression analysis is used to correctly predict the probability of extubation success.

(2) Discriminant analysis (DA) is used to classify extubation functions.

(3) Bootstrap method is used to prove the robust consistency of the results.

Methodologies

(1) Nine extubation success predictors are used to predict probability functions.
(2) Groups of successful functions are classified.
(3) Groups of failed functions are classified.

Extubation classification function

To aid extubation judgment

(1) Key predictors of successful extubation are obtained.
(2) The prediction of successful extubation function is developed.

Figure 1: Experimental procedure.
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Table 4: Tests of successful and failed extubation groups.

Extubation index Successful extubation (n = 23) Failed extubation (n = 18) 𝑝 value (two-tailed)
Gender 0.78 ± 0.088 0.50 ± 0.121 0.06
GCS 0.83 ± 0.081 0.33 ± 0.114 0.001∗∗

RR 22.70 ± 1.335 23.39 ± 1.591 0.741
MV 7.497 ± 0.723 5.381 ± 0.495 0.028∗

PiMax −40.61 ± 3.378 −34.39 ± 2.417 0.126
RSBI 85.48 ± 11.559 118.50 ± 17.825 0.05∗

PH 7.44 ± 0.010 7.46 ± 0.014 0.296
PaO2 112.81 ± 6.162 111.13 ± 5.939 0.968
PaCO2 39.89 ± 1.706 44.567 ± 2.83 0.170
∗𝑝 < 0.05; ∗∗𝑝 < 0.01.

Table 5: Multivariate regression correlation matrix.

PaCO2 PH RSBI PaO2 GCS Gender PiMax MV RR
PaCO2 1
PH 0.126 1
RSBI −0.109 −0.078 1
PaO2 −0.050 −0.148 0.175 1
GCS 0.209∗ 0.250 0.205∗ −0.078 1
Gender −0.229∗ −0.339 −0.015∗ 0.140 −0.566∗ 1
PiMax −0.082 0.167 −0.015 0.035 −0.273 0.326 1
MV 0.001∗ 0.006 0.879∗ 0.212 0.341∗ −0.293∗ −0.270 1.
RR 0.118 0.143 −0.939 −0.174 −0.101 −0.004 0.098 −0.870 1
∗𝑝 < 0.05.

Table 6: Rescaled relative weights of successful extubation indexes.

Rescaled relative weights (%) Gender GCS RR MV PiMax RBSI PH PaO2 PaCO2
Unstandardized beta coefficients 21.100 2.651 9.973 8.578 25.889 10.727 19.960 0.728 0.391
Standardized beta coefficients 10.147 2.319 22.078 17.828 0.664 32.545 6.129 7.939 0.346

Table 7: The results of logistic regression analysis.

Variable name 𝐵 SE Wald value Odds ratio Effect value
Gender 0.058 1.429 0.002 1.059

Cox-Snell 𝑅2 = 0.450
Nagelkerke 𝑅2 = 0.603

GCS −3.551 1.419 6.261 0.029
RR −0.758 0.447 2.881 0.468
MV 2.081 1.028 4.094 8.011
PiMax 0.471 2.233 0.045 1.602
RSBI 8.921 5.143 3.009 7487.943
PH −8.891 12.157 0.535 0.000
PaO2 3.818 2.661 2.059 45.520
PaCO2 −2.855 2.388 1.430 0.058
Constant 23.404 100.915 0.054 14596256529

Overall pattern match verification 𝜒2 = 24.516
Hosmer and Lemeshow test = 16.17 significance
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Figure 3: Misjudgment analysis in discriminant classification function.

Table 9: Classification table for logistic regression analysis.

Observed
Predicted

Extubation Percentage
Successful Failed Correct

Success 22 4 95.7
Fail 1 14 77.8
Overall percentage 87.8
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Figure 4: Predictive clustering scatter plot by discriminant analysis.

Therefore, the bootstrap method is used to reduce the
gap between the sample data and the general population by
estimating path coefficients repeatedly [35]. Bootstrapping is
also undertaken to confirm the robustness of the findings. To
do this, our study uses the IBM SPSS of bootstrap method
[36] to generate 1000 random numbers. Bootstrap samples
were built by resampling with replacement of the original
sample. Finally, the repeating presentation pattern of the
sampling results shows robust consistency.The bootstrapping

method is commonly used to calculate confidence intervals
around the success indexer estimates. The summary results
for bootstrapping are provided in Table 12. The critically ill
patient’s data of 41 repeated samples (using the bootstrap
method) are as follows: GCS = 0.009, MV = 0.023, and RSBI
= 0.053. Only three successful extubation predictors RR, MV,
andRSBI are significant. 15 critically ill patient’s data types are
used again by the bootstrap method to obtain the following:
RR = 0.014; MV = 0.014; RSBI = 0.014; PH = 0.014; PaO2 =
0.014; PaCO2 = 0.014. 6 successful extubation predictors RR,
MV, RSBI, PH, PaO2, and PaCO2 are significant.

3. Discussion

RSBI < 105 has 90% sensitivity, whereas 18% specificity was
found. Artificial neural network has been used to predict
extubation outcome although its result varies in different
studies [37, 38]. Miu et al. [14] proposed a few important
risk factors for extubation failure. For instance, oxygenation
was an important component of early failure. Lower diastolic
blood pressure and repeatedly failed SBT are significant
contributors to extubation failure at any time. Two prediction
models for extubation failure are found in subjects who have
passed an SBT: one for failure at any time and another for
failure in the first 24 hours after extubation. Approximately,
both models showed 70% accuracy when correct predicting
was obtained. Nguyen et al. [10] found that lower negative
inspiratory force and higher vital capacity are corrected with
successful extubation. SBT is the major diagnostic test to
determine whether patients can be successfully extubated
[39]. Lioutas et al. [8] indicated that conventional respiratory
parameters have no effect on extubation success in acute
ischemic stroke patients. The PaCO2 appears as a strong
predictor of extubation failure [12]. However, all of the
above-mentioned methods are not always precise and do not
provide a decision function for aiding the decision making of
extubation.

Except weaning predictors, some clinical rules such as
mental status and endotracheal secretions are used to predict
extubation failure [40]. Muscle weakness resulting from
critical illness polyneuropathy or myopathy causes failure to
wean from the ventilator. Farghaly and Hasan [11] proposed
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Table 10: Summary of classifications of nine successful extubation indexes by two methods.

Discriminant classification Logistic regression classification
Group S F Classification rate (%) S F Classification rate (%)

Case Extubation S 87.0 13.0 80.5 95.65 4.35 87.8
F 27.8 72.2 22.22 77.78

Table 11:The classification of Fisher’s linear discriminant functions.

Indexes Successful (failed) extubation
Failed Successful

Gender −152.053 −152.399
GCS 100.671 104.655
RR 3.258 2.940
MV 16.664 17.718
PiMax 172.336 171.695
RSBI 45.964 49.667
PH 3305.766 3299.738
PaO2 −3.363 −1.253
PaCO2 156.543 154.393
Constant −13085.090 −13057.793

diaphragm ultrasound as a newmethod to predict extubation
outcome in mechanically ventilated patients. Besides, pro-
longed mechanical ventilation is defined as greater than 21
days of mechanical ventilation for at least 6 hours per day.
Failed weaning had a lower hypercapnic ventilatory response
than successfully weaned subjects [41].

In this retrospective study, we found a more precise
function for prediction of successful extubation in ICU of
CGMH. Our experimental results show that predicting suc-
cessful rate of 87.8% is obtained from the proposed predicting
function. Multiple statistical methods are used to obtain the
prediction of successful extubation function,𝐷2. In addition,
the bootstrap method is used to confirm the robustness of
the findings. Top three predictors, namely, RSBI (32.5%), RR
(22%), and MV (18%), are found for successful extubation
in ICU of CGMH. The prediction of successful extubation
function is also provided for aiding the clinicians to make a
more precise extubation decision for patients in ICU to avoid
delay or premature extubation against the potential harms of
patients. This decision is very important because the failed
extubation is associated with worse patient outcome.

4. Limitations

Our study has several limitations: (1) overoptimistic estimate
of the predictive performance is a problem because a small
size of the data set is used in this retrospective study; (2) an
external validation can be used to enhance robustness of the
prediction of successful extubation function [42]; (3) not all
clinical weaning predictors, such as diaphragm movement,
endotracheal secretions, or hypercapnic ventilatory response
were collected in each patient; (4) the number of patients

in this retrospective study was relatively small. However,
the study emphasized the methodologies for the weaning
predictors. We recommend that further studies are needed to
evaluate larger samples of respiratory ICU patients.

5. Conclusion

The results show several strengths of relative weights. First,
relative weights add up to 𝑅2 [36]. Additionally, relative
weights are easy to explain to researchers [43]. Second,
three major predictors of success of extubation are found in
both discriminant analysis and logistic analysis. A successful
classification rate of 87.8% was obtained to avoid delay or
premature extubation against the potential harms and costs
of failed extubation. The prediction of successful extubation
function was derived, which can easily be used to aid
clinical extubation judgment. Our study is a monocentric
retrospective pilot trial involving limited number of critically
ill patients. Further studies are needed in terms of larger and
more heterogeneous patient groups to precisely revise the
coefficients of PSEF.

Additional Points

Highlight. (1) Approximately 40% of patients admitted to the
medical intensive care units require mechanical ventilation.
(2) Extubation decision solely based on clinical judgment of
experts is not always precisely. (3) Our experimental results
show that a predicting successful rate of 87% is obtained
by the proposed predicting function. Research Question. (1)
Can a good predicting function for extubation decision be
obtained? (2) In practice, what are the successful extubation
factors? (3) What is the improvement method for finding
more precise predicting function for extubation decisions.
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Table 12: Bootstrap method with sample analysis of 15 and 41 patients.

Successful index Solving bootstrap for sample analysis of 15 patients Solving bootstrap for sample analysis of 41 patients
Beta estimates SE Significant (two-tailed) Beta estimates SE Significant (two-tailed)

Gender −0.281 5942.222 0.135 0.058 148.105 0.750
GCS −0.785 3821.522 0.095 −3.551 208.851 0.009
RR −0.839 956.320 0.014 −0.758 122.741 0.061
MV 2.263 1528.980 0.014 2.081 272.902 0.023
PiMax −2.801 2569.122 0.095 0.471 582.832 0.657
RSBI 9.443 8954.303 0.014 8.921 1178.506 0.053
PH −28.325 16465.99 0.014 −8.891 2084.391 0.387
PaO2 5.455 1613.969 0.014 3.818 333.872 0.076
PaCO2 −4.553 2601.498 0.014 −2.855 1184.107 0.131
Cox & Snell 𝑅2 0.350 0.450
Nagelkerke 𝑅2 0.486 0.603
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