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Epidemic preparedness depends on our ability to predict the
trajectory of an epidemic and the human behavior that drives
spread in the event of an outbreak. Changes to behavior dur-
ing an outbreak limit the reliability of syndromic surveillance
using large-scale data sources, such as online social media or
search behavior, which could otherwise supplement healthcare-
based outbreak-prediction methods. Here, we measure behavior
change reflected in mobile-phone call-detail records (CDRs), a
source of passively collected real-time behavioral information,
using an anonymously linked dataset of cell-phone users and their
date of influenza-like illness diagnosis during the 2009 H1N1v
pandemic. We demonstrate that mobile-phone use during illness
differs measurably from routine behavior: Diagnosed individu-
als exhibit less movement than normal (1.1 to 1.4 fewer unique
tower locations; P < 3.2 × 10−3), on average, in the 2 to 4 d
around diagnosis and place fewer calls (2.3 to 3.3 fewer calls;
P < 5.6 × 10−4) while spending longer on the phone (41- to 66-s
average increase; P < 4.6 × 10−10) than usual on the day follow-
ing diagnosis. The results suggest that anonymously linked CDRs
and health data may be sufficiently granular to augment epidemic
surveillance efforts and that infectious disease-modeling efforts
lacking explicit behavior-change mechanisms need to be revisited.
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Infectious disease outbreaks remain a major threat to human-
ity in the 21st century, as evidenced by the ongoing pandemic

of COVID-19 (1) and 5 of 10 threats to global health identified
by the World Health Organization being related to infectious
disease (2). Estimating the current and future burden of dis-
ease through surveillance and predictive modeling is essential
for appropriate allocation of resources aimed at reducing impact,
especially in the early stages of an outbreak.

Traditional influenza healthcare-based surveillance methods
rely on data gathered from symptomatic individuals seeking
medical treatment from doctors. These approaches suffer from
delays in reporting that differ from setting to setting and diffi-
culty in identifying unusual activity (3). Such issues led to the
development of alternative syndromic surveillance methods (4)
that combine a broad range of data sources on behavioral mark-
ers; some were developed, used, and assessed during the H1N1v
pandemic (5). These surveillance methods include analyzing pat-
terns in social media such as Twitter (6, 7), search-engine queries
(8–10), over-the-counter medication sales (11), airport traffic
patterns (12), city traffic patterns (13), cell-phone surveys (14),
or ensemble methods that incorporate survey data (15). Directly
inferring disease incidence from these sources also assumes that
the cause of behavior change is known and usually associated
with influenza. Yet, studies indicate that individuals alter behav-
ior for various reasons, even when not symptomatic, e.g., to avoid
infection (16) or due to anxiety (17), complicating estimation of
infectious disease burden (18).

Whereas data sources that depend on active, conscious user
participation may produce unreliable estimates (14, 20), call-
detail records (CDRs) can act as a passive pattern sensor (21).
Mobile networks pervade most nations: In raw numbers, 2019
cell-phone subscriptions in developed and developing countries
exceeded 100% of their populations (22), although mobile use
invariably skews away from underresourced groups (23). CDRs,
collected in real-time, contain spatiotemporal information that
captures mobility. Past analyses have used cell-phone data to
study human-movement scaling (13), social-network structure
inference (24), poverty and wealth prediction (25), and risk and
spread of multiple diseases, including malaria (26, 27), cholera
(28), and influenza (29). Furthermore, smartphone apps have
been used to track behavior change in relation to influenza onset
(30) or as contact trackers during the COVID-19 pandemic (31,
32). These methods are all limited by either unreliable health
data (self-diagnosed symptoms), aggregate-level data to model
the population (33), or fraught with privacy concerns (34). Until
now, the link with verified health data at the individual level has
been missing.

Here, we explicitly combine CDRs with information
from the 2009 H1N1v pandemic collected by the national
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healthcare-based surveillance system used by all health
providers in Iceland through a protocol that maintains rea-
sonable expectations of individual privacy from government
surveillance. The influenza pandemic reached Iceland in May
2009 (19), with a shallow peak before the school holidays in
May/June 2009, followed by a dip over the summer and a strong
peak in October 2009 (Fig. 1). The outbreak started in the
capital of Reykjav́ık, home to 37% of the population of 318,499,
approximately 1 wk ahead of the rest of the country (19).
Health officials recorded the date of diagnosis (DoD) of 10,175
clinically diagnosed cases of influenza-like illness (ILI) around
the country between June 4, 2009, and February 11, 2010. Of
3,011 samples taken, 700 were confirmed by a real-time (PCR)
protocol to be H1N1v influenza infections (19); we assume that
other patients diagnosed with ILI were infected with the same
strain, which displaced other strains until February 2010 (35).

We analyzed behavioral patterns in Iceland extracted from the
CDRs, provided in a deidentified format by a major mobile-
network operator (MNO). The CDR logs span a broad time
period around the 2009 outbreak. Mobile-phone owners were
anonymously matched to records of ILI diagnosis, yielding DoD
and CDR traces for 1,434 diagnosed individuals after data
processing. We measured and identified behavioral traits that
showed significant changes in the diagnosed group around the
DoD compared to a control group.

Methods
Data Collection. The original dataset joins individual CDRs that MNOs rou-
tinely gather for billing purposes with individual-level ILI diagnosis data
from Iceland’s Centre for Health Security and Communicable Disease Control
(CHS-CDC), which collects and stores all records of ILI diagnoses in Iceland.
We developed and used a privacy-preserving data hand-off and merging
protocol approved by Iceland’s Bioethics Committee (Vı́sindasi anefnd): A
large MNO sent encrypted phone identifiers (IDs) and national ID num-
bers (NINs, which are public information in Iceland) to the CHS-CDC. The
CHS-CDC supplied dates of ILI diagnoses for NINs and then replaced NINs
with an anonymous encrypted identifier before providing the data to us
(SI Appendix, Data Linking and Privacy). The MNO provided us with CDR
data (SI Appendix, Mobile Network Data) containing the encrypted IDs of
the phones on either side of a call, the timestamp, the length of the call
(in seconds), and the geographical coordinates of the cell-phone towers
that interacted with the phones (SI Appendix, Table S1). No demographic
or private data, such as age, gender, or contents of calls or texts, were
included. The cell tower accessed during normal phone use provides a proxy
for the device’s location. The granularity of location varies with locality—
regional tower density increases proportionally with regional population
(Fig. 1). At the time, MNOs provided cell coverage for virtually all res-
idences in Iceland, either directly through their network or through a
roaming service. We filtered out individuals with multiple subscriptions (SI
Appendix, Data Preprocessing). Using phone-ownership information, each

phone was matched to the DoD of its owner for the subset of users that
pay only for one phone. This postprocessed subset, referred to as the
dataset below, accounted for 25 to 30% of the MNO’s users and encom-
passed all data analyzed in our paper. We defined the home tower of
each individual as the tower that picks up more calls and texts between
midnight and 8 a.m. than other towers. The distribution of home-tower
locations was strongly correlated with residential census counts for the
corresponding postal codes for our dataset (r = 0.86, P< 8× 10−49) and
among those with ILI diagnosis (r = 0.88, P< 2× 10−43). The home towers
were thus spatially representative for the entire Icelandic population. We
focused our analysis on the 1,434 diagnosed users who generated sufficient
CDR data to establish a home-tower location in the 4-wk period centered
on their DoD.

Feature Extraction. To characterize user behavior, we extracted 36 fea-
tures (independent variables) from both incoming and outgoing CDR data
encompassing movement, activity, and social-network behavioral patterns
(SI Appendix, Feature Extraction). Most features exhibited a right-skewed
distribution (SI Appendix, Fig. S2) and shared general characteristics across
control and diagnosis groups. They include the following (boldface in
Table 1).

Number of towers visited measures the number of unique tower coor-
dinates connected to by the cell phone within a time interval (bin). This
feature helps describe movement during the time period, but can inflate in
areas where multiple towers can provide cellular signal.

Mean call duration (incoming and outgoing) measures call activity by
dividing the total duration of calls by the number of calls the user placed
or received in the time interval.

Number of calls (outgoing) measures the number of calls placed by the
device in the time interval.

Departure from Routine Behavior. We use xfid = Ef (i, d) to denote the raw
feature value for a feature f , extracted from the CDR by function E, for
individual i, and on day d. Extraction is performed for all features f in
Table 1.

To control for the weekly behavioral routine of individual i, each fea-
ture value is detrended through linear regression over values of the same
weekday in the past W weeks. Specifically, let

pj = xfi,(d−7·(W−j)) for j = 0, 1, . . . , W ,

and denote by J those indices j∈{0, 1, . . . , W}, where pj is defined. Then,
(pj)j∈J is the measured behavior on the same day of the week from the pre-
vious W weeks before day d for feature f and individual i, with pW denoting
the behavior in week W .

We used W = 10 weeks of past data to correct for seasonality in our
experiments, which gave comparable results to an alternative approach to
detrending based on ranking features and normalizing them (SI Appendix,
Seasonality).

Based on the data, we used a linear model to capture the change in val-
ues over time pj = βj +α+ εj with errors εj for each j∈ J; we fit parameter
values for α̂ and β̂ to minimize the squares regression error

Fig. 1. Combining health records with call-data records. (Left) Cell towers act as a proxy for location, which, when coupled with the timestamp, allow
movement inference. Different colors show inferred movements of a typical cell-phone user at different time periods over a period of 3 d. (Right) The
epidemic curve for the 2009 H1N1v outbreak in Iceland, showing a single pronounced peak. The green dotted line shows the number of laboratory samples
taken, the red line shows the number of those testing positive for H1N1v, and the black line shows the estimate of suspected H1N1v cases per week from
the recorded ILI incidence (19). The expected H1N1v positive cases (blue dotted line) are extrapolated from the suspected ILI cases and the percentage of
samples found positive each week.
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Table 1. Feature characteristics from the 29-d period around each individual’s DoD (additional
characteristics are in SI Appendix, Table S2)

Control Diagnosed
Feature Mean Mean Anomalous days

Number of towers visited 3.04 2.74 −12, −2, −1, 0, 1, 2, 3, 4
Number of new locations visited 0.5 0.43 1, 3
Unique contact count

Incoming 2.25 2.02 ∅
Outgoing 2.50 2.28 1, 2, 3, 6
Both 4.04 3.67 2

New contacts
Incoming 0.61 0.50 ∅
Outgoing 0.65 0.55 1, 3, 6
Both 1.19 1 0, 1, 3

Call duration, total, s
Incoming 190 480.51 0, 1, 2
Outgoing 162 435.09 0
Both 479.5 915.60 ∅

Calls count
Incoming 3.10 2.84 ∅
Outgoing 3.60 3.37 1, 2
Both 6.66 6.22 1

Texts count
Incoming 2.71 2.87 −10
Outgoing 1.74 1.93 1, 2
Both 4.46 4.79 −10, 11

Calls and texts count
Incoming 5.78 5.71 ∅
Outgoing 5.34 5.30 1, 2
Both 11.12 11.01 2

Mean call duration
Incoming 133.35 140.74 −1, 0, 1, 2, 4, 11
Outgoing 107.96 106.74 ∅
Both 143.14 149.84 −8, −1, 0, 1, 2, 3, 4, 11, 13, 14

Top 3 contacts by duration
(SI Appendix, Sensitivity Analysis)
Incoming 0.68 0.69 ∅
Outgoing 0.70 0.69 ∅
Both 1.37 1.38 1

Remaining contacts by duration
Incoming 1.57 1.33 ∅
Outgoing 1.80 1.58 1, 2, 4, 6
Both 3.37 2.92 1, 4, 6

Top 3 contacts by frequency
Incoming 0.58 0.56 ∅
Outgoing 0.63 0.61 1, 2
Both 1.21 1.17 1

Remaining contacts by frequency
Incoming 1.67 1.46 0
Outgoing 1.88 1.67 −9, 2, 6
Both 3.54 3.13 ∅

The final column indicates which days relative to DoD show a statistically significant difference between the
control and diagnosed groups. The boldface features are discussed in the main text.

arg minα̂,β̂

∑
j∈J

ε
2
j = arg minα̂,β̂

∑
j∈J

(
pj − βj−α

)2
.

The detrended feature value, measuring the deviation from weekly routine,
is then defined as

zfid = xfid − β̂W − α̂.

Control Group. Each diagnosed individual was matched with a control
individual from the undiagnosed group, based on home location. All mea-
surements thus far have applied to individuals diagnosed with ILI during
the epidemic. To compare the diagnosed population against a control
population, a subset was selected from the rest of the data—those not

diagnosed for ILI were assumed to be uninfected, though they may show
behavior consistent with symptoms but are well, or have ILI symptoms but
did not use health services. Of 74,644 people, we were able to identify
home towers for 36,140. Each diagnosed person’s control was selected ran-
domly from the undiagnosed individuals among the 36,140 who shared
a home tower with the diagnosed individual. For this dataset, control
selection exhibited no noticeable differences across three methods: select-
ing randomly, matching for home tower, or matching home tower and
frequency of calls (36).

We analyzed the pattern differences between the means of the
detrended feature values (zfid) of the individuals in the two groups. The
29-d range (2 wk either side of DoD) centered around every diagnosed indi-
vidual’s DoD range [−14, 14], with DoD mapping to zero. Controls used the
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same days of data as their diagnosed match. The average deviation from
weekly routine on all days in the range was compared (SI Appendix, Fig. S9)
with original feature values (xfid), shown in SI Appendix, Figs. S2, S3, and S8.

Statistical Comparison. We compared the behavior of the diagnosed and
control groups across each detrended feature value zfid and each day
using the Kolmogorov–Smirnov (KS) statistic. To counteract the increase
in type I errors caused by running multiple significance tests, we used
the Benjamini–Hochberg (BH) procedure to control the false discovery rate
(FDR), as it presents the most conservative FDR correction for this mix; the
adjusted P values can then be used to assess the evidence for or against
the null hypothesis. The BH procedure assumes independent tests. Some
tests act on dependent, interacting samples—e.g., a value on a specific
day is ranked against values from the same day of the week for several
weeks prior—whereas others are independent tests. Confidence bands for
the KS test were computed and plotted for each day of the primary three
features deemed significant based on the P values with the FDR correc-
tion (SI Appendix, Fig. S9). The significance test and the CI calculations use
α= 0.05.

Results
Several features show significant change between the routine
behavior of the control and diagnosed populations around their
DoD. The actual time period and magnitude of the behavioral
change varies by feature (Table 1, rightmost column), but the
number of towers visited, mean call duration, and the number
of outgoing calls show the most pronounced signals of behavior
change.

Less Movement. The number-of-towers feature indicates that the
diagnosed group tends to travel less than usual, even before
diagnosis. Such lower travel patterns coincide with the typical
symptomatic period of influenza (37). The maximum effect is
observed on the day following diagnosis, when diagnosed individ-
uals travel to 1.1 to 1.4 fewer locations than normal. Differences
are observed between the diagnosed and control groups from
2 d prior to the DoD until 4 d after DoD (KS > 0.084, P <
3.2× 10−3; Fig. 2 and SI Appendix, Fig. S10). Other days in
the 4-wk period display the diagnosed and control groups acting
similarly.

Longer Calls. Mean call duration shows that people tend to make
longer calls on average on the day after the DoD (Fig. 2),
when significant differences are observed between the diagnosed
and control groups (KS =0.155, P < 4.6× 10−10; SI Appendix,
Fig. S22). On the day following diagnosis, diagnosed individuals
spend an average of 41 to 66 s longer on the phone than usual.

Fewer Calls Placed. Number of outgoing calls gives another per-
spective of behavior following diagnosis. Although call duration
increases around DoD, the number of outgoing calls decreases

on the day after the DoD, with an average of 2.3 to 3.3 fewer
calls than is routine (KS =0.102, P =5.6× 10−4; SI Appendix,
Fig. S18). On the day of diagnosis, diagnosed individuals increase
outgoing calls relative to their routine compared to the days
before and after.

Statistical significance through FDR-corrected P values is sup-
ported by KS CIs for nearly all comparisons (Fig. 2 and SI
Appendix, Fig. S9). Notably, the diagnosed group displays signif-
icant changes in mobility, even prior to seeking healthcare and
receiving a diagnosis (SI Appendix, Visualization).

Limitations. The results depend on the metadata arising from
mobile-phone use, presenting both advantages and drawbacks
(21, 33). The increased data bandwidth provided by MNOs
and rapid device and app development over the past decade
have altered user behavior patterns to communicate more via
internet-based applications and less via calls and text. In our
dataset, cellular internet data access (denoted general packet
radio service [GPRS]) provided additional location informa-
tion to CDR records of calls and texts, a situation that has
likely shifted since the H1N1 outbreak (SI Appendix, Compar-
ing CDR and GPRS Data). At 3 y following the epidemic, the
Icelandic CDR and GPRS data contained a stronger location
proxy than in 2009 due to more smartphone apps periodically
connecting to cellular towers for Internet access, but poorer
information for features pertaining to call duration, frequency,
and top contacts.

Since many nations experience limited Internet access [53.6%
of the world population in 2019 (22)] and smartphone availabil-
ity [39.4% worldwide (38)], it would be reasonable to assume that
call and text usage in these locations may follow similar patterns
as in our dataset, but we caution against assuming all cell-phone
behavior to be universal (33). Further, mobile-phone ownership
may bias against those in greatest need of public health interven-
tion. The results report aggregate behavior changes, which are
likely to include patterns caused by other illnesses or injuries.
Our approach depends on maintaining individual-level behav-
ioral histories, since the signal we identified concerns departure
from routine behavior rather than the actual behavior itself, as
seen by comparing the raw and detrended distributions 6 d prior
to diagnosis (SI Appendix, Fig. S2) with the day following the
DoD (SI Appendix, Fig. S3). Finally, Iceland contains a small,
mostly homogeneous, and generally affluent population bound
to an island, with idiosyncratic behavior, including unusually
high mobile-phone usage. Seasonal effects may be exaggerated
in Icelanders compared to other populations due to Iceland’s
proximity to the Arctic.

Discussion
The combination of mobile-phone traces with health records
reveals behavior change associated with symptom onset for

Fig. 2. Changes in average phone-use behavior associated with diagnosis. (Left) Users visit fewer locations on days around diagnosis. (Center) They make
and receive longer phone calls on days near diagnosis. (Right) They initiate fewer calls on the days after diagnosis, with the exception of the day of diagnosis
itself. Graphs display the mean deviation from “normal” routine behavior (zfid) for each group on the relative day of illness determined by DoD (day 0). CIs
(2.5 to 97.5%) are calculated using bootstrapping (SI Appendix, Visualization).
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Fig. 3. Privacy-preserving data-sharing protocol. Privacy-preserving architecture for syndromic surveillance using CDR data for future experimental
design. An independent third-party broker is provided with real-time deidentified CDR data, extracts features, and runs the prediction models to
generate an epidemic curve (Left; O1). The broker could also be provided labeled anonymous health information to join with the CDR data to cali-
brate or retrain the classifiers (Right; O2). The design accommodates mutual distrust, ensuring that health officials cannot monitor behavior or track
mobility of individuals, that MNOs are not provided with any health information of customers, and that the broker only operates on deidentified
data.

H1N1v in unprecedented detail. Observations of behavior in
CDRs are consistent with our knowledge of influenza pathol-
ogy: Individuals become infected and begin showing symptoms,
which their behavior reflects; they then access healthcare, receive
a diagnosis, and display activity patterns different from nor-
mal for a period, after which they return to normality. This
picture depicts a group trend; however, in an effort to avoid
ecological inference fallacy (39), we observe that individuals’
changed behavior varied widely within a group. The variabil-
ity of individuals’ behavioral responses suggests that CDR
data are best suited for aggregate analysis of symptomatic
behavior.

Although we cannot know the exact cause in each indi-
vidual case, collectively, the duration of anomalies is consis-
tent with estimates of influenza symptom duration (40). The
use case in Iceland demonstrates that disease-monitoring sys-
tems could be expanded with CDRs, already passively collected
by local mobile operators, that can discern behavior consis-
tent with ILI symptoms while following a protocol to preserve
user privacy, and our approach provides a complementary way
of estimating the duration of symptoms and, therefore, an
important component for estimating the economic impact of
an outbreak.

The results presented here have important implications for
modeling disease dynamics. As individuals change behavior due
to symptom onset, their potential to transmit is modified, yet
modeling efforts that have been central to mitigation mea-
sures for novel pathogens tend to ignore behavioral effects,
due largely to a dearth of quantitative information. Such lim-
itation is evident in the case of modeling of SARS-CoV-2
transmission—for instance, where different groups vary in their
ability to alter their behavior in response to exposure or ill-
ness (31, 41). Here, we quantify the direction and magnitude of
the behavioral change effect for H1N1v on an atypical popula-
tion that exhibits fewer sources of variability than most. Other
pathogens and populations will have different properties that
will require a context-specific investigation. Our work provides
a methodology for capturing and quantifying behavior change
that can be used to improve the predictive power of models
in future outbreaks. We argue that such an approach would
have an important part to play in outbreak response for novel
pathogens.

A separation of access to private data is vital for ensur-
ing public trust. While aggregation helps protect privacy (31),
enabling health officials to interact with the data increases the
risk to individual or group privacy. Concerns have been raised
over government responses to COVID-19, where contacts of
those infected are traced from historical CDR data (34). Our
data-sharing protocol (Fig. 3 and SI Appendix, Privacy-Preserving

Data Sharing) mitigates risk by ensuring that: 1) Mobile oper-
ators that hold cell-phone metadata do not have access to any
new health information for their customers held by health offi-
cials; and 2) health officials do not access cell-phone metadata.
To further strengthen the separation, differential privacy meth-
ods can be used to introduce controlled noise to the data in
such a manner that aggregate statistics remain unchanged, while
provably protecting the privacy of individuals and small groups
(42, 43). At the same time, communicating the collective ben-
efit of studies such as this one, and the effort taken to protect
data, is necessary to help the public decide when the public
health value of the information provided is worth the risk to
their privacy.

Our results suggest that CDR metadata may allow surveil-
lance of symptomatic diseases whose symptom intervals are
sufficiently long and behavioral changes sufficiently pronounced
that they produce a signal that is visible at the resolution afforded
by the data. The granularity of these data is rapidly refining,
both spatially, with denser tower infrastructure being built in
response to population growth and newer generations of devices
(e.g., 5G), and temporally, as mobile phones become increas-
ingly used for Internet applications. Greater data resolution
may help offset the relatively small effect sizes in our results,
which are confounded by other brief interruptions to people’s
routines, and allow the approach to extend beyond a large-
scale epidemic of a transmissible pathogen. Environments lack-
ing health-monitoring infrastructure, but where mobile-phone
use is prevalent and consistent (33), have the greatest poten-
tial gains from CDR-based epidemic surveillance. In particular,
establishing the nature of symptomatic behavior provides an
opportunity to use artificial intelligence to identify patterns
suggesting that an individual or a group is symptomatic, and
thus estimate the numbers of cases. We are optimistic that
further study could establish the full generality and versatil-
ity of infectious disease surveillance using call-data records
on their own.

Data Availability. All study data are included in the article and/or SI
Appendix. The code and documentation used in our analysis are available
at https://github.com/SimBioSysLab/cdr-open-code.
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