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The shortening of the poly(A) tail of cytoplasmic mRNA (deadenylation) is a pivotal step
in the regulation of gene expression in eukaryotic cells. Deadenylation impacts on both
regulated mRNA decay as well as the rate of mRNA translation. An important enzyme
complex involved in poly(A) shortening is the Ccr4-Not deadenylase. In addition to at least
six non-catalytic subunits, it contains two distinct subunits with ribonuclease activity: a
Caf1 subunit, characterized by a DEDD (Asp-Glu-Asp-Asp) domain, and a Ccr4 component
containing an endonuclease-exonuclease-phosphatase (EEP) domain. In vertebrate cells,
the complexity of the complex is further increased by the presence of paralogs of the Caf1
subunit (encoded by either CNOT7 or CNOT8 ) and the occurrence of two Ccr4 paralogs
(encoded by CNOT6 or CNOT6L). In plants, there are also multiple Caf1 and Ccr4 paralogs.
Thus, the composition of the Ccr4-Not complex is heterogeneous.The potential differences
in the intrinsic enzymatic activities of the paralogs will be discussed. In addition, the
potential redundancy, cooperation, and/or the extent of unique roles for the deadenylase
subunits of the Ccr4-Not complex will be reviewed. Finally, novel approaches to study the
catalytic roles of the Caf1 and Ccr4 subunits will be discussed.
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INTRODUCTION
Virtually all mature protein-coding mRNAs in eukaryotic cells
contain a 5′ cap structure and a 3′ poly(A) tail, with the
notable exception of mRNAs encoding histones. Both modifi-
cations play a critical role in translation and mRNA turnover.
In mRNA turnover, shortening of the poly(A) tail (deadenyla-
tion) is the initial and often rate-limiting step (Parker and Song,
2004; Goldstrohm and Wickens, 2008; Wahle and Winkler, 2013).
Following deadenylation, recruitment of the decapping enzyme
complex is followed by exonucleolytic degradation from the 5′ end
by Xrn1, or by the exosome complex with 3′-5′ polarity (Parker and
Song, 2004; Garneau et al., 2007; Houseley and Tollervey, 2009).

Deadenylation may also influence protein synthesis. During
translation, the efficiency of initiation is enhanced by interactions
between the cap and the poly(A) tail, which are mediated by the
poly(A)-binding protein (PABP), the cap-binding factor eIF4E,
and the intermediary scaffold eIF4G (Munroe and Jacobson, 1990;
Gallie, 1991; Wells et al., 1998). Consistent with the notion that the
poly(A) tail contributes to initiation of translation is the observa-
tion that poly(A) tail length correlates with ribosome binding, a
measure for translational efficiency, in Schizosaccharomyces pombe
(Lackner et al., 2007).

Several enzyme complexes are implicated in deadenylation.
These include the conserved, trimeric Pan2-Pan3 complex, com-
posed of a single Pan2 catalytic subunit bound to a Pan3
dimer, the PARN deadenylase, which is absent in single cel-
lular eukaryotes, and less-well characterized enzymes, such as
the circadian deadenylase Nocturnin, and the Caf1z-Ccr4d com-
plex (reviewed in Godwin et al., 2013; Wahle and Winkler,
2013). However, in all model systems examined (Saccharomyces

cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and
human cells), the multisubunit Ccr4-Not complex has been iden-
tified as the main deadenylase (Tucker et al., 2001; Temme et al.,
2004; Yamashita et al., 2005; Nousch et al., 2013).

The activity of the deadenylase enzymes appears to be tar-
geted to specific mRNAs by RNA-binding proteins. The following
paradigms have been established for recruitment of the Ccr4-Not
deadenylase: targeting mediated by direct interactions between
Ccr4-Not and the RNA-binding protein recognizing a linear RNA
sequence, as exemplified by pumilio proteins, or the ARE-binding
protein tristetraprolin (TTP; Goldstrohm et al., 2006; Sandler
et al., 2011); by RNA-binding partners recognizing structural ele-
ments, such as an RNA stem loop structure (Roquin; Leppek et al.,
2013); via ternary complexes, as indicated by recruitment involv-
ing the RNA-binding protein CPEB3, which is mediated via Tob1,
thus forming a ternary CPEB3/Tob1/Ccr4-Not complex (Hosoda
et al., 2011). Finally, an important mechanism for the recruitment
of both Ccr4-Not and the Pan2-Pan3 complex to specific mRNAs
involves interactions with GW182/TNRC6 proteins, which are part
of the miRNA repression complex (Chekulaeva et al., 2011; Fabian
et al., 2011; Kuzuoglu-Ozturk et al., 2012; Huntzinger et al., 2013).
In addition to these mechanisms of recruitment, the Pan2-Pan3
and Ccr4-Not deadenylases can also bind to the poly(A)-binding
protein (PABP). In the case of the Pan2-Pan3 complex, this is
mediated by the presence of a short PAM2 motif in the Pan3 pro-
tein, which can interact directly with the PABP C-terminal domain
(Siddiqui et al., 2007). By contrast, none of the subunits of the
Ccr4-Not complex contain a PAM2 motif. However, this motif is
present in both the Tob1 and Tob2 protein, which directly interact
with the Ccr4-Not complex (Ezzeddine et al., 2007). Thus, where
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the Pan2-Pan3 complex can interact directly with the PABP, this
interaction is indirect in case of the Ccr4-Not complex.

OVERVIEW OF THE Ccr4-Not COMPLEX
The Ccr4-Not complex contains two components that are asso-
ciated with deadenylase activity: the Ccr4 and Caf1 subunits
(Table 1). Carbon catabolite repression (ccr) 4 was originally
identified as a regulator of alcohol dehydrogenase II in the yeast
Saccharomyces cerevisiae (Denis, 1984). Likewise, Ccr4-associated
factor (Caf) 1 was originally isolated in yeast as PGK promoter
directed over production (pop) 2, a mutant overproducing mouse
α-amylase under control of a PGK promoter (Sakai et al., 1992;
Draper et al., 1995). In addition to its nuclease subunits, sev-
eral non-catalytic components have been identified (reviewed in
Collart and Panasenko, 2012; Wahle and Winkler, 2013). Most of
the genes encoding these subunits, including NOT1, NOT2, NOT3
as well as NOT4, were first identified in yeast using a genetic screen
for transcriptional regulators (Collart and Struhl, 1994).

In Saccharomyces cerevisiae, two variant complexes with a dis-
tinct molecular weight of 1.0 and 1.9 MDa are present (Liu et al.,
1997; Liu et al., 1998; Chen et al., 2001). The overall structure
of the yeast 1.0 MDa complex is L-shaped with the Caf1 and
Ccr4 components located in the hinge connecting the two arms
(Nasertorabi et al., 2011). In Homo sapiens, the Ccr4-Not complex
has an estimated molecular weight of 1.2 MDa. Importantly, while
the Not4 subunit appears to be an integral component of the yeast
complex, CNOT4, its human ortholog, resides in a separate com-
plex with an estimated molecular weight of 200 kDa (Lau et al.,
2009).

THE Ccr4 SUBUNIT, ORTHOLOGS, AND PARALOGS
The Ccr4 subunit is characterized by the presence of two domains:
an amino-terminal leucine-rich repeat (LRR) domain, and a
carboxy-terminal endonuclease-exonuclease-phosphatase (EEP)
domain. The latter is associated with its ribonuclease activity.
Analysis of the enzymatic activity of human and yeast Ccr4

indicates that the enzyme has a strong preference for poly(A)
residues in vitro (Chen et al., 2002; Wang et al., 2010). A crystal
structure of the nuclease domain indicates that the C-terminus
forms an α/β-sandwich fold, which is very similar to that of other
hydrolyses such as apurinic/apyrimidinic endonuclease (APE) 1
(Figure 1A; Wang et al., 2010). Two Mg(II) ions are required for
hydrolysis of the phosphoester backbone. The metal ions are coor-
dinated by an asparagine, glutamate, two aspartate, and a histidine
residue, which are part of short sequence motifs that are highly
conserved in the ExoIII/APE1 family of DNA and RNA nucle-
ases. Substitutions of amino acids involved in the coordination of
the metal ions abolish the enzymatic activity (Chen et al., 2002;
Wang et al., 2010). The Mg(II) ions are located at the bottom
of a narrow cleft in which the nucleic acid substrate is inserted
(Figure 1B). The crystal structure of the nuclease domain in com-
plex with an oligo(A) DNA molecule highlights some features
of the selective interaction with poly(A), which involve a specific
interaction between a backbone carbonyl and the 6′ amino group
of the adenosine base (Wang et al., 2010).

In addition to the nuclease domain, Ccr4 contains an amino-
terminal LRR domain (Malvar et al., 1992; Dupressoir et al.,
2001). The LRR repeats are composed of alternating α-helices and
β-sheets, which form a moderately curved solenoid structure with
the β-sheets located on the concave side, and the α-helices exposed
on the convex curvature (Basquin et al., 2012). The LRR domain
provides an interaction surface with the Caf1 subunit (Dupressoir
et al., 2001; Clark et al., 2004).

In the single cellular yeasts Saccharomyces cerevisiae,
Schizosaccharomyces pombe, as well as the metazoans Drosophila
melanogaster and Caenorhabditis elegans, a single Ccr4 subunit
is present. By contrast, two paralogs are present in verte-
brates, including Danio rerio, Xenopus laevis, Mus musculus,
and Homo sapiens (Figure 1C; Dupressoir et al., 2001; Morita
et al., 2007; Cooke et al., 2010). Both Ccr4 paralogs (encoded
by CNOT6 or CNOT6L) can associate with the Ccr4-Not com-
plex, but the two paralogs cannot co-exist in the same complex

Table 1 | Standard names and synonyms of the Ccr4-Not nuclease components.

Caf1 Ccr4

Gene Synonyms Gene Synonyms

Saccharomyces cerevisiae POP2 CAF1 CCR4 FUN27, NUT21

Schizosaccharomyces pombe caf1 pop2 CCR4

Caenorhabditis elegans CCF-1 CCR-4

Drosophila melanogaster Pop2 CAF1 Twin CCR4

Xenopus laevis Cnot7 caf1, caf-1 Cnot6 CCR4A

Cnot8 pop2, calif Cnot6l CCR4B

Danio rerio Cnot7 zgc:153168 Cnot6 Zgc:65822

Cnot8 zgc:63844 Cnot6l Zgc:111987

Mus musculus Cnot7 Caf1 Cnot6

Cnot8 Cnot6l

Homo sapiens CNOT7 Caf1; Caf1a CNOT6 Ccr4; Ccr4a

CNOT8 Pop2; Calif; Caf1b CNOT6L Ccr4-like; Ccr4b
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FIGURE 1 |The Ccr4 nuclease subunit. (A) Structure of the human
Ccr4/CNOT6L catalytic domain. The nuclease domain forms an α/β sandwich
typical for the endonuclease-exonuclease-phosphatase (EEP) domain. The
Mg(II) ions located in the active site are indicated in green; α-helical
regions, blue; β-strands, yellow. (B) Binding of poly(A) by human
Ccr4/CNOT6L. The Mg(II) ions located in the active site are indicated in
green. Structures (using PDB accession number 3NGO) were visualized
using the UCSF Chimera package (http://www.cgl.ucsf.edu/chimera;
Pettersen et al., 2004). (C) Evolutionary conservation of Ccr4 across the

eukaryotic kingdom. Sequence analysis was carried out using Basic local
alignment search tool (BLAST) in combination with the Reference protein
database. Only homologs with >75% sequence coverage as compared to
Saccharomyces cerevisiae (Sc) Ccr4 were selected from the following
species: Schizosaccharomyces pombe (Sp), Caenorhabditis elegans (Ce),
Drosophila melanogaster (Dm), Danio rerio (Dr ), Xenopus laevis (Xl ), Mus
musculus (Mm), Homo sapiens (Hs), Arabidopsis thaliana (At), and Oryza
sativa (Os). The EEP domain is indicated in green; the leucine-rich repeat
domain is highlighted in orange.

(see below for further details). In addition, inspection of the
non-redundant protein databank using the Basic local alignment
search tool (BLAST) identified several homologs of yeast Ccr4 in
Oryza sativa and Arabidopsis thaliana >75% sequence coverage
as compared to Saccharomyces cerevisiae Ccr4. However, none of
these plant homologs contain the characteristic amino-terminal
LRR domain. Indeed, these proteins appear to be more related
to eukaryotic Ccr4 homologs that are not associated with the

Ccr4-Not complex. For instance, Saccharomyces cerevisiae con-
tains three non-essential homologs of Ccr4 (Ngl1, Ngl2, and
Ngl3). While Ngl2 is involved in the processing of the 5.8S ribo-
somal precursor RNA (Faber et al., 2002), Ngl3 is proposed to
play a role in cellular deadenylation independent of Ccr4-Not
(Feddersen et al., 2012). Several human Ccr4 homologs lacking
an LRR domain (Nocturnin/NOC/CCRN4L, Angel, Angel2, and
PDE12) are also implicated in deadenylation (Godwin et al., 2013).
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Nocturnin is a circadian deadenylase that may associate with sub-
units of the Ccr4-Not complex in the absence of an LRR (Baggs
and Green, 2003). Moreover, Angel homolog 2 (Ccr4d) binds to a
distant homolog of Caf1, Caf1z/TOE1 (Wagner et al., 2007). This
complex has deadenylase activity, but its biological function is yet
unclear. Thus, the fact that the plant homologs do not contain
the LRR domain, which is a characteristic for the yeast and verte-
brate Ccr4 subunits, may suggest that plant Ccr4-Not may have a
fundamentally different architecture.

THE Caf1 SUBUNIT, ORTHOLOGS, AND PARALOGS
The Caf1 subunit is characterized by the presence of an RNAse
D domain, which belongs to the DEDD (Asp-Glu-Asp-Asp)
superfamily of proteins associated with ribonuclease (RNAse)
and deoxyribonuclease (DNAse) activity. Crystal structures from
Saccharomyces cerevisiae, Schizosaccharomyces pombe, and H. sapi-
ens Caf1 proteins indicate a central core composed of β-sheets
surrounded by α-helices (Figure 2A; Thore et al., 2003; Jon-
strup et al., 2007; Horiuchi et al., 2009; Petit et al., 2012). As
is the case for the catalytic EEP domain of the Ccr4 subunit,
the Caf1 protein contains two Mg(II) ions, which are required
for its enzymatic activity. The metal ions are coordinated by a
single glutamate and three aspartate residues, and substitution
of any of these amino acids abrogates the enzymatic activity
(Thore et al., 2003; Jonstrup et al., 2007; Horiuchi et al., 2009).
Other bivalent cations may also bind in the active site and
modulate enzyme activity (Andersen et al., 2009). The Saccha-
romyces cerevisiae Caf1 protein is unusual as compared to its
homologs in other species, because it contains a long amino-
terminal extension. In addition, the metal-binding region contains
a non-canonical sequence. Although the purified yeast protein
displays ribonuclease activity, it has a broad specificity and no
preference for poly(A) (Thore et al., 2003). Moreover, muta-
tions of active site residues do not cause phenotypes in yeast
(Viswanathan et al., 2004). Thus, the importance of the enzy-
matic activity of the Saccharomyces cerevisiae Caf1 protein is
not unambiguous. By contrast, the Schizosaccharomyces pombe
and H. sapiens Caf1 orthologs contain highly conserved active
site residues and the ribonuclease activity has a preference for
poly(A) residues (Bianchin et al., 2005; Jonstrup et al., 2007; Hori-
uchi et al., 2009). Moreover, mutation of a residue involved
in Mg(II) coordination results in sensitivity to hydroxyurea of
Schizosaccharomyces pombe (Takahashi et al., 2007). The activity
of Caf1 is distributive and AMP is released as the reaction product
(Bianchin et al., 2005).

The poly(A) binding site of Caf1 has a different shape and is
significantly wider as compared to the substrate binding pocket
of Ccr4 (Figure 2B). No structures are available of Caf1-RNA
complexes, but a model for RNA recognition was proposed based
on the superposition of the DEDD domains of Caf1 and PARN
in complex with poly(A) (Wu et al., 2005; Jonstrup et al., 2007;
Andersen et al., 2009). This led to the identification of con-
served serine and leucine residues for selectivity and processivity,
respectively (Andersen et al., 2009).

As is the case for Ccr4, Caf1 is conserved with a single subunit
present in Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Drosophila melanogaster, and C. elegans. By contrast, two closely

related paralogs (encoded by CNOT7 and CNOT8) are present
in the vertebrates Danio rerio, Xenopus laevis, and Mus musculus
as well as Homo sapiens (Figure 2C). While both Caf1 paralogs
are subunits of Ccr4-Not, their presence in the complex is mutu-
ally exclusive (see below for further details). In plants, there are
multiple homologs of Caf1, which are distantly related to their
counterparts in the fruit fly and vertebrates. Interestingly, the
human Caf1z/TOE1, which is part of a complex with the distant
Angel2/Ccr4d homolog that lacks an LRR domain, is more closely
related to plant Caf1 homologs (Wagner et al., 2007). This may
suggest that the plant Caf1 homologs form complexes with their
respective Ccr4 partners via interactions that do not involve an
LRR domain. It may be speculated that some of these complexes
may contain the plant orthologs of the non-catalytic Ccr4-Not
subunits.

THE NON-CATALYTIC SUBUNITS
The large Not1 (CNOT1) subunit is the central platform of the
complex, on to which several modules are attached (Bai et al.,
1999). The nuclease sub-complex is anchored to the central MIF4G
domain, which is composed of several α-helices and which binds
to the Caf1 subunit (Figures 3A,C; Bai et al., 1999; Basquin
et al., 2012; Petit et al., 2012). Interactions between Caf1 and the
LRR domain of Ccr4 are essential for stable interaction of the
Ccr4 subunit to the complex (Draper et al., 1995; Dupressoir
et al., 2001; Mittal et al., 2011; Basquin et al., 2012). The nucle-
ase module appears to contain a single Caf1 and Ccr4 subunit
bound to a single Not1 (CNOT1) MIF4G domain. In verte-
brate organisms, the presence of two paralogs of Caf1 as well
as the occurrence of two highly related Ccr4 subunits thus sug-
gests that the Ccr4-Not complex is heterogeneous. Both human
Caf1 paralogs can bind to the human CNOT1 subunit. In addi-
tion, both Caf1 proteins can interact with either one of the Ccr4
paralogs and no clear binding preference has been identified
(Figure 3B).

Other modules of the Ccr4-Not complex include the
CNOT11/CNOT10 module, which is attached to the amino-
terminus of CNOT1 (Not1) that largely contains α-helical HEAT
repeats (Basquin et al., 2012; Bawankar et al., 2013; Mauxion et al.,
2013). A central region encompassing a DUF3819 domain inter-
acts with the RQCD1/RCD1/Caf40/CNOT9 subunit, which is
composed of Armadillo repeats forming a bundle of α-helices
(Garces et al., 2007; Bawankar et al., 2013). This subunit has the
ability to bind single and double stranded nucleic acids (Garces
et al., 2007). Interestingly, the affinity for sequences containing
G/C/T is much greater than oligo(A). The carboxy-terminus of
CNOT1 is bound by CNOT2 (Not2), which interacts with CNOT3
(Not3/Not5) via their carboxy-terminal Not-Box region (Bai et al.,
1999; Bawankar et al., 2013; Bhaskar et al., 2013; Boland et al.,
2013). In yeast, this region also interacts with the Not4 ubiquitin
protein ligase subunit (Bai et al., 1999). However, in human cells,
the homologs CNOT4 subunit does not bind stably to the CNOT1
protein (Lau et al., 2009).

In addition to the nuclease subunits, several non-catalytic sub-
units are implicated in mRNA deadenylation (Tucker et al., 2002;
Temme et al., 2004; Ito et al., 2011a,b; Takahashi et al., 2012). How-
ever, genetic analysis in Saccharomyces cerevisiae has shown that
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FIGURE 2 |The Caf1 nuclease component. (A) Structure of the human
Caf1/CNOT7 catalytic domain (PDB accession number 4GMJ). The Mg(II)
ions located in the active site are indicated in green; α-helical regions, blue;
β-strands, yellow. (B) Model of poly(A) binding by human Caf1/CNOT7. The
model was derived from superposition the structure of the PARN
deadenyase in complex with RNA (PDB accession number 2A1R). The
Mg(II) ions located in the active site are indicated in green. Structures were
visualized using the UCSF Chimera package (http://www.cgl.ucsf.edu/
chimera; Pettersen et al., 2004). (C) Evolutionary conservation of Caf1

across the eukaryotic kingdom. Sequence analysis was carried out using
Basic local alignment search tool (BLAST) in combination with the
Reference protein database. Only homologs with >75% sequence coverage
as compared to Saccharomyces cerevisiae (Sc) Caf1 were selected from
the following species: Schizosaccharomyces pombe (Sp), Caenorhabditis
elegans (Ce), Drosophila melanogaster (Dm), Danio rerio (Dr ), Xenopus
laevis (Xl ), Mus musculus (Mm), Homo sapiens (Hs), Arabidopsis thaliana
(At), and Oryza sativa (Os). The DEDD domain is highlighted in
yellow.

the Not-module has additional roles as compared to the Caf1 and
Ccr4 subunits (Bai et al., 1999). The additional role of the Ccr4-
Not complex is less well defined as compared to its function in
deadenylation, and may include transcriptional regulation, and/or
an involvement in the co-translational control of protein folding
(Collart and Panasenko, 2012).

SPECIALIZED OR REDUNDANT ROLES FOR THE Caf1 and Ccr4
PARALOGS?
The duplication of the genes encoding the Caf1 and Ccr4 subunits
in vertebrate cells led to the suggestion that the paralogs might
have slightly specialized roles in mRNA deadenylation. So far,
this question has been addressed in most detail by studying the
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FIGURE 3 | Modular architecture of the Ccr4-Not complex. (A) Schematic
overview of the modular architecture of the mammalian Ccr4-Not complex.
(B) Heterogeneity of the Ccr4-Not complex in vertebrate cells. The duplication
of the catalytic subunits Caf1 (light blue, CNOT7; dark blue, CNOT8) and Ccr4
(yellow, CNOT6; orange, CNOT6L) may result in the formation of four highly
related complexes. The non-catalytic components are represented in a
L-shaped form (gray). (C) Structural overview of the nuclease sub-complex.
Indicated are the MIF4G domain of human CNOT1 (yellow), the BTG domain
of TOB1 (green), Caf1/CNOT7 (blue), yeast Ccr4 (khaki), and the catalytic EEP

domain of human Ccr4/CNOT6L (cyan). The location and orientation of the
active sites of Caf1 and Ccr4 are indicated and Mg(II) ions are shown (dark
gray). The model was generated by superimposing the Tob-Caf1 structure
(PDB accession number 2D5R), the MIF4G domain of human CNOT1 in
complex with Caf1/CNOT7 (PDB accession number 4GMJ), and the EEP
nuclease domain of human Ccr4/CNOT6L (PDB accession number 3NGO) on
the structure of the yeast Not1-Caf1-Ccr4 complex (PDB accession number
4B8C). Molecular graphics and analyses were performed with the UCSF
Chimera package (http://www.cgl.ucsf.edu/chimera; Pettersen et al., 2004).

human paralogs. The human Caf1 proteins (76% identity, 89%
similarity at the amino acid level) are encoded by the CNOT7
and CNOT8 genes (Figure 4A). The surface residues in the
active site are completely conserved (Figure 4B). Despite the high
sequence conservation, however, the enzymatic activity of the
purified Caf1/CNOT7 and Caf1/CNOT8 proteins differs substan-
tially. Whereas both proteins display selectivity toward poly(A),
the Caf1/CNOT8 protein appeared to have a significantly higher

turnover rate (Bianchin et al., 2005). By contrast, following a
systematic approach to identify interacting proteins of Ccr4-Not
subunits, a more limited role was proposed for the Caf1/CNOT8
subunit as compared to Caf1/CNOT7. In this study, proteins
involved in splicing were not found to associate with Caf1/CNOT8,
and a less stable association with Ccr4/CNOT6 was proposed (Lau
et al., 2009). However, the role of Caf1/CNOT7 and Caf1/CNOT8
in the regulation of mRNA levels is essentially identical when
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FIGURE 4 | Similarity of the Caf1 and Ccr4 paralogs. (A) Schematic
overview of similarity between the Caf1 paralogs encoded by CNOT7 and
CNOT8. The conserved DEDD nuclease domain is indicated in yellow.
(B) Conservation of surface residues between the Caf1/CNOT7 and
Caf1/CNOT8 subunits. The surface of the human Caf1/CNOT7 protein is
shown with residues identical in Caf1/CNOT7 and Caf1/CNOT8 shown in gray,
conserved residues in tan or dark yellow, and non-conserved residues in
purple. The BTG domain of TOB1 is shown in dark gray. The image was

generated using PDB file 2D5R. (C) Schematic overview of similarity
between the Ccr4 paralogs encoded by CNOT6 and CNOT6L. The conserved
EEP nuclease domain is indicated in yellow, the LRR domain in blue.
(D) Conservation of surface residues between the Ccr4/CNOT6 and
Ccr4/CNOT6L subunits. The surface of the human Ccr4/CNOT6L protein is
shown with residues identical in Ccr4/CNOT6 and Ccr4/CNOT6L shown in
gray, conserved residues in tan or dark yellow, and non-conserved residues in
purple. The image was generated using PDB file 3NGO.

studied in human breast cancer cells using knockdown approaches
in combination with genome-wide expression profiling (Aslam
et al., 2009). Upon knockdown of either CNOT7 or CNOT8
mRNA, modest changes were observed on a limited set of mRNAs.
By contrast, quantitatively significant effects were observed upon
combined knockdown of CNOT7 and CNOT8. Thus, from this
study it appears that the Caf1/CNOT7 and Caf1/CNOT8 paralogs
do not have intrinsically different properties in the regulation of
mRNA levels in cells.

The human Ccr4 proteins (78% identity, 88% similarity at
the amino acid level) are encoded by the CNOT6 and CNOT6L
genes (Figure 4C). As is the case for the human Caf1 par-
alogs, the surface residues in the active site are completely
conserved in Ccr4/CNOT6 and Ccr4/CNOT6L (Figure 4D). In
cells, these paralogs appear to have essentially identical prop-
erties as determined using a knockdown approach in combi-
nation with microarray-based expression profiling (Mittal et al.,
2011). Whereas CNOT6 knockdown has little effect on mRNA
levels as compared to CNOT6L knockdown, the combined
knockdown of CNOT6 and CNOT6L quantitatively changes the
differential expression pattern observed upon CNOT6L knock-
down.

The importance of duplications of the genes encoding Caf1 and
Ccr4 remains unclear. It may be speculated that, whilst the intrinsic

properties of the Caf1 paralogs on the one hand, and of the Ccr4
paralogs on the other, appear to be essentially identical, duplica-
tion of the genes encoding the Caf1 and Ccr4 subunits may have
allowed fine-tuning of tissue-specific expression of these proteins
in vertebrata. Therefore, whilst the CNOT7 and CNOT8 genes, as
well as CNOT6 and CNOT6L, respectively, may be largely redun-
dant, they may have cell-type specific functions. For instance,
Ccr4/CNOT6L, but not Ccr4/CNOT6, is required for prolifera-
tion of mouse 3T3 fibroblast cells (Morita et al., 2007). By contrast,
both Ccr4/CNOT6 and Ccr4/CNOT6L are required for prolifera-
tion of human MCF-7 breast carcinoma cells (Mittal et al., 2011).
Moreover, while both Ccr4 paralogs are involved in the mainte-
nance of MCF-7 cell viability, no such role has been documented
for Ccr4/CNOT6L in mouse 3T3 cells (Morita et al., 2007; Mittal
et al., 2011).

THE BTG/TOB PROTEINS
The BTG/TOB proteins are the best characterized interaction part-
ners of the Caf1 proteins in vertebrates (Mauxion et al., 2009;
Winkler, 2010). These proteins interact with the Caf1 protein
via their conserved amino-terminal BTG domain, which inter-
acts at a site away from the Caf1 active site residues (Figure 3C;
Horiuchi et al., 2009). When over-expressed, these proteins inhibit
cell cycle progression, which is dependent on interactions with
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the Caf1 proteins (Horiuchi et al., 2009; Doidge et al., 2012;
Ezzeddine et al., 2012). Interestingly, the number of these proteins
appears to have expanded during evolution. Single cellular eukary-
otes do not contain a gene encoding a BTG/TOB protein, but
BTG/TOB proteins are present in Caenorhabditis elegans (1),
Drosophila melanogaster (2), mouse (6), and human (6) cells. In
their carboxy-termini, the TOB1 and TOB2 proteins are highly
similar and contain a conserved PAM2 motif that is able to
interact with the PABP C-terminal domain (Ezzeddine et al.,
2007). Similarly, the BTG1 and BTG2 proteins, which contain
a short carboxy-terminal extension, are highly related. Thus, an
intriguing number of possible interactions may occur between
TOB1/TOB2 or BTG1/BTG2 and the Caf1 paralogs in vertebrate
cells. Although the use of genetically engineered mice lacking the
Tob1, Tob2, Btg1, or Cnot7 gene have started to uncover the sig-
nificance of specific roles of the paralog genes, the fundamental
importance of this network remains presently unclear (Yoshida
et al., 2000; Nakamura et al., 2004; Park et al., 2004; Ajima et al.,
2008).

In vitro, BTG2 can inhibit the activity of purified Caf1, although
the conserved BTG domain of TOB1 does not affect the activity
of Caf1 (Yang et al., 2008; Horiuchi et al., 2009). In addition, it
was reported that TOB1 can inhibit the deadenylase activity of
immunopurified GFP-CNOT6L (Miyasaka et al., 2008). However,
functional studies based on reporter genes indicate that BTG2,
TOB1, and TOB2 are factors promoting deadenylation and mRNA
degradation in cellular transfection assays (Ezzeddine et al., 2007;
Mauxion et al., 2008; Doidge et al., 2012; Ezzeddine et al., 2012).

COLLABORATION OR SPECIALIZATION OF Caf1 AND Ccr4
SUBUNITS?
At first glance, several findings suggest a collaborative mode of
action for Caf1 and Ccr4: firstly, both proteins have a preference
for poly(A), and, secondly, the subunits directly interact. However,
as explained above, it is ambiguous whether the Saccharomyces
cerevisiae Caf1 is an active deadenylase in vivo, indicating that
the yeast Ccr4 subunit may be the only active catalytic subunit
(Tucker et al., 2002; Thore et al., 2003; Viswanathan et al., 2004).
Moreover, the (partial) crystal structure of the yeast Not1-Caf1-
Ccr4 sub-complex shows that the catalytic centers are distant and
pointing in different directions (Figure 3C; Basquin et al., 2012).
Functional analysis of Caf1 and Ccr4 in human cells also indi-
cate that the proteins do not have identical roles. Comparison
of the expression profile of Caf1 knockdown cells with that of
Ccr4 knockdown cells shows qualitative differences in the dif-
ferentially regulated mRNA sets (Mittal et al., 2011). Moreover,
the phenotypes of Caf1 knockdown cells are different to that of
Ccr4 knockdown cells. Whereas cell proliferation is reduced upon
knockdown of either Caf1 or Ccr4, Ccr4 is required for cell viabil-
ity and the prevention of cellular senescence. Thus, these findings
suggest that the Caf1 and Ccr4 subunits may have specialized
roles.

It is unclear what the mechanistic basis is for the differential role
in mRNA deadenylation of the Caf1 and Ccr4 subunits. It may be
speculated that the Ccr4-Not complex may be distinctly arranged
depending on the mechanism of recruitment by protein–protein
interactions. Thus, depending on the particular proteins involved,

either the Caf1 or the Ccr4 subunit may be placed in a suitable
orientation for deadenylation.

COOPERATION AND REDUNDANCY WITH OTHER
DEADENYLASE COMPLEXES
Whilst the Ccr4-Not complex is described as the main deadenylase
in a variety of organisms, including Saccharomyces cerevisiae
and human cells (Tucker et al., 2001; Yamashita et al., 2005), it
is clear that other deadenylase complexes, notably the Pan2-
Pan3 complex, also play an important role. Using transcriptional
pulse experiments of reporter mRNAs in human cells, it has
been established that Pan2-Pan3 is important for the early stage
of deadenylation in human cells, with the Ccr4-Not compo-
nents involved in a distinct, second stage (Yamashita et al., 2005;
Zheng et al., 2008). Interestingly, interactions between Pan2-Pan3
and Ccr4-Not can be detected suggesting that both deadeny-
lase complexes can reside in a higher order complex that may
include other components (Zheng et al., 2008). Thus, these
experiments suggest that Pan2-Pan3 and Ccr4-Not may have
unique, but cooperative roles, in mRNA decay. On the other
hand, genetic analyses in the budding yeast Saccharomyces cere-
visiae indicate that yeast pan2� or ccr4� cells lacking a single
catalytic deadenylase subunit are viable and do not display sig-
nificant growth phenotypes (Boeck et al., 1996; Brown et al.,
1996; Tucker et al., 2001). By contrast, yeast pan2� ccr4� cells
lacking both catalytic subunits display a strong synthetic phe-
notype indicating that the Pan2-Pan3 and Ccr4-Not complexes
are largely redundant and can compensate for each other’s loss
of function (Boeck et al., 1996; Brown et al., 1996; Tucker et al.,
2001).

PERSPECTIVE AND CONCLUDING REMARKS
Recently, significant progress has been made to understand the
importance of deadenylation by the Ccr4-Not complex. Despite
this, fundamental questions remain regarding the significance
of the duplications of genes encoding the Ccr4-Not nuclease
subunits, and the enzymatic mechanism of deadenylation by Ccr4-
Not. The functional significance of paralogs encoding the nuclease
subunits and of the (potential) redundancy with other deadeny-
lases may be addressed by using mouse knockout models and mice
engineered to have point mutations resulting in catalytically inac-
tive deadenylase subunits. Such experiments may be facilitated by
advances in genome engineering tools, such as the use of zinc finger
nucleases or RNA-guided genome editing using the CRISPR/Cas
system. Additionally, the use of novel approaches, such as the use
of chemical probes of deadenylase enzymes that specifically inhibit
their enzymatic activity without affecting structural roles, should
be explored to further the understanding of deadenylation by the
Ccr4-Not complex (Maryati et al., 2013).
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