
Frontiers in Immunology | www.frontiersin.

Edited by:
Eloi R. Verrier,

INSERM UMR_S1110 Institute de
Recherche sur les Maladies Virales et

Hepatiques, France

Reviewed by:
Jean-Pierre Levraud,

Institut Pasteur, France
Felix Ellett,

Massachusetts General Hospital and
Harvard Medical School, United States

*Correspondence:
Benjamin L. King

benjamin.l.king@maine.edu

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 01 December 2020
Accepted: 21 April 2021
Published: 07 May 2021

Citation:
Sullivan C, Soos B-L,

Millard PJ, Kim CH and King BL
(2021) Modeling Virus-Induced

Inflammation in Zebrafish:
A Balance Between Infection Control

and Excessive Inflammation.
Front. Immunol. 12:636623.

doi: 10.3389/fimmu.2021.636623

REVIEW
published: 07 May 2021

doi: 10.3389/fimmu.2021.636623
Modeling Virus-Induced
Inflammation in Zebrafish:
A Balance Between Infection
Control and Excessive Inflammation
Con Sullivan1, Brandy-Lee Soos2, Paul J. Millard3, Carol H. Kim4,5

and Benjamin L. King2,6*

1 College of Arts and Sciences, University of Maine at Augusta, Bangor, ME, United States, 2 Department of Molecular and
Biomedical Sciences, University of Maine, Orono, ME, United States, 3 Department of Environmental and Sustainable
Engineering, University at Albany, Albany, NY, United States, 4 Department of Biomedical Sciences, University at Albany,
Albany, NY, United States, 5 Department of Biological Sciences, University at Albany, Albany, NY, United States,
6 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States

The inflammatory response to viral infection in humans is a dynamic process with complex
cell interactions that are governed by the immune system and influenced by both host and
viral factors. Due to this complexity, the relative contributions of the virus and host factors
are best studied in vivo using animal models. In this review, we describe how the zebrafish
(Danio rerio) has been used as a powerful model to study host-virus interactions and
inflammation by combining robust forward and reverse genetic tools with in vivo imaging of
transparent embryos and larvae. The innate immune system has an essential role in the initial
inflammatory response to viral infection. Focused studies of the innate immune response to
viral infection are possible using the zebrafishmodel as there is a 4-6 week timeframe during
development where they have a functional innate immune system dominated by neutrophils
and macrophages. During this timeframe, zebrafish lack a functional adaptive immune
system, so it is possible to study the innate immune response in isolation. Sequencing of the
zebrafish genome has revealed significant genetic conservation with the human genome,
and multiple studies have revealed both functional conservation of genes, including those
critical to host cell infection and host cell inflammatory response. In addition to studying
several fish viruses, zebrafish infection models have been developed for several human
viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus
type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection
models, coupled with the inherent strengths of the zebrafish model, particularly as it relates
to our understanding of macrophage and neutrophil biology, offers opportunities for far
more intensive studies aimed at understanding conserved host responses to viral infection.
In this context, we review aspects relating to the evolution of innate immunity, including the
evolution of viral pattern recognition receptors, interferons and interferon receptors, and
non-coding RNAs.
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INTRODUCTION

Deadly hyperinflammatory responses to diseases like COVID-19
and influenza A result when the immune system overreacts (1–6).
Cytokine storms induced by viral infections trigger this
hyperinflammatory state, leading to serious consequences,
including acute respiratory distress syndrome (ARDS), pulmonary
edema, multiple organ failure, and death. The antiviral response
encoded in vertebrate genomes incorporates an inflammatory
rheostat (7) that is designed to ramp up or tamp down in
response to infection. This response provides the host a measure
of resilience and promotes its survivability. Under some
circumstances, this inflammatory response to viral infection may
become dysregulated, at which point an immunological tipping
point is reached, leading to increased rates of mortality. This review
describes progress in using the zebrafish (Danio rerio) as a powerful
model system for the study of infection and inflammation, and it is
increasingly being used to model human viral infections. Zebrafish
possess several inherent characteristics that make them excellent
biomedical and biological model systems, including optically clear
embryos, high fecundity, a fully sequenced genome, amenability to
multiple modes of injection and manipulation, and robust forward
and reverse genetics tools. We review recent studies on viral
recognition receptors in zebrafish that are homologous to those
found on human cells. For example, we have shown that zebrafish
possess a2,3- and a2-6-linked sialic acid receptors that are required
for infection by certain influenza A virus (IAV) strains, including
H1N1 (8). Because human viruses can infect zebrafish cells, it is
possible to recapitulate aspects of the human viral disease in
zebrafish, including the host inflammatory response. Many
elements of the host immune response to human viral infection
are retained in zebrafish, and this is owed to significant cellular and
molecular conservation between zebrafish and humans. As
neutrophils have critical roles in inflammation, we begin our
review on neutrophils and their roles in antiviral response
pathways that include toll-like receptors (TLRs), interferon (IFN)
signaling, and the respiratory burst response. Next, we review
zebrafish studies on fish and human viruses and include
methodological details about these zebrafish models and
functional assays. We also describe recent studies of non-coding
RNAs that regulate neutrophil function. It is our view that the
zebrafish offers tremendous promise as a model to understand how
some of the mechanisms underlying a normal immune response to
viral infection in humans become excessive, leading to increasing
morbidities and mortalities.
IMMUNE CELL CONSERVATION
IN ZEBRAFISH

Definitive Hematopoiesis
In zebrafish, definitive hematopoiesis begins as early as 26 hours
post-fertilization (hpf) and gives rise to self-renewing
hematopoietic stem cells (HSCs) that can differentiate into cells
with myeloid, lymphoid, and erythroid lineages (9). The sites of
definitive hematopoiesis differ between zebrafish and humans. For
Frontiers in Immunology | www.frontiersin.org 2
zebrafish, definitive hematopoiesis transitions from the ventral
wall of the dorsal aorta (26 hpf) through the caudal hematopoietic
tissue (CHT) (~2 days post-fertilization (dpf)) and eventually to
the thymus (~3 dpf) or the pronephros/kidney (~4 dpf) (9–11). In
mammals, definitive hematopoiesis is transitory as well, moving
from the aorta-gonad-mesonephros region in the ventral wall of
the dorsal aorta, to the mammalian fetal liver, and finally to the
bone marrow (12). The earliest stage of definitive hematopoiesis in
both zebrafish and mammals is restricted to analogous ventral
dorsal aorta regions. From there, the anatomical sites of
hematapoiesis differ (11). Nonetheless, the genetics and
molecular signaling underlying definitive hematopoiesis in
vertebrates are largely conserved across species. Importantly, the
morphology and function of zebrafish neutrophils are conserved
with mammalian neutrophils (13). As many studies of neutrophil
function in zebrafish are done during embryonic and larval stages,
it is worthwhile noting that neutrophils also arise from
hematopoietic precursors in the yolk sac (14). As neutrophils
are the first immune cells that migrate to the site of inflammation,
our review will focus on these phagocytes.

Neutrophils
The first immune cells that migrate to the site of inflammation are
neutrophils (15). Zebrafish neutrophils, also known as heterophils,
respond to infection and injury in a manner that is similar to
human neutrophils. For example, zebrafish neutrophils have been
shown to migrate to the sites of bacterial (16), fungal (17–23), and
viral (8, 24, 25) infections. Additionally, wounding studies have
demonstrated neutrophil migration to the site of injury in
zebrafish (26). Like human neutrophils, the response of
zebrafish neutrophils to pathogens include phagocytosis,
degranulation, and formation of neutrophil extracellular traps
(NETs). Central to the response of neutrophils is the release of
reactive oxidative species (ROS), which is described in detail later
in this review. Both azurophillic and non-azurophillic granules are
found in zebrafish neutrophils, with azurophillic granules being
more abundant (27, 28). Like primary azurophilic granules in
mammalian neutrophils, zebrafish neutrophil granules contain the
enzyme myeloperoxidase (Mpx) (27). During respiratory burst,
Mpx catalyzes the conversion of H2O2 and Cl- to produce cytoxic
hypochlorous acid (HOCl) (29). Neutrophils also generate reactive
nitrogen species (NO). NETs are released by neutrophils through a
cell death process, named NETosis, to inactivate and destroy
extracellular viral particles, bacteria, and fungi. In human
neutrophils, NETs are composed of a scaffold of decondensed
chromatin with at least 24 cytosolic and granule proteins,
including myeloidperoxidase (MPO) and neutrophil elastase
(ELANE) (30). NETs were observed to be generated by
neutrophils found within whole zebrafish kidney tissue ex vivo
following stimulation with calcium ionophore, phorbol myristate
acetate (PMA), and b-glucan (31). Two features associated with
NETs have been observed at the sites of localized hindbrain
Candida albicans infection in vivo. First, increased levels of
extracellular DNA were detected with neutrophil invasion
following hindbrain C. albicans infection (32). Second, extrusion
of a neutrophil-specific histone 2B-mCherry fusion protein was
observed following neutrophil recruitment to C. albicans but not
May 2021 | Volume 12 | Article 636623

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sullivan et al. Modeling Virus-Induced Inflammation in Zebrafish
C. auris hindbrain infection (33). The activation and translocation
of NETs is initiated by ROS that, in turn, stimulate MPO and
ELANE expression in mammalian cells (34). Even though
mammalian ELANE does not have an obvious homolog in
zebrafish (35), elastase activity was associated with zebrafish
NETs (31). Given the central role of ROS in the neutrophil
response, a major focus in this review will be on ROS.

Neutrophil and Macrophage
Reporter Lines
Several zebrafish fluorescent reporter strains have been developed to
visualize neutrophils and macrophages in vivo, and for fluorescently-
activated cell sorting (FACS). Transgenic zebrafish neutrophil
reporter lines have used mpx and lysozyme (lyz) promoters to
drive the expression of fluorescent proteins. Frequently used
neutrophil reporter lines include the GFP reporters, Tg(mpx:
GFP)i114 (36), Tg(mpx:GFP)uwm1 (37) and Tg(lyz:EGFP)nz117 (38),
and the red fluorescent protein reporters, Tg(mpx:mCherry)uwm7 (39)
and Tg(lyz:DsRED2)nz50 (38). Additional reporter lines using the
photoconvertible fluorescent reporter, Dendra2 (40), have been
developed to study migration of macrophages and neutrophils.
Dendra2 protein photoswitches from green to red following
exposure to visible blue or UV light. This photoconvertible reporter
line enables tracking of neutrophil forward and reverse migration
(41). Another photoconvertible protein, Kaede, has also been used to
study neutrophil migration when expressed as part of a GAL4/UAS
bipartite expression system, such as the Tg(mpx:Gal4);Tg(UAS:
Kaede)i222 line. As many zebrafish macrophage reporter lines have
also been developed, it is possible to use double transgenic lines, such
as Tg(mpeg1:Gal4-VP16/UAS : Kaede/mpx:EGFP), to allow for in vivo
imaging of neutrophils and macrophages simultaneously (42). These
macrophage reporter lines use a promoter from themembrane attack
complex/perforin-domain containing gene, macrophage expressed
gene 1, tandem duplicate 1 (mpeg1.1) (43), to drive the expression of
reporters, such as EGFP (Tg(mpeg1:eGFP)gl22) (42), mCherry (Tg
(mpeg1:mCherry)gl23) (42), and YFP (Tg(mpeg1:YFP)w200) (44).
Migration of macrophages can also be monitored using the
Dendra2 reporter in the Tg(mpeg1:Dendra2)uwm12 line (45). The
promoter for microfibril associated protein 4, tandem duplicate 1
(mfap4.1) has also been used formacrophage reporter lines (46) as the
expression of mpeg1 was shown to be attenuated following infection
of Salmonella thyphimurium and Mycobacterium marinum (47).
Several of these neutrophil and macrophage reporter lines have
been used for FACS for cell-specific functional analysis (38, 48, 49).
OVERVIEW OF ANTIVIRAL RESPONSE

Defense against viral infection is governed by both the innate and
adaptive immune systems. Even though the adaptive immune
system can provide protection from viral infection through B and
T lymphocytes, the innate immune system provides an initial
response to viral infection and is the focus of this review. The
innate immune system includes physical barriers, phagocytic
cells, pattern recognition receptors (PRRs), interferons and
interferon-stimulated genes (ISGs), cytokines and chemokines,
and the complement system. Physical barriers include the mucus
Frontiers in Immunology | www.frontiersin.org 3
barrier that is composed of polymeric secreted mucins.
Phagocytes include neutrophils and macrophages that can kill
virus particles and recruit additional phagocytes to sites of
infection. An important response of phagocytes is a respiratory
burst response that releases ROS to kill virus particles and recruit
additional phagocytes. Critical to the activation of immune
response are PRRs that bind pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) and trigger the expression of interferon and cytokines
through NF-kB and interferon response factor (IRF)
transcription factors. Interferon elicits a potent response to
viral infection that includes the activation of a battery of ISGs.
Inflammatory cytokines and chemokines recruit phagocytes at
the site of infection. The complement system functions to
respond to microbial pathogens by recognizing motifs through
three convergent activation pathways that lead to complement-
mediated lysis (50). Figure 1 illustrates components of response
to viral infection using IAV as an example. Genes that have
shown to respond to the inflammatory and antiviral response
using zebrafish models of viral infection are shown in Tables 1
and 2, respectively.

The zebrafish model system holds particular promise for
understanding the innate immune response to viral infection.
Zebrafish lack a fully functional adaptive immune response for
the first 4-6 weeks of development (66) and rely upon their
innate immune response for defense against all forms of
infection. Many aspects of the innate immune system,
including those listed below, are functionally conserved in
zebrafish, and thus the zebrafish can effectively model how
normal inflammatory responses to viral infections can lead to
extensive tissue damage and mortality.

Pattern Recognition Receptors (PRRs)
PRRs bind PAMPs and DAMPs, triggering a signal transduction
cascade that activates several transcription factors critical to the
antiviral and pro-inflammatory immune response. Viral PAMPs
include surface glycoproteins, single-stranded RNA, double-
stranded RNA, and other RNA and DNA species. DAMPs
produced by damaged cells can also activate the immune
response. DAMPs include denatured intracellular proteins,
such as high-mobility group box protein 1 (HMGB1) (67).
PRRs include TLRs, nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs), retinoic acid-inducible
gene-I-like (RIG-I)-like receptors (RLRs), scavenger receptors,
and C-type lectin receptors (CLRs).

PAMPs from viral particles that have entered the
phagolysosomal degradation pathway are recognized by
mammalian endosomal TLRs: TLR3, TLR7, TLR8 and TLR9.
These TLRs traffic from the endoplasmic reticulum (ER) to
endosomes with the chaperone, UNC93B1 (68). Double-
stranded RNA, single-stranded RNA, RNA degradation
products, and CpG-deoxynucleotides (CpG-DNA) are
recognized by TLR3, TLR7, TLR8 (69) and TLR9, respectively.
TLR3, TLR7, TLR8, and TLR9 are conserved in zebrafish as the
homologs tlr3 (65), tlr7 (70), tlr8a (70), tlr8b (70), and tlr9 (70,
71) (Table 3). In zebrafish, two additional antiviral TLRs, tlr21
and tlr22, have been described that recognize CpG-DNA (71)
May 2021 | Volume 12 | Article 636623
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and double-stranded RNA (73, 79), respectively. Homologs of
tlr21 and tlr22 have not been observed in mammalian genomes,
but tlr21 is conserved in avian species.

The TLR signaling pathway in zebrafish includes the adaptor
proteins Myd88, Tirap, Ticam1, and Sarm1 for downstream
Frontiers in Immunology | www.frontiersin.org 4
signaling. The gene encoding the Ticam2 adaptor protein
found in mammals is absent in zebrafish (74). In mammals,
Myd88 is required for all TLRs except for TLR3 and TLR4
(80). TLR signaling is mediated by tumor necrosis factor
receptor associated factor 6 (TRAF6) and interleukin-1
TABLE 1 | Table of proinflammatory genes studied in zebrafish models of viral infection.

Gene
Symbol

Example Viruses

Group V

Spring Viremia of Carp
Virus
(SVCV)

Tilapia Lake
Virus
(TLV)

Snakehead
Rhabdovirus

(SHRV)

Infectious Hematopoietic Necrosis Virus
(IHNV)

Influenza A Virus
(IAV)

caspa (51)
cxcl8a (52) (53) (25)
ifng1 (54) (53)
ifnphi1 (51, 55, 56) # (57) (53) (58–60) (61) (8)
ifnphi2 (51)
il1b (51, 52, 54) (53) (25)
irf3 (52, 56, 62) (53)
irf7 (52, 62) (53)
lta (52, 56)
sting1 (62)
pycard (51)
rarres3 (51)
tnfa (51, 54, 55) (53) (25)
tnfb (55)
May 2021 | Volum
#Functional study.
FIGURE 1 | The antiviral response to Influenza A Virus infection. Following IAV entry and infection, single-stranded RNA (ssRNA) and RNA degradation products
incorporated into endosomes are recognized by Tlr7 and Tlr8a/b, respectively. In other virus infections, double-stranded RNA by Tlr3 and Tlr22. CpG motifs are
recognized and Tlr9 and Tlr21. For Tlr7, Tlr8a/b and Tlr9, the TLR-adaptor, Myd88, activates the NF-kB transcription factor through IkB. NF-kB initiates transcription
of inflammatory cytokines, such as Il6, Il1b, and Tnfa. For Tlr3, the TLR-adapter, Ticam1, activates Irf3 that initiates transcription of type I interferons. DAMPs and
PAMPs can activate the Nlrp3 inflammasome through activated caspase 1. Activation of RIG-I (Ddx58) by cytosolic viral RNA activates Irf3 and Irf7 transcription
factors through Mavs. Irf3 and Irf7 initiate the expression of type 1 interferons that further exacerbates the antiviral innate immune response to infection.
e 12 | Article 636623
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receptor-associated kinase 4 (IRAK4) that activate the NFkB,
IRF, STAT, ATF, and AP-1 families of transcription factors. The
expression of tlr3, traf6 and irak4 was upregulated in embryonic
and adult zebrafish following snakehead rhabdovirus (SHRV)
infection (65). Beyond these four TLRs, knockdown of two
adaptors for TLR signaling, Ly86 and Cd180, found increased
susceptibility to spring viremia carp virus (SVCV) in zebrafish
larvae (81). In mammals, LY86 and CD180 are adaptors for
TLR4, a TLR that responds to lipopolysaccharide (LPS).

We previously described a model for the history of TLR4 genes
in humans and zebrafish that we believe accounts for the functional
divergence that has been observed, specifically in regards to the
reduced LPS sensitivity seen in fishes (75). We hypothesize that
TLR4 was duplicated in an ancestral genome with the second whole
genome duplication event, yielding the TLR4A and TLR4B genes
(75). Our model projects that there was lineage divergence and a
reciprocal loss of TLR4 ohnologs. The ancestral TLR4Awas retained
in the lineage that gave rise to mammals, including humans, and
TLR4B was lost. The TLR4A gene, by convention, is referred to as
TLR4. In the lineage that gave rise to zebrafish, the ancestral TLR4B
gene was retained, and the ancestral TLR4A gene was lost. The
ancestral TLR4B gene was subsequently duplicated, giving rise to the
tlr4ba and tlr4bb paralogs observed in the current zebrafish genome.

There are data that indicate that TLR3, TLR7, TLR8, and
TLR9 are, at least to some extent, functionally conserved in
zebrafish as the homologs tlr3, tlr7, tlr8a, tlr8b, and tlr9. To fully
exploit the zebrafish model as a means to understand antiviral
responses, it is necessary to undertake meticulous gene history
studies to support orthology. Indeed, based on data available
through Ensembl (82), ZFIN (83), and the Synteny Database
Frontiers in Immunology | www.frontiersin.org 5
(84), there appear in certain instances to be discrepancies in the
identification and/or naming of zebrafish TLR genes that
consequently imply a gene orthology (or lack of orthology)
and functional conservation with human TLR genes despite
sufficient evidence. For example, ZFIN predicts that zebrafish
tlr8a and tlr8b are co-orthologous to human TLR8; however, this
prediction is not supported by Ensembl or the Synteny Database
where they do not list any orthologs for human TLR8. According
to Ensembl, zebrafish tlr8b has a one-to-many orthologous
relationship to the spotted gar gene ENSLOCG00000013826,
which has been annotated as tlr3. Due to its evolutionary
position as a non-teleost and non-tetrapod, jawed vertebrate
model organism, the spotted gar genome serves as an “orthology
bridge” to link the gene histories of the zebrafish (and other
teleosts) and human genomes (85). The ENSLOCG00000013826
gene has no human ortholog but does have a one-to-many
orthologous relationship to a zebrafish gene annotated as tlr3.
According to Ensembl and the Synteny Database, this zebrafish
tlr3 gene is an ortholog to human TLR3. This brief example
demonstrates the inconsistencies present in current zebrafish
databases and lends credence to the idea that the tlr8 paralogs
found in zebrafish (and other fishes) have no ortholog in the
human genome, and thus are likely misnamed. In addition to
these issues related to the evolutionary history of zebrafish tlr
genes, there are also important concerns about the mechanisms
by which the proteins encoded by these genes are engaged.
Specifically, there is evidence that zebrafish TLR proteins do
not bind PAMPs and other ligands in the same manner as
human TLR proteins (69). There is also evidence indicating that
the mechanisms by which zebrafish TLR proteins engage TIR
TABLE 2 | Table of antiviral genes studied in zebrafish models of viral infection.

Gene
Symbol

Example Viruses

Group III Group V

Infectious Pancreatic
Necrosis Virus

Spring Viremia of
Carp Virus

Tilapia Lake
Virus

Snakehead
Rhabdovirus

Infectious Hematopoietic
Necrosis Virus

Influenza A
Virus

defb2 (54)
foxo3b (52)
ifit8 (51)
ifit14 (51)
isg15 (61) (61) (61)
mavs (62, 63)
ifih1 (63) (60)
mxa (51, 54, 63) (53) (59) (8)
mxb (51, 54, 55)
mxc (52, 54, 56)
nod2 (63)
pkz (56)
prmt3 (56)
rela (64)
ddx58 (51, 52, 62, 63) (53)
ripk2 (63)
tbk1 (62)
tlr3 (51) (53) (65)
tlr7 (51)
tlr8a (51)
tlr22 (51) (53)
rsad2 (55)
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domain containing adaptor proteins may sometimes differ (74).
There are also many questions related to where within or on a
cell a zebrafish TLR protein is expressed. Taken together, it is
clear that assumptions about zebrafish TLR protein function
based upon protein similarity and even phylogenetic analyses
need further verification through comprehensive gene history
analysis and thorough validation through functional assays.

Cytosolic PAMPs and DAMPs are recognized by NLRs and
RLRs. After ligand binding, two NLRs, NOD1 and NOD2, can
activate NFkB after recruiting the serine/threonine kinase RIPK2
through MAP kinase signaling. Several NLRs, including NLRC4,
NARP1 and NARP3, function as PAMP and DAMP receptors
for inflammasomes. Inflammasomes are multiprotein complexes
that activate inflammatory caspases and pro-inflammatory
cytokines through canonical signaling and non-canonical
pathways to induce pyroptosis (86). In the canonical NLRP3
inflammasome signaling pathway, ligand binding to NRLs
activate caspase 1 (CASP1) that then then activates the pro-
inflammatory cytokines, interleukin 1b (IL1B) and interleukin 18
(IL18). Activation of CASP1 is dependent on the adaptor
protein, apoptosis-associated speck-like protein containing a
caspase-recruitment domain (PYCARD), which is also part of
the inflammasome complex. In the non-canonical NLRP3
inflammasome signaling pathway, activated inflammasomes
hydrolyze gasdermin D (GSDMD) leading to a N-terminal
fragment that perforates the cell membrane to enable the
release cytokines and subsequent cell death through pyroptosis.
Frontiers in Immunology | www.frontiersin.org 6
Inflammasome NLRs recognize ligands from both infection and
sterile stressors. NLRP3 recognizes double-stranded RNA and
activates CASP1 after binding the adaptor protein, apoptosis-
associated speck-like protein containing a caspase-recruitment
domain (PYCARD). Pycard-dependent activation of Il1b by
Nlrp3 inflammasomes through caspase 1 (caspa) was found to
be conserved in zebrafish larvae using morpholino knockdown of
Nlrp3 and a nlrp3mutant challenged with Edwardsiella tarda (87).
Li et al. also showed Nlrp3 initiated cell pyroptosis through Caspb
activation in a gasdermin E (Gsdmeb/Gsdmea)-dependent, but
independent of Pycard-activation (87). While several aspects of
inflammasome signaling are conserved in zebrafish, differences do
exist. Zebrafish have over 400 NLR genes (88), but only two have
been associated with inflammasome function, nlrp1 (89), and
nlrp3 (87, 90), that were shown to function similar to NLRP1.
An additional inflammasome adaptor, caiap, was found to
regulate inflammasome activation in zebrafish in response to
Salmonella typhimurium infection (91). While the pro-
inflammatory cytokine, il1b is conserved with zebrafish, an
ortholog to IL18 has not been identified in zebrafish. Homologs
to IL18 have been identified in other ray-finned fishes, including
the pufferfish (Takifugu rubripes) (92) and rainbow trout
(Oncorhynchus mykiss) (93).

Cytosolic viral RNA can also be detected by RLRs that are a
family of DExD/H box RNA helicases consisting of RIG-I
(encoded by the gene DDX58), melanoma differentiation-
associated factor 5 (MDA5; encoded by the gene IFIH1), and
TABLE 3 | TLR genes in zebrafish.

Zebrafish Gene
Symbol

Ensembl Zebrafish
Gene ID

Zebrafish
Chr.

Zebrafish
Refs.

Predicted Human
Ortholog

Ensembl Human
Ortholog Gene ID

Human
Chr.

Orthology Resource(s)

tlr1 ENSDARG00000100649 14 (70) TLR1* ENSG00000174125 4 Synteny DB, ZFIN
TLR6* ENSG00000174130 4 Ensembl

tlr2 ENSDARG00000037758 1 (70, 72) TLR2 ENSG00000137462 4 Synteny DB, ZFIN,
Ensembl

tlr3 ENSDARG00000016065 1 (65, 73, 74) TLR3 ENSG00000164342 4 Synteny DB, ZFIN
tlr4al ENSDARG00000075671 13 **
tlr4ba ENSDARG00000019742 13 (75) **
tlr4bb ENSDARG00000022048 13 (75) **
tlr5a ENSDARG00000044415 20 (72, 76) TLR5 ENSG00000187554 1 Synteny DB, ZFIN
tlr5b ENSDARG00000052322 20 (72, 76, 77) TLR5 ENSG00000187554 1 Synteny DB, ZFIN
tlr7 ENSDARG00000068812 9 (70, 78) TLR7 ENSG00000196664 X Synteny DB, ZFIN
tlr8a ENSDARG00000090119 KN150362.1 (70) TLR7 ENSG00000196664 X Synteny DB
CU914164.1
(tlr8)

ENSDARG00000104832 9 TLR8 ENSG00000101916 X ZFIN

tlr8b ENSDARG00000073675 10 (70) TLR7 ENSG00000196664 X Synteny DB
TLR8 ENSG00000101916 X ZFIN

tlr9 ENSDARG00000044490 8 (71) TLR9 ENSG00000239732 3 Synteny DB,
ZFIN

tlr18 ENSDARG00000040249 16 – –

–

tlr19 ENSDARG00000026663 16 – –

tlr20.1 ENSDARG00000115923 9 – –

tlr20.2 ENSDARG00000088701 9 – –

tlr20.3 ENSDARG00000114057 9 – –

tlr21 ENSDARG00000058045 16 (71) – –

tlr22 ENSDARG00000104045 21 (73, 79) – –
Ma
y 2021 | Vo
Predictions were made using information from Ensembl, ZFIN and SyntenyDB. Ensembl gene IDs for each gene are listed, along with their respective chromosome locations.
*Synteny Database and ZFIN predict TLR1 as the human ortholog, while Ensembl predicts TLR6. In the human genome assembly, TLR1, TLR6, and TLR10 are directly adjacent to one
another. **Human TLR4 is not orthologous to tlr4ba, tlr4bb, or tlr4al (75).
Known zebrafish toll-like receptors with predicted human orthologs.
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laboratory of genetics and physiology 2 (LGP2; encoded by the
gene DHX58). Activation of RLRs by binding viral RNA leads to
activation of the antiviral response and type 1 interferon (IFN)
expression through interferon regulatory factor 3 (IRF3), IRF7,
and NF-kB transcription factors. Upon binding viral RNA, the
CARD domains of RIG-1 and MDA5 interact with the adaptor
protein, mitochondrial antiviral signaling (MAVS). The
conserved role of Mavs in regulating the IFN antiviral response
in zebrafish larvae has been demonstrated through studies of
chikungunya virus (CHIKV) infection (94). The IFN response
and survival was significantly reduced in Mavs morphants
infected with CHIKV. Zebrafish homologs of DDX58, IFIH1
and DHX58 have been identified as ddx58, ifih1, and dhx58.

Additional PAMP receptors include scavenger receptors and
CLRs. In mammalian models, the scavenger receptor,
macrophage receptor with collagenous structure (MARCO),
has been shown to recognize several viruses, including
respiratory syncytial virus and vaccinia virus. In zebrafish,
marco has been used as a marker of macrophages and
dendritic cells in adults. Marco was demonstrated to be
required for phagocytosis and the proinflammatory response to
Mycobacterium marinum and Salmonella typhimurium in larvae
(95). Increased bacterial burden and decreased proinflammatory
signaling was observed in infected Marco morphants. Another
scavenger receptor, the expression of cluster differentiation
antigen 36 (cd36) was upregulated in zebrafish following
infection by viral hemorrhagic septicemia virus (VHSV) (96).
Knockdown of Cd36 in zebrafish embryos resulted in higher
bacterial burden following infection byMycobacterium marinum
(97). Several transmembrane CLR proteins function as PRRs on
myeloid cells. Two CLRs include mannose-binding lectin 2
(MBL2) and CD209. MBL2 can activate the lectin complement
pathway (98) after binding to mannose, fucose and N-
acetylglucosamine on microbial pathogens, including viruses.
MBL2 was shown to bind to influenza A virus (IAV) and
inhibit the hemagglutinating activity of IAV (99). CD209 can
also recognize microbial pathogens, including viruses that
express mannose-rich oligosaccharides. CD209 was shown to
function as an attachment receptor for influenza A virus on
mammalian cells and mediate sialic-acid independent
attachment and infection (100). While the functions of these
specific CLRs have not yet been investigated in the context of
viral infection in zebrafish, both mbl2 and cd209 are present in
the zebrafish genome.

The complement system has important roles in innate
immunity and neutralization of viruses. Mechanisms for
complement activation include C-reactive protein (CRP), and
recognition of PAMPs and DAMPs. The classical, lectin and
alternative complement pathways activate C3 convertase that
cleaves complement component C3 to produce the C3a and C3b
peptides. In the alternative pathway, C5 convertase cleaves C5 to
produce C5a and C5b. Both anaphylatoxin, C3a, and C5a have
important roles in regulating inflammation (101). C3a inhibits
the migration of neutrophils to sites of acute inflammation (102)
whereas C5a has the opposite function (103). The complement
system is largely conserved in zebrafish, but there are differences (50).
Frontiers in Immunology | www.frontiersin.org 7
For example, there are two groups of paralogs for C3, c3a with six
paralogs (c3a.1, c3a.2, c3a.3, c3a.4, c3a.5, and c3a.6), and c3b with
two paralogs (c3b.1 and c3b.2), however there is only one C5
homolog, c5. A zebrafish study of CRP genes and proteins in the
response to SVCV and VHSV infection showed that crp2/Crp2 and
crp5/Crp5 had the largest increases in expression (104).

Interferons and Interferon-Responsive Genes
The innate immune response to viral infection is governed by
interferon (IFN) and genes induced by interferon. In mammals,
there are three classes of interferon genes (IFNs): type I (a, b, w, e,
and k), type II (g) and type III (l). Both type I and type III IFNs
have well established antiviral activities in mammals, whereas the
function of type II IFNs is associated with the response to bacterial
infection. Type II IFNs do not exclusively respond to bacterial
infection, as they have been associated with the response to
vesicular stomatitis virus infection in mice (105). Beyond the
type I IFN genes discussed in detail below, zebrafish have two
paralogs of the type II IFN, IFNG, named ifng1 (interferon gamma 1)
and ifng1r (interferon gamma 1 related) (106).

Activation of IFN is a conserved response to viral infection
across vertebrates, including zebrafish. One of the first studies in
zebrafish showed that IFN expression was induced in zebrafish
liver cells when infected by SHRV (58). In addition to the IFN
gene first characterized in that study (now named ifnph1),
zebrafish have three additional IFN genes (ifnphi2, ifnphi3,
ifnphi4) that are activated in response to viral infection
(Table 4) (107, 108). Considerable efforts to identify and
characterize IFN genes in fishes have been undertaken, and
several excellent reviews describing the complexity of IFN
signaling in fishes, including zebrafish, have recently been
published (110–112). Type I IFN signaling mediated by
zebrafish bears many similarities but also significantly differs
from that observed in humans. For example, at the gene level,
fish type I IFN (including zebrafish) have retained introns, while
mammalian type I IFNs do not. It is thought that the absence of
mammalian type I IFNs was a result of a retrotransposition event
in amniotes (111). In addition, unlike mammalian type I IFNs,
which are typically secreted upon viral induction, fish type I IFNs
can be alternatively transcribed with or without signal peptides
for extracellular expression (57). Zebrafish type I IFNs can be
separated into two groups: Group I and Group II (111). Group I
IFNs include Ifnphi1 and Ifnphi4, while group II IFNs include
Ifnphi2 and Ifnphi3. Group I IFNs are characterized by a pair of
conserved cysteine residues that form a disulfide bridge. Group II
IFNs are characterized by two pairs of conserved cysteine
residues that form two disulfide bridges (113). Group I and
group II IFNs engage different receptor complexes, but each
receptor complex is thought to include cytokine receptor family
member b 5 (Crfb5) (108). Group I IFNs are thought to interact
with Crfb1/Crfb5 complexes, and group II IFNs are thought to
interact with Crfb2/Crfb5 complexes. Interestingly, knockdown
of caveolin 1 (Cav1) in zebrafish disrupted Crfb1 IFN receptor
clusters, thereby decreasing antiviral immune responses (114).
Activation of the IFN receptor clusters signal through the Jak/
STAT pathway to activate IFN-stimulated genes (ISGs) that
May 2021 | Volume 12 | Article 636623
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share a IFN-stimulated response element (ISRE) (115). Multiple
studies have shown a large set of ISGs in response to viral
infection in zebrafish, many of which have mammalian orthologs
that are ISGs in mammalian models. Among some of these
conserved ISGs are mxa (116), rsad2 (57), and isg15 (61). One
study compared ISGs that responded to a poor IFN inducer,
infectious hematopoietic necrosis virus (IHNV), to a strong IFN
inducer, CHIKV, with and without knockdown of the IFN
receptors, Crfb1 and Crfb2 (117). A study of zebrafish infected
with SVCV found that 382 and 926 genes were differentially
expressed in brain and spleen, respectively (118). Given that ISGs
have antiviral effects and, in some cases, also enhance the
replication of viruses (115), more studies are needed to
understand the complexity of IFN signaling.

In zebrafish, the ifnphi1 gene can express two transcript
isoforms: a longer, constitutively-expressed transcript, which
lacks sequence encoding a secretion signal peptide, and thus is
likely retained within the cells, and a shorter, virally-induced
transcript, which contains a signal peptide that causes the protein
to be secreted (57). Transcripts encoded by the ifnphi1 gene also
exhibit discrete spatiotemporal patterns (108). Basal levels of
ifnphi1 are elevated in adult spleens relative to whole larvae. In
both adult and larval fish, viral infection could induce increased
expression levels. Using the transgenic zebrafish line Tg(ifnphi1:
mCherry), Palha et al. (94) showed expression of mCherry
fluorescent protein driven by the ifnphi1 promoter in
hepatocytes and neutrophils following infection with CHIKV.
Transcripts encoded by the ifnphi2 gene were below the level of
detection in larval zebrafish and were expressed levels
comparable to ifnphi1 in adult spleens (108). In adult fish,
splenic expression of ifnphi2 transcripts could be induced by
SVCV infection. Transcripts encoded by the ifnphi3 gene are
expressed at elevated basal levels in both adult spleens and whole
larvae and were not induced by SVCV or IHNV infection (108).
Interestingly, expression of ifnphi3 transcripts were not observed
in the same cells in a ifnphi3 promoter reporter transgenic fish,
although these data were shared as part of a personal
communication and were not yet published (111). Transcripts
Frontiers in Immunology | www.frontiersin.org 8
encoded by the ifnphi4 gene are expressed at modest basal levels
and are mildly induced by SVCV in larvae (108).
RESPIRATORY BURST RESPONSE

One of the important functions of macrophages and neutrophils
during infection and injury is a respiratory (also called oxidative)
burst response that functions to recruit additional phagocytes and
degrade pathogens. Following a respiratory burst response, reactive
oxidative species (ROS), hydrogen peroxide (H2O2), and superoxide
anion O−

2 are produced by the phagocyte nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (PHOX) complex
(Figure 2). The PHOX complex is conserved between humans
and zebrafish (119). The major catalytic component of PHOX,
NOX2, is composed of p91phox (encoded by cybb) and p22phox

(encoded by cyba) and is bound to the phagosome membrane. The
activity of NOX2 is stabilized and activated by three regulatory
subunits, p47phox (encoded by ncf1), p67phox (encoded by ncf2) and
p40phox (encoded by ncf4), along with the small GTPase, Rac
(encoded by rac1). GTP-Rac interacts with NOX2 that, in turn,
interacts with p67phox to activate NOX2 at the phagosome
membrane. P47phox has major roles in both NOX2 activation and
stabilization at the plasma membrane. First, phosphorylation of
p47phox exposes two SRC-homology 3 domains that interact with
the proline-rich motif of the NOX2 subunit, p22phox. Second,
additional PHOX homology domains on activated p47phox can
bind the phosphoinositide, phosphatidylinositol 3,4-bisphosphate
(PI(3,4)P2), that is produced by phosphoinositide-3-OH kinase (PI
(3)K). Activated PHOX produces superoxide through the reduction
of oxygen into superoxide.

Humans with mutations in PHOX subunits may develop
chronic granulomatous disease (CGD), which is characterized by
inflammatory disorders, granuloma formation, and increased
susceptibility to infection. Individuals with mutations p91phox

(CYBB), p22phox (CYBA), p47phox (NCF1), p67phox (NCF2), or
p40phox (NCF4) develop CGD. Zebrafish have been used to
model CGD in the context of fungal infection by Aspergillus
May 2021 | Volume 12 | Article 636623
TABLE 4 | IFN genes in zebrafish.

Zebrafish Gene Predicted
Human
Ortholog

Ensembl Human
Gene ID

Orthology
Resource(s)

Gene
Symbol

Ensembl Gene ID Chr. IFN
Type

Refs. Role in Virus Infection

ifnphi1 ENSDARG00000025607 3 Type I
(Group 1)

(58) SHRV (58–60)SVCV (51, 55, 56, 61)# (57)INHV
(61)IAV (8)TLV (53)CHIKV# (94)

–

ifnphi2 ENSDARG00000069012 3 Type I
(Group 2) (107, 108)

SVCV (51) –

ifnphi3 ENSDARG00000070676 3 Type I
(Group 2) (107, 108)

–

ifnphi4 ENSDARG00000100678 12 Type I
(Group 1) (107, 108)

SVCV (108)
INHV (108)

–

ifng1 ENSDARG00000024211 4 Type II (106) SVCV (54, 109)
TLV (53)

IFNG ENSG00000111537 ZFIN, Ensembl

ifng1r ENSDARG00000045671 4 Type II (106) IFNG ENSG00000111537 ZFIN, Ensembl
#Functional study.
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nidulans (120). Zebrafish embryos with a mutation in p22phox

(cybasa11798) were observed to have decreased survival to A.
nidulans infection, similar to what has been observed in CGD
patients with fungal infections. Neutrophil migration was
disrupted in the homozygous mutants as recruitment that
should have peaked at 24 h post-infection (hpi) continued to
96 hpi. Antisense morpholino knockdown of Ncf1 in zebrafish
was shown to increase susceptibility to Candida albicans
infection and decrease the respiratory burst response to
infection (17, 18). In other studies PHOX has been inhibited
using small molecules, such as diphenyleneiodonium (DPI)
(121), VAS-2870, and Phox-I2 (122). DPI was shown to inhibit
NOX and the production of superoxide generated by PMA
(phorbol 12-myristate 13-acetate)-stimulated macrophages
(121). VAS-2870 was first described to inhibit platelet growth
factor (PDGF)-dependent NADPH ROS production in vascular
smooth muscle cells (123), but has also been shown to inhibit
NADPH oxidase activity in regulatory T cells to block the
suppression of CD4+ cells (124). Phox-I2 was designed to
target the Rac1 GTPase binding site on p67phox, and was
shown to suppress ROS production in mouse neutrophils (122).

The NADPH oxidase (Nox) gene family in zebrafish is
comprised of nox1, cybb, nox4, nox5, and the dual oxidases,
duox and duox2 (119). While Nox1 and Cybb are part of PHOX
and regulated by cytosolic factors, Nox5, Duox and Duox2 are
activated by calcium (Ca2+) as they share helix-loop-helix EF-
hand domains. Like Cybb, Nox4 is stabilized by p22phox, but it is
constitutively active. Nox family members also differ by their
Frontiers in Immunology | www.frontiersin.org 9
expression and roles in different tissues. For example, human
NOX1, NOX3, NOX4, NOX5, and DUOX2 are expressed in
cardiovascular tissues. During the first 2 days of zebrafish
embryonic development, the expression of cybb was stable
during the first 2 days of development with nox1, nox5 and
duox being more dynamic (125). Zebrafish Duox was shown to
be required for the recruitment of neutrophils to fin bud injury
by generating a H2O2 gradient (26). Duox was also shown to be
required for peripheral axon regeneration in zebrafish (126).
Several NAPDH oxidase inhibitors have been developed in
addition to DPI and VAS-2870, including the general NADPH
inhibitor celastrol. Celastrol was shown to have higher inhibitory
activity for Nox1 and Nox2 than Nox4 and Nox5 in zebrafish
embryos (127). Nox1 inhibitors of human NOX1 include ML171
(128). GKT137831 and GKT136901 were shown to be an
inhibitors of mouse NOX1 and NOX4 (129, 130). Specific
NOX4 inhibitors include GLX7013114 (131), GKT137928
(132) and ACD084 (133). These and other small molecule
inhibitors may be useful to screen for the relative contribution
of different NADPH oxidases to inflammatory responses during
viral infection.

The amount of ROS production following a respiratory burst
response is indicative of the intensity of the immune response
and overall health of the organism. A method to assay the
respiratory burst response was developed for zebrafish embryos
and adult tissues (134–136). This assay measures production of
H2O2 in response to phorbol myristate acetate (PMA) by
detecting the oxidation of dihydrodichlorofluorescein (H2DCF)
FIGURE 2 | ROS Signaling in Response to Virus Infection. Following infection, production of ROS through the respiratory burst response function to recruit
phagocytes (neutrophils and macrophages) to the site of infection and inactivate virus particles. Activation of the phagocyte nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (PHOX) complex produces ROS. The PHOX complex is composed to Cyba, Cybb, Ncf1, Ncf2, Ncf4, and Rac1. Activated Nox2 can
activate NFkB (p60, p65) that leads to subsequent inflammatory chemokine and cytokine expression. Activated Nox2 can also activate the NRF2 transcription factor
through KEAP1 to initiate the expression of antioxidants.
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to the fluorescent product, dichlorofluorescein (DCF) to
determine the fold induction of the respiratory burst (16).
These assays have been used to study how low-dose arsenic
reduces the capacity of zebrafish embryos infected with SHRV to
mount a respiratory burst response (137). The same assays have
been used to measure the respiratory burst response in zebrafish
embryos following bacterial (16, 137) and fungal infection (18).
A single cell respiratory burst assay has been developed to
complement “whole embryo” methods described above (138).
Dissociated cells from zebrafish embryos are stimulated with an
oxidant, such as rotenone or H2O2, incubated with a fluorescent
ROS-detecting probe, such as CellROX, and then analyzed using
FACS. ROS from specific cell types can be measured by assaying
fluorescent reporter lines, such as neutrophils from the Tg(mpx:
EGFP) line, to measure respiratory burst activity specifically in
zebrafish neutrophils. This method has recently been used to
study the roles of neutrophils in excessive inflammation
following tissue injury in cystic fibrosis transmembrane
conductance regulator (cftr) zebrafish mutants (139).

Apoptosis of neutrophils at the site of inflammation is one
mechanism by which inflammation is resolved. A method to
measure neutrophil apoptosis at the site of tailfin injury was
developed for Tg(mpx:GFP)i114 zebrafish embryos using
immunohistochemistry to screen for pharmacological agents
that could promote neutrophil apoptosis (140). Pyocyanin a
phenazine pigment produced by Pseudomonas aeruginosa, and
roscovitine, an inhibitor of cyclin-dependent kinases, both
reduced the number of neutrophils at the site of injury at 24
hours post injury. Agents to delay neutrophil apoptosis and
prolong inflammation were also screened. Of the agents tested,
the dipeptide pan-caspase inhibitor, benzyloxycarbonyl-Val-Asp-
fluoromethylketone (zVD.fmk), decreased neutrophil apoptosis
the most. This inhibitor was previously shown to prolong
inflammation following tailfin injury in zebrafish embyros (36).

The distribution of ROS in zebrafish embryos has been
assayed using high resolution intravital imaging. ROS can be
detected using fluorescent imaging of zebrafish embryos treated
with the cell-permeable dye, dihydroethdium (DHE), that is
sensitive to superoxide (141, 142). DHE has blue fluorescence
until it is oxidized by superoxide to form oxyethidium that emits
red fluorescence and intercalates with nucleic acids (143). Phan
et al. developed a model of bacterial infection that stimulated
neutrophil and macrophage activation by injecting Escherichia
coli into the notocord that was impenetrable by phagocytes (144).
The role of neutrophil generated superoxide to clear infection
was characterized using this model. Using the DHE assay,
superoxide production was observed in neutrophils of infected
Tg(mpx:GFP) embryos compared to controls. The superoxide
response was shown to be neutrophil specific by examining
infected embryos treated with Lipo-Clodronate to deplete
macrophages, and colony stimulating factor 3 receptor (Csf3r)
morphants that had depleted neutrophils.

Intracellular hydrogen peroxide (H2O2) production has been
visualized in zebrafish using the fluorescent reporter protein,
HyPer (26, 145). H2O2 production following wounding in the tail
bud of zebrafish larvae was visualized in vivo in the fluorescent
Frontiers in Immunology | www.frontiersin.org 10
reporter line, Tg(actb:HyPer), that drives the expression of HyPer
line using a b-actin (actb) promoter (26). This study
demonstrated that a gradient of H2O2 after wounding was
required for neutrophil recruitment to the site of injury.
Visualization of H2O2 production within neutrophils after
wounding was achieved using a zebrafish fluorescent reporter
line, Tg(lyz:HyPer)ka4, that drives the expression of HyPer line
using a lyz promoter (145).

Additional Zebrafish Models to Study
Neutrophil Function
Several additional zebrafish transgenic and mutant lines have
been developed to study neutrophil function. Defects in
neutrophil trafficking have been modeled using four different
transgenic lines. Humans withWarts, Hypogammaglobulinemia,
Infections, and Myelokathexis (WHIM) syndrome have
mutations in the chemokine receptor, CXCR4. A zebrafish
model of WHIM syndrome, Tg1(-8mpx:cxcr4b-EGFP)uwm3, was
developed by expressing a truncated Cxcr4b protein tagged with
a EGFP reporter in neutrophils using a mpx promoter (146). A
dominant-negative rac2 zebrafish line (Tg(mpx:mCherry,
rac2_D57N)zf307) was used to show that Rac2 was required for
neutrophil migration to a tailfin injury (147). As described in the
non-coding RNA section of this review, the microRNAs, miR-
722 (148, 149) and miR-199 (150), are two additional zebrafish
neutrophil trafficking mutants. Defects in Mpx function have
been modeled in the “spotless” mutant, mpxNL144, which has a
premature stop codon in the mpx gene (151), and the durif
mutant, mpxgl8/gl8, which has cis-acting point mutation in mpx
(145). Myeloperoxidase activity was absent in these mutants, as
assayed using Mpx TSA and anti-nitrotyrosine staining (151).
These models are complementary to Csf3r morphants that have
depleted neutrophils (144, 152).
ZEBRAFISH MODELS OF
VIRAL INFECTION

The zebrafish is a powerful model system for the study of virus
infection and host immune response. Initial studies involved
using the zebrafish to model fish viruses to develop strategies for
mitigation, including fish virus vaccines. These studies often
focused on critical factors like temperature and route of infection
(immersion and different forms of injection) in order to replicate
viral disease observed in other fish species. With time came the
recognition that zebrafish viral infection models could also be
used to study the host immune responses. These studies have
become more sophisticated, moving from the realm of pathology
and interferon and interferon-stimulated genes responses to
more complex studies examining issues such as immune cell
behavior. The zebrafish is uniquely positioned as a model in this
regard due to the generation of various transgenic lines that label
immune cells such as neutrophils and macrophages. As discussed
previously, zebrafish possess numerous inherent advantages that
make this type of investigation possible, including near
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transparency during the embryonic and larval periods of
development, an array of forward and reverse genetics tools,
and deeply sequenced genome. These advantages enable directed
studies at the host-viral pathogen interface, where it is possible to
answer questions about how cells like macrophages and
neutrophils work to limit the spread of infection and regulate
the inflammatory rheostat. Below is a summary of several viral
models that have been developed in zebrafish, including fish
viruses, human viruses that infect zebrafish, and xenograft
Frontiers in Immunology | www.frontiersin.org 11
models. Additional information about these and other viruses
can be found in Table 5.

Fish Viruses for Heterologous
Gene Expression
Some of the earliest published virus studies performed in zebrafish
used vesicular stomatitis virus (VSV) envelope containing
glycoprotein (VSVG) pseudo-typed retroviruses. These efforts
demonstrated that it was possible to stably transfer and express
TABLE 5 | Viruses studied in zebrafish.

Virus Family Virus Preferred
Host

Method(s) of Infection Zebrafish or Human Receptor

Group I: Double-stranded DNA Viruses
Herpesviridae Cytomegalovirus (CMV) Human One-cell stage injection with pUL97 plasmid (153) Human: OR14l1 (154)

Herpes simplex virus type 1 (HSV-1) Human Inoculation by injection in the dorsal telencephalon
or olfactory bulb (155–159)

Zebrafish: Hs3st4 (156)
Human: HS3ST4

Kaposi’s sarcoma-associated
herpesvirus (KSHV or HHV8)

Human Xenograft (160) Zebrafish#: Cd209, Itga3b, Itga5
Human: heparin sulfate, CD209, ITGA3,
ITGA5

Iridoviridae European sheatfish virus (ESV) Fish Immersion (161) Unknown
Infectious spleen and kidney necrosis
virus (ISKNV)

Fish Intraperitoneal injection, natural occurrence (162–
164)

Unknown

Lymphocystis disease virus (LCDV) Fish Intraperitoneal injection (165) Unknown
Group III: Double-stranded RNA Viruses
Birnaviridae Infectious pancreatic necrosis virus

(IPNV)
Fish Vertical transfer (female),

natural occurrence,
immersion, intraperitoneal injection (61, 166, 167)

Unknown

Group IV: Positive Sense Single-stranded RNA Viruses
Nodaviridae Betanodavirus (nervous necrosis virus)

(NNV)
Fish Intraperitoneal injection, natural occurrence,

immersion (168–171)
Zebrafish#: Hspa8

Caliciviridae Norovirus (NoV) Human Yolk sac injection, immersion (172) Unknown
Picornaviridae Cyprivirus Zebrafish Natural occurrence (173) Unknown
Togaviridae Chikungunya virus (CHIKV) Mosquito,

Human
Caudal vein, aorta (94, 117, 174) Unknown

Sindbis virus Mosquito,
Birds

Caudal vein, aorta (175, 176) Zebrafish#: rpsa
Human: heparin sulfate, RPSA

Flaviviridae Zika virus Mosquito,
Human

Xenograft (177) Zebrafish#: Axl
Human: AXL (178)

Retroviridae Zebrafish endogenous retrovirus
(ZFERV)

Fish Natural occurrence (179, 180) Unknown

Group V: Negative Sense Single-stranded RNA Viruses
Rhabdoviridae Spring viraemia of carp virus (SVCV) Fish Immersion, intraperitoneal injection, duct of Cuvier

(51, 57, 61, 108, 181–183)
Unknown

Snakehead rhabdovirus (SHRV) Fish Immersion, intraperitoneal injection (59, 60, 65,
184)

Unknown

Piscine novirhabdovirus (VHSV) Fish Immersion, intraperitoneal injection (61, 185–188) Unknown
Infectious hematopoietic necrosis virus
(IHNV)

Fish Intraperitoneal injection, immersion, caudal vein,
aorta (61, 108, 117, 166, 189–191)

Unknown

Orthomyxoviridae Influenza A virus (IAV) Human Duct of Cuvier, swimbladder (8, 24, 25) Zebrafish: Sialic acid (8)
Human: Sialic acid

Flaviviridae Dengue virus (DENV) Mosquito,
Human

Intraperitoneal injection (192) Zebrafish#: Cd209, Rab5aa, Rab5ab,
Hspa5
Human: CD209, RAB5A, HSPA5,

Amnoonviridae Tilapia lake virus (TiLV) Fish Immersion, intraperitoneal injection (53) Unknown
Group VII: Double-stranded DNA Viruses With an RNA Intermediate in Their Life Cycle
Hepadnaviridae Hepatitis b virus (HBV) Human One-cell stage injection with transgenic plasmid

(193–195)
Zebrafish#: Slc10a1
Human: SLC10A1

Hepatitis c virus (HCV) Human One-cell stage injection with transgenic plasmid
(194, 196, 197)

Zebrafish#: Cd81a, Cd81b, Scarb1,
Cldn1, Oclna, Oclnb, Npc1l1
Human: CD81, SCARB1, CLDN1,
OCLN, NPC1L1
M

#Zebrafish ortholog identified using the Zebrafish Information Resource (ZFIN; https://zfin.org).
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genes in zebrafish via retroviral vectors (198–200), albeit at
efficiencies lower than seen in human cells. Subsequently, the fish
rhabdovirus IHNV [also formerly known as Oncorhynchus 1
novirhabdovirus now preferably known as the salmonid
novirhabdovirus (201, 202)] and the aquatic birnavirus infectious
pancreatic necrosis virus (IPNV) was shown to trigger infections in
adult zebrafish following intraperitoneal injection and improve viral
infection efficiency (166). In this study, it was noted that the
infections particularly affected the head kidney, the principal site
of hematopoiesis in the fishes, and that hematopoietic cells were
affected. The results supported a role for this approach in
complementing VSVG heterologous gene expression studies.

Fish Viruses
Spring Viremia of Carp Virus (SVCV)
The spring viremia of carp virus (SVCV), a species of virus
belonging to the genus Vesiculovirus of the Rhabdoviridae
family, is associated with acute infectious dropsy of carp and
spring viremia of carp (181). Naturally occurring infections have
been detected in numerous cyprinid species, and SVCV has been
isolated from Nile tilapia and rainbow trout (203, 204). To better
understand the disease process, a model in which adult zebrafish
were challenged with SVCV by immersion was developed to
mimic a natural route of infection (181). Zebrafish are typically
maintained at 28°C-28.5°C to mimic their natural environment.
Lethal SVCV infections most often occur at temperatures below
15°C. In order to more closely model a natural infection, zebrafish
were acclimated to lower temperatures and exposed by immersion
to differing doses of SVCV. Several profound gross pathological
changes that resembled natural infections were noted in zebrafish
exposed to these lower temperatures; however, many of the
histological changes that are typically noted in natural infections
(e.g. edema, hemorrhage, inflammation, and necrosis) were not
observed. This was attributed to the fact that the zebrafish were not
able to mount a robust immune response at 15°C or 20°C as their
natural environment is approximately 28°C.

Another larval zebrafish model for SVCV infection was
developed in which virus was injected into the systemic
circulation via the caudal vein (57). Using this model, several
ISGs were induced following SVCV infection, including rsad2,
mxa, and mxb. Levraud et al (57) further adapted their SVCV
model by introducing a morpholino-mediated, loss-of-function
approach that knocked down Ifnphi1 expression. Survival to
SVCV infection was improved in transgenic embryos that
overexpressed ifnphi1 using beta-actin promoter. In addition,
they identified Crfb1 and Crfb5 as subunits of the zebrafish IFN
receptor complex, as Crfb1 and Crfb5 morphants lacked an
interferon antiviral response to SVCV infection.

Lopez-Munoz et al. (182) developed an immersion model for
SVCV infection using zebrafish larvae. They observed that 3 dpf
larvae exposed to SVCV at 26°C were susceptible to infection,
with 50% survival seen between 3- and 4-days post-infection
(dpi). In addition, using their immersion strategy, they observed
that SVCV failed to induce a robust antiviral IFN response,
although there was evidence of a strong pro-inflammatory
response with increased il1b, tnfa, and lta expression. Espıń-
Palazón et al. (55) applied a larval SVCV immersion model to
Frontiers in Immunology | www.frontiersin.org 12
determine that the pleiotropic pro-inflammatory cytokine Tnfa
functioned to inhibit SVCV clearance by blocking autophagy in
the host. Using the LC3-GFP autophagy transgenic line [Tg
(CMV : EGFP-map1lc3b)] (205) and the zebrafish ZF4 fibroblast
cell line, the authors found that Tnfa inhibits the formation of
autophagosomes during viral infections. Libran-Perez et al. (206)
further investigated the importance of autophagy in SVCV
infection using the zebrafish larval infection model. They
determined that exposure to palmitic acid, an anti-
inflammatory compound known to induce autophagy, could
increase zebrafish survival and reduce viral load and replication.

There have been three studies aimed at understanding the
effects of SVCV infection on the transcriptomes of adult
zebrafish (118, 183, 207). Encinas et al. (183) performed a
microarray study in an effort to identify genes that participate
in multiple pathways in the antiviral response and upon survival
and were significantly up-regulated or down-regulated. They
argued that specific targeting of these genes with candidate drugs
could be an effective strategy in mitigating impacts on fisheries of
SVCV. Wang et al. (118) performed a high-throughput RNA
sequencing (RNA-Seq) experiment using brain and spleen tissue
derived from SVCV-infected and control adult zebrafish. They
identified 382 differentially expressed genes in the brain and 926
differentially expressed genes in the spleen. In each study, the
authors identified differential expression of genes associated with
inflammation and immunity. Valenzuela-Muñoz et al. (207)
performed an RNA-Seq experiment comparing the long non-
coding RNA (lncRNA) transcriptomes of kidney tissue from
control and rag+/- heterozygous adult zebrafish following SVCV
infection. As described later in this review, putative functional
annotation of candidate lncRNA were assigned using Gene
Ontology (GO) terms annotated to protein-coding genes
within the proximity of the lncRNA (10 kbp up- or down-
stream). Using this approach, the authors identified lncRNA
genes associated with adaptive immunity based on their
differential expression in the rag1+/- heterozygotes. In addition,
they also identified lncRNA genes that could be linked to
metabolic processes, including the activation of immune cells,
and to positive regulation of TOR signaling, which may lead to
the inhibition of autophagy. The authors noted that autophagy
has been linked to both pro-viral and anti-viral responses.

Infectious Spleen and Kidney Necrosis Virus (ISKNV)
The infectious spleen and kidney necrosis virus (ISKNV) belongs
to the genus Megalocytivirus in the family Iridoviridae. ISKNV
and ISKNV-like viruses infect more than 50 marine fish species
and impact fisheries of commercial value (208). In fact, natural
infections of laboratory zebrafish have been noted (162). These
zebrafish infections exhibited bloating, elevation of scales, and
petechial hemorrhaging in adults. Xu et al. (163) developed an
ISKNV adult zebrafish infection model using intraperitoneal
injections of virus. Zebrafish infected with ISKNV exhibited
mortalities and clinical symptoms reminiscent of natural
infections, including elevation of scales and petechia. In
addition, the virus induced cellular hypertrophy in the kidney
and spleen. In a follow-up study comparing the course of ISKNV
infection in Tetraodon nigroviridis and zebrafish, Xu et al. (209)
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showed significant induction of ifnphi1 and tnfa transcription in
zebrafish, which is indicative of robust antiviral and pro-
inflammatory responses to infection.

Piscine novirhabdovirus (Formerly Oncorhynchus 2
Novirhabdovirus or Viral Hemorrhagic Septicemia
Virus [VHSV] or Egtved Virus)
Piscine novirhabdovirus belongs to theNovirhabdovirus genus of
the Rhabdoviridae family and causes a prolific viral disease that
afflicts over 50 freshwater and marine species in the northern
hemisphere (201, 202). Novoa et al. (185) developed juvenile and
adult zebrafish immersion and intraperitoneal injection models
for piscine novirhabdovirus infection. They observed that adult
zebrafish infected by intraperitoneal injection developed disease
similar to that found in nature, with evidence of petechial
hemorrhage, exophthalmoses, distended visceral cavities, and
erratic swimming behaviors. Further, they observed in the
kidney increased expression of gene transcripts associated with
antiviral and pro-inflammatory responses, including tlr3,
ifnphi1, mxa, ifng1, and tnfa. Novoa et al. (185) also
demonstrated that a recombinant salmonid novirhabdovirus
(IHNV) lacking an NV gene, but expressing piscine
novirhabdovirus G gene, had dose-dependent protective effects
for zebrafish in resisting piscine novirhabdovirus infection, as
measured by a significant reduction mortality.

Snakehead Rhabdovirus (SHRV)
Snakehead rhabdovirus (SHRV) belongs to the Novirhabdovirus
genera of the family Rhabdoviridae and is closely related to the
other commercially significant viruses IHNV and VHSV. We
have previously published a comprehensive characterization of
SHRV infection in zebrafish (59). Our laboratory group
developed and applied embryonic and adult zebrafish models
for SHRV infection to address questions related to the host
immune and inflammatory response to infection (59, 60, 65).
Zebrafish between 24 hpf and 30 dpf were susceptible to infection
by immersion, while adult zebrafish could only be infected by
intraperitoneal injection. Infected zebrafish presented with
petechia, abdominal redness, and erratic swim behaviors.
Histological examination of embryonic and juvenile fish
revealed evidence of inflammation, including pharyngeal
epithelium and liver necrosis and congestion of the swim
bladder by cellular debris. There was also evidence of
monocyte accumulation in the infected areas, which is
indicative of inflammation. Adult fish infected with SHRV
exhibited more localized effects closer to the site of infection,
including evidence of inflammation with edema, petechia, and
fluid and immune cell accumulation in the abdomen. In
addition, SHRV infection by immersion induced expression of
antiviral ifnphi1 and mxa transcripts. In another study, Phelan
et al. (65) determined that SHRV upregulated expression of the
immune genes traf6 and tlr3 and slightly downregulated the
expression of irak4 in both embryonic and adult zebrafish. Gabor
et al. (60) showed that the overexpression of a full-length Mda5
was protective against SHRV infection, while overexpression of a
dominant-negative Mda5 receptor (with a CARD domain
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deletion) could increase SHRV mortality. Kortum et al. (184)
applied the adult SHRV infection model to characterize its effects
on polymeric immunoglobulin (Ig) receptor (pIgR) expression.
pIgR expression is thought to be regulated by Tlr3 and Tlr4
signaling and to link aspects of the innate immune response to
the adaptive immune response (210). Upon SHRV infection,
Kortum et al. (184) observed that pigr and pigrl transcripts were
reduced, leading to speculation that SHRV suppresses the
immune response, at least in part, through this mechanism.

Zebrafish Picornavirus-1 (ZfPV-1)
Recently, evidence for a natural picornavirus infection in the
zebrafish gut was detected in a viral metagenomics analysis of
zebrafish gut tissue (173). In situ hybridization revealed infection
of the apical surfaces of enterocytes, as well as near the mucosal
layer and within the lumen of the intestine. While AB zebrafish
infected with ZfPV-1 were asymptomatic, the virus appears to be
widespread in research facilities, with 56% of the 41 institutions
tested exhibiting evidence of infection within the fish
populations. The prevalence of ZfPV-1 in wild populations has
not been determined. Development of a picornavirus model that
can infect zebrafish naturally and not trigger symptoms has the
potential to reveal novel insights into the underpinnings of the
host-pathogen interaction in a low-level infection. It may be
possible to gain an understanding of the role these viruses play in
dysregulating immune and inflammatory responses over time,
including in the presence of secondary infections, and in
affecting embryonic development. In addition, a zebrafish
picornavirus model could be applied to test the immune
robustness of different zebrafish strains as well as the
importance of various immune responsive genes.

As described, there are numerous advantages to modeling fish
viruses in the zebrafish. The ability to have an easily maintained,
relatively low cost, teleost model to study viral infection makes it
possible to study an array of research questions. There are several
challenges that need to be overcome in order to model viral
disease, including determining the appropriate life stage,
potential issues with viral tropism, and especially difficult
hurdles related to temperature. Nevertheless, there is now a
considerable body of literature demonstrating the usefulness of
the zebrafish models in the study of fish viruses and immune
response. It is particularly noteworthy that many of these viruses
can be modeled during the embryonic and larval periods. This
ability to infect embryonic and larval fish enables researchers to
ask far more precise questions, particularly in the realm of host-
virus interaction and immune response. Future studies should
take advantage of these developing models to answer critical
questions related to vertebrate immune responses to viruses that
are universal and conserved across all species.

Human and Mammalian Viruses
Zebrafish possess many of the same receptors required by human
and other mammalian viruses for entry and infection (Table 5).
The following summarizes some of the human virus research
that has been conducted in the zebrafish model. These studies
highlight the flexibility of the zebrafish model, particularly with
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regard to its ability to acclimate and then be infected by viruses
that are typically most virulent in temperature ranges more
conducive to humans and mammals.

Chikungunya Virus
Chikungunya virus (CHIKV) is a single-stranded, positive-sense
Alphavirus that causes acute, febrile illnesses accompanied by
severe arthralgia (211). CHIKV is a mosquito-borne virus
endemic to Africa, Asia and the Indian subcontinent, although
there have been outbreaks in other parts of the world, including
in the regions of the Americas (212). Palha et al. (94) developed a
larval zebrafish model for CHIKV infection. Using a GFP-labeled
CHIKV, the authors observed the development of a systemic
infection that largely resolved by 4 days post-infection (dpi).
Interestingly, CHIKV infections persisted in the brain
parenchyma until at least 7 dpi. CHIKV induced a powerful
type I interferon response, as measured by ifnphi1 expression,
that was largely mediated by neutrophils and hepatocytes. The
role neutrophils played in producing this antiviral ifnphi1
response was particularly intriguing because their function in
viral infections has not been fully appreciated. These findings
were bolstered by experiments that compared the relative
importance of macrophages and neutrophils in containing
CHIKV infections. Palha et al. (94) observed that reductions in
neutrophil populations (induced by morpholino knockdown of
Csf3r) made zebrafish more susceptible to CHIKV infection,
while macrophage depletion by a drug-inducible cell ablation
system led to only a modest increase in disease severity.

Briolat et al. (117) performed microarrays on larval zebrafish
that had been infected with either IHNV or CHIKV. Each of
these viruses has different disease kinetics and induce differing
type I interferon response. While IHNV stimulates a milder type
I interferon response, CHIKV induces a far more robust
expression. Using the microarray approach, the authors
identified a suite of zebrafish ISGs that they could compare to
human studies. With this information, Briolat et al. (117)
identified ISGs that are conserved across vertebrate species.

Sindbis Virus
Like CHIKV, the Sindbis Virus (SINV) is an Alphavirus capable
of neuroinvasion. Passoni et al. (175) developed a larval SINV
infection model in the zebrafish and observed that the virus
could infect multiple organs and replicate throughout the larvae.
Further, they established the means by which CHIKV and SINV
entered the central nervous system. Based on the data they
collected, Passoni et al. (175) speculated that CHIKV enters
the CNS by infecting the brain microvasculature endothelial cells
at the blood-brain barrier and that SINV enters the CNS through
axonal transport via the peripheral nerves.

Boucontet et al. (176) observed that larval zebrafish infected with
SINV exhibited increased mortality when infected secondarily with
the bacterium Shigella flexneri. The authors also noted increased
bacterial burdens in those animals that were infected with SINV first
and S. flexneri second. The initial viral infection induced expression
of antiviral ifnphi1, pro-inflammatory tnfa and il1b, and anti-
inflammatory Il10 transcripts. It also affected neutrophil
populations, function, and behavior. Specifically, Boucontet et al.
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(176) noted fewer neutrophils and more dying neutrophils in larvae
that had been infected with SINV and then S. flexneri. Interestingly,
they noted an increase in neutrophils by 120 hpi when zebrafish
were infected with SINV. The authors speculated that the SINV
infection triggers an IFN polarization that renders affected cell
populations unable to mount antibacterial responses. They also
observed the neutrophils exhibited defects in recruitment to areas of
infection, and they attributed this finding to the upregulation of il10
that was observed. Taken together, these data indicate an important
role for neutrophils in containing secondary infections following
SINV infections and offer this superinfection model as a means to
test these phenomena.

Dengue Virus
Dengue virus (DENV) is a single-stranded, positive-sense,
mosquito-borne Flavivirus that can induce a broad range of
manifestations in infected humans, from asymptomatic to severe
flu-like. Recently, Balkrishna et al. (192) described an adult
zebrafish model for Dengue virus serotype 3 (DENV-3)
infection. The authors collected serum containing DENV-3
from human subjects and then performed intramuscular
injections of serum into adult zebrafish that served as carriers
to propagate the virus. After 14 days, serum from infected
zebrafish was harvested, diluted, and injected intramuscularly
into secondary adult zebrafish, which served as the study
subjects. Using a qPCR-based approach to measure DENV-3-
specific transcripts, Balkrishna et al. (192) observed a viral load
that was sustained through 15 days post-injection. Histological
analysis of the liver indicated necrosis, increased numbers of
inflammatory cells, and increased presence of erythrocytes.
Blood smears indicated increasing numbers of leukocytes over
the course of infection, decreasing numbers of erythrocytes, and
decreased numbers of platelets, which is commonly seen in
human DENV infections. Close inspection of caudal fins
revealed evidence for DENV-induced hemorrhage that was not
seen in control groups. Further, increases in the expression of
ang2, a pro-angiogenic gene and indicator of inflammation, and
ccl3, a chemokine, were noted. The ayurvedic herbal drug,
Denguenil, was shown to limit the effects of DENV-3 infection
in this zebrafish model in a dose-dependent manner, as
evidenced by decreased levels of necrosis, reduced numbers of
inflammatory cells, and decreased levels of erythrocytes in the
liver; decreased number of leukocytes, increased numbers of
erythrocytes, and decreased numbers of platelets in blood
smears; diminished evidence of hemorrhage in caudal fins; and
decreases in the levels of ang2 and ccl3 transcripts.

Human Noroviruses
Human noroviruses are single-stranded, positive-sense, non-
enveloped RNA viruses belonging to the family Caliciviridae
and are the primary causes of viral gastroenteritis. Van Dycke
et al. (172) recently described a larval zebrafish model for human
norovirus infection. Zebrafish at 3 d post-fertilization were
subjected to yolk injections of human norovirus collected from
the stool of human test subjects. A concurrent set of experiments
with mouse norovirus was conducted, but it was determined the
mouse noroviruses could not cause infections. The authors
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observed that human norovirus replicated in zebrafish, as
detected by qPCR assays designed to detect viral RNA copies.
These data were supported by ELISA, in which evidence of
increased viral antigens was observed. Human norovirus
replication was detected by immunohistochemistry in both the
intestine and caudal hematopoietic tissue of the larval zebrafish.
These findings supported the idea that there is a dual tropism for
human noroviruses in zebrafish. Infections with human
norovirus also induced antiviral responses in the zebrafish, as
evidenced by significant increases in the expression of ifnphi1,
mxa, and rsad2 transcripts relative to controls. Zebrafish infected
with the human norovirus exhibited significant reductions in
viral load following exposure by immersion to the antiviral
compound 2’-C-methylcytidine (2CMC) (as measured by EIA).
These findings demonstrated the utility of this infection model
for testing antiviral drugs.

Herpes Simplex Virus – Type 1
Herpes simplex virus – type 1 (HSV-1) is a double-stranded DNA
virus that belongs to the Alphaherpesviridae subfamily. In humans,
HSV-1 may be transmitted by saliva or other bodily secretions. It is
most often associated with cold sores, but can also cause an array of
other herpetic lesions, including herpetic sycosis, herpes
gladiatorum, and herpetic whitlow (213). Burgos et al. (155)
developed an adult zebrafish model for HSV-1 infection.
Following intraperitoneal injections, zebrafish were monitored for
the presence of HSV-1 DNA. Between 1- and 4-days post-infection,
zebrafish experienced active infection, as demonstrated by the
presence of HSV-1 DNA. In addition, histological examination of
zebrafish injected with HSV-1 demonstrated that there was a
concomitant inflammatory response, even at sites distal to the site
of injection. There were indications of degeneration of secondary
oocytes and hemorrhage within the muscle tissue. The authors also
noted tropism for neuronal tissue by the HSV-1.

Human heparan sulfate modifying enzyme 3-O-
sulfotransferase-3 (3-OST-3) functions as a cellular receptor for
HSV-1 infection. Zebrafish express multiple isoforms of (3-OST)
(214). Several studies were performed in which the zebrafish 3-
OST isoforms 3-OST-2, 3-OST-3, and 3-OST-4 were
heterologously expressed in hamster CHO-K1 cells. CHO-K1
cells are normally resistant to HSV-1 infection; however, when
the zebrafish 3-OST isoforms 3-OST-2, 3-OST-3, and 3-OST-4,
and 3-OST-6 were heterologously expressed, these cells became
sensitive to HSV-1 infection (156, 215–217). Interestingly, both
zebrafish 3-OST-2 and 3-OST-4 are widely expressed in the
central nervous system. Because of this, zebrafish may represent
an ideal model in which to study effects of HSV-1 infection on the
central nervous system and test potential therapeutics (156).

Ge et al. (157) demonstrated that HSV-1 could infect
zebrafish at different larval stages from 48-96 hpf. They noted
that HSV-1 infection triggered potent antiviral responses that
included the upregulation of IFN and ISGs, including isg15 and
rsad2. While they demonstrated that the antiviral response that
was generated was mediated through a Sting1-mediated cytosolic
DNA sensing pathway initiated by Dhx9 and Ddx41 orthologues,
they surprisingly found that cyclic GMP-AMP synthase (cgas)
was not required for Sting1 signaling. These data support a
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mechanism by which zebrafish can mount a robust Sting-
mediated inflammatory response, as has been demonstrated in
other models (218).

Hepatitis Viruses
Similar to DENV, hepatitis C virus (HCV) is a single-stranded,
positive-sense RNA virus belonging to the Flaviviridae family of
viruses. In addition to causing hepatitis, or inflammation of the
liver, persistent HCV infections can lead to hepatocellular cancer.
To date, no vaccine has been developed to prevent HCV infection.
In vitroHCV studies had proven difficult until the development of
subgenomic replicons that replicate autonomously (12, 219). Ding
et al. (196) recently adapted a subgenomic replication scheme for
use in zebrafish to model HCV replication in a live animal. In their
study, the authors demonstrated by the presence of HCV
transcripts that replication occurred. In addition, they observed
that HCV replication could be inhibited by the drugs ribavirin and
oxymatrine. Ding et al. (196) also noted expression of the HCV
subgenome transcripts in the zebrafish liver and that this disrupted
the expression of homologous genes similarly affected in human
HCV-infected liver cells. These data indicated that this zebrafish
model effectively recapitulates aspects of HCV infection and may
be useful in better understanding the effects of HCV-triggered
inflammation on transformation to hepatocellular cancer

Li et al. (220) modified this HCV model to restrict its
expression to the zebrafish liver. Using this zebrafish liver-
specific HCV subgenomic replication model, the authors
observed opposing effects on autophagy when either human
ATG10 or ATG10S was overexpressed. Specifically, ATG10
overexpression triggered amplification of the HCV-subgenomic
replicons, while ATG10S overexpression caused their
degradation. These data, coupled with data from experiments
using the autophagy inhibitors 3MA and CQ, provide evidence
for how autophagy may influence aspects of HCV replication.
Because of the linkages between autophagy and inflammation
(221), this model may facilitate studies aimed at understanding
these processes in the context of HCV.

Influenza A Virus (IAV)
We have described zebrafish models for IAV infection that
resemble human disease (8, 24). We demonstrated that zebrafish
possess the a-2,6-linked sialic acid residues on their cells that
provide IAV viruses a way to bind, attach, and enter cells. We
showed that two different strains of IAV (A/PR/8/34 [H1N] and
X-31 A/Aichi/68 [H3N2]) could infect, replicate, and cause
mortality when injected into the circulatory system of a larval
zebrafish. Using a recombinant IAV strain carrying a GFP
reporter (NS1-GFP) (222), we demonstrated the progression of
an infection that could be monitored by fluorescence microscopy.
In addition to being a model for disseminated infection, we also
developed a model for localized IAV infection using the
swimbladder (8, 24), which is considered the functional
analogue of the human lung in fish (223). Zebrafish infected
with IAV produce strong antiviral responses, as measured by
increased expression of ifnphi1 and mxa. Zebrafish also exhibit
strong pro-inflammatory responses to IAV infection, with
increases in the expression of il1b and cxcl8 transcripts observed,
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increased NFkB activation as noted in Tg(6xHsa.NFkB : EGFP)
transgenic fish, and extensive damage to zebrafish muscle fibers,
with neutrophils recruited to sites proximal to the unanchored
ends of some fibers (25).

Zika Virus (ZIKV)
The Zika virus (ZIKV) is a positive sense, single-stranded,
enveloped RNA virus belonging to the Flaviviridae family
(224). ZIKV is transmitted to humans primarily by some types
of Aedes mosquitoes (A. aegypti and A. albopictus), but there are
other modes of transmission, including through sexual
intercourse, laboratory exposure, blood transfusion, and from
mother to fetus during the pre- and peri-natal periods. Most
ZIKV infections trigger mild symptoms, including rash, fever,
joint pain, and/or non-purulent conjunctivitis; however, ZIKV
infections during pregnancy can have profound effects on the
developing fetus’ nervous system. These may include congenital
Zika syndrome (CZS), which is characterized by severe
microcephaly accompanying the fetal brain disruption
sequence (FBDS), as well as other brain and ocular defects and
congenital contractures (225).

Ayala-Nunez et al. (177) developed a xenotypic system in
their study aimed at understanding the role infected human
monocytes play in disseminating ZIKV to the neural cells. In
their model, they labeled human CD14+ monocytes with the dye
CellTrace Yellow and injected them via the duct of Cuvier into
the circulation of 48 hpf zebrafish embryos. By performing live
imaging, the authors observed that monocytes infected with
ZIKV exhibited increased capacity for transmigration. They
also noted that monocytes exposed to ZIKV were more prone
to arrest in zebrafish vessels and suggested that this behavior may
facilitate attachment to the endothelial cells of the blood vessel.
These data support a likely role for the microenvironment in
mediating transmigration. We speculate that this zebrafish
model could be applied to study the effects an inflammatory
microenvironment has on monocyte transmigration when
infected with ZIKV. It is worthwhile to note that ZIKV infects
human cells that are cultured at temperatures 10°C higher than
zebrafish embryos and the cooler temperature may alter function
of the ZIKV-infected human monocytes. A follow-up
experiment in the same study was performed using a transwell
migration assay system in which infected human monocytes
were added to a well containing a porous membrane layered with
cells mimicking the blood brain barrier. Under the transwell,
neural organoids were added. In this experiment, more ZIKV-
infected monocytes were observed to migrate across the
membrane than control monocytes. Further, the authors noted
infection of the neural organoids by ZIKV, which indicated viral
dissemination by the monocytes.

These research studies, coupled with the studies conducted
with fish viruses, demonstrate the strength of the zebrafish model
and highlight several of its attributes, including its fully sequenced
genome, which allows for the identification of putative viral
receptors that can often be inferred based on homology. The
zebrafish model has been aided by the development of a variety of
fluorescent reporter lines that label immune and other cells.
Regarding host-virus interactions, there has been a wealth of
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knowledge garnered through the development of alternative
vertebrate model systems. Nevertheless, the zebrafish model
allows researchers to investigate questions often more difficult to
answer in these other models. As an example, alternative
vertebrate models for influenza A infection exist, including those
in mice, guinea pigs, cotton rats, hamsters, ferrets, and macaques
(226, 227). Each have distinct advantages and disadvantages, but
none is ideal. For example, the mouse model is limited by the fact
that many human influenza A viruses are unable to infect it due to
differences in the viral receptors they possess. On the other hand,
the ferret model possesses similar viral receptors to humans and
mimics the viral kinetics most closely, but it is difficult to use due
to its relative size and cost of husbandry, in addition to a lack of
reagents and methods. When applied to appropriate research
questions, zebrafish can have real advantages over mice, ferrets,
and these other vertebrate models, particularly in areas related to
neutrophil and macrophage biology. Using the zebrafish model, it
is possible to track individual cells and ascertain their role in host
defense and host inflammation using the full array of transgenic
reporter lines and other reagents available. As described above, in
each of the other human viruses tested, the zebrafish model has
been utilized to make significant contributions. It is important for
researchers interested in modeling virus infections to recognize the
strengths and limitations of their respective models. Cross-model
approaches have the potential to illuminate areas of host-virus
biology that cannot be observed otherwise.
NEUTROPHILS AND
HYPERINFLAMMATORY TISSUE DAMAGE

Tissue damage can be caused by neutrophils when they fail to
properly resolve inflammation. This can occur when neutrophils
become over-activated and/or the number of neutrophils at the
site are not reduced. In this uncontrolled response, neutrophils
and macrophages recruited by these cytokines can destabilize the
vasculature and damage tissues as they migrate to the site of
infection as shown in a mouse model of IAV infection (228).
Reduction of the number of neutrophils at a site of inflammation
can occur by pyroptosis and reverse transendothelial migration.
Failure to reduce the number of neutrophils at the site of
inflammation can result in tissue damage (229). The
inflammatory cytokine, il1b, has been shown to have a critical
role in prolonged inflammation in the zebrafish notochord that
cannot be infiltrated by macrophages and neutrophils during
early stages of bacterial infection (230). Knockdown of Il1b was
used to demonstrate that Il1b was required for the recruitment of
neutrophils to the notochord. The same study also described how
neutrophils can degranulate without having direct interaction
with a pathogen. A subsequent study identified how neutrophil-
generated ROS cleared bacterial infection of the notochord even
though neutrophils cannot infiltrate the notochord (144).

Damage to skeletal muscle was observed in a zebrafish model
of IAV infection (25). By 24 hours post infection, zebrafish
embryos were observed to have mild muscle degeneration with
sarcolemma damage and defects in extracellular matrix adhesion.
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Confocal imaging of IAV-infected Tg(mpx:EGFP) showed that
neutrophils localized to sites of fiber damage. Muscular
degeneration phenotypes observed in the zebrafish model of
Duchenne Muscular Dystrophy, dmdta222a/ta222a, were found to
be exacerbated following IAV infection.
TRANSCRIPTIONAL PROFILING TO
IDENTIFY STAGES OF
HYPERINFLAMMATORY RESPONSE

High-throughput RNA sequencing (RNA-Seq) of bulk tissues has
begun to be applied to study zebrafish models of viral infection.
The response to SVCV infection in zebrafish was characterized by
RNA-Seq in the brain and spleen tissues (118). Levraud et al. (174)
used RNA-Seq to characterize the response to CHIKV infection
following morpholino-mediated knockdown of Crfb1 and Crfb2.
Another important aspect of this study was identifying 97 ISGs
that had human orthologs previously identified as ISGs in other
studies. Another study of SVCV infection profiled gene expression
in kidneys at 24 hpi in six-month old adult zebrafish with and
without an impaired adaptive immune system by comparing
heterozygous rag+/- and wild-type zebrafish (207). Sixteen
proviral insertion sites in Moloney murine leukemia virus (PIM)
kinases were recently found to have increased gene expression
following SVCV infection in adult zebrafish kidneys at 24 hpi
using RNA-Seq, and that three pan-PIM kinase inhibitors blocked
viral entry (231). As several zebrafish fluorescent reporter strains
have been used for FACS to isolate macrophages or neutrophils for
cell-specific functional analysis (38, 48), RNA-Seq could be
applied to characterize these FACS sorted cell populations
following virus infection. Single cell RNA-Seq (scRNA-Seq) has
been applied to study embryonic development (232) and tissue
regeneration (233) in the zebrafish. This technology should prove
valuable in characterizing the inflammatory response to viral
infection and potentially identify genes that differentiate
phagocytes between various states of activation.
ROLES OF NON-CODING RNA

Genes function together in complex networks with multiple layers
of genetic regulation that include both protein coding and non-
protein coding genes. In the Ensembl annotation of the zebrafish
genome [Ensembl version 103 annotation of GRCz11 (234)], there
are 25,592 protein-coding genes, 3,227 small non-coding, and3,278
long non-coding genes. These non-coding genes lack long open
reading frames, andmap to intergenic regions, introns, or antisense
toprotein-coding genes. Studies of non-coding genes inhuman and
mouse have demonstrated important cis- and/or trans-regulatory
roles in immune function as summarized below.

Long non-coding RNAs (lncRNAs) have transcripts that exceed
200 bp, and are classified based on their genomic location and
orientation. Classes of lncRNAs include long intergenic RNA
(lincRNA), antisense, bidirectional, intronic, and enhancer-
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associated RNAs. Diverse functions of lncRNAs have been
described. They can function as both positive and negative
regulators at the DNA, RNA or protein level in cis and trans. Some
lncRNAs function in the nucleus to interact with chromatin, while
others interact with RNAs or proteins in the cytoplasm. An example
of a cis-regulatory lncRNA is themouse antisense lncRNA,Gm14023
(235). Gm14023, is antisense to Il1a and functions to regulate the
recruitment of RNA polymerase II to the Il1a promoter following
TLR ligand stimulation (235). Examples of trans-regulatory lncRNAs
include the mouse antisense lncRNA, Ttc39aos1, that was originally
named, lncRNA-EPS (236). A mouse knockout of Ttc39aos1 and
gain-of-function experiments showed that it was required to control
the expression of immune response genes inmacrophages (236). An
example of a lncRNA that has been shown to function in both cis and
trans is themouse long intergenic RNA, Ptgs2os2, that was originally
named, lncRNA-Cox2 (237). Knockdown of Ptgs2os2 by shRNA
showed that the expression of proinflammatory genes (including
Tlr1, Il6, and Il23a) was decreased, and chemokines (Ccl5 and
Cx3cl1), chemokine receptors (including Ccr1), and interferon-
stimulated genes (including Irf7, Oas1a, Oas1l, Oas2, Ifi204 and
Isg15) were upregulated (237).

A study of the role of the adaptive immune system in response
to SVCV in zebrafish kidneys found that 12,165 putative
lncRNAs were expressed (207). The study examined lncRNA
candidates by looking for differentially expressed protein coding
genes that mapped to within 10 kbp of the lncRNA and testing
for enriched Gene Ontology terms. Among putative lncRNAs
investigated were two lncRNAs that map adjacent to rag1 and
rag2 in the zebrafish genome, suggesting a regulatory role.

MicroRNAs are negative regulators of gene expression that have
beenshowntoberequired forzebrafish immunefunction(49,148,149,
238) in addition to embryonic development (239), and tissue
regeneration (240, 241). Downregulation of both miR-722 (148, 149)
and miR-199 (150) have been shown to be required for neutrophil
migration inzebrafish. Studiesof zebrafishwith systemicPseudomonas
aeruginosa PAK strain infection showed that neutrophil expression of
miR-722 was required for regulating the inflammatory response
through Rac2 (149). Overexpression of miR-722 in the Tg(lyz:
mir722-Dendra2)pu6 line had increased survival to lethal
inflammation caused by acute Pseudomonas infection. A screen of
several microRNAs showed that miR-199-3a was required for
neutrophil migration (150). Using the neutrophil-specific
overexpression line, Tg(lyz:mir722-Dendra2)pu19, it was shown that
miR-199regulates cyclin-dependentkinase2 (cdk2).Hypermaturation
of neutrophils and defective interferon signalingwas observed inmiR-
142a and miR-142b double-knockout zebrafish (49). Genes
differentially expressed in miR-142 double-knockout included stat1a
and irf1b. The neutrophil inflammatory response to tailfin injury was
shown tobe regulatedbymiR-223by regulatingnuclear factor (NFkB)
signaling (238). Using miR-223 knockout and multiple miR-223
transgenic lines, it was shown the expression from both neutrophils
and the basal and apical epithelium functioned to negatively regulate
neutrophil recruitment. NFkB activity, visualized using the Tg
(6xHsa.NFkB : EGFP)nc1 line, was upregulated following tailfin
injury in miR-223 mutants. The contribution of miR-233 expression
in neutrophils was studied using the Tg(lyz:RFP-mir223)pu9 along
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with a transgenic line that expressed a miR-223 sponge in apical
epithelial cells, Tg(krt4:RFP-bsmir223)pu12. Specific miR-223 targets
identified included cul1a, cul1b, traf6, and tab1.

MiRNAs are important candidate genes to study in the
inflammatory response to virus infection, but miRNAs
conserved with humans should be prioritized. MiRNAs are
highly conserved across animal taxa in an evolutionary context
(242). One of the first miRNAs discovered, let-7, is conserved
across metazoa, but other miRNAs, such as miR-722, are only
found in teleost fish. MiRNAs are organized into families based on
their seed sequence that is used to determine targets. Once a
miRNA family evolves, it is rarely lost during evolution. As
described in MiRGeneDB (243), the roundworm (C. elegans)
has 145 miRNAs in 90 families, the zebrafish has 390 miRNAs
in 113 families, the mouse has 447 miRNAs in 224, and humans
have 556 miRNAs in 267 families. The number of miRNA families
correlate with complexity that is estimated by the number of
distinct cell types (242). In addition, the complexity of immune
systems across metazoa correlates with the number of miRNA
families. Studies of miRNAs in the response to viral infection in
the zebrafish are promising as a total of 79 families, including miR-
199, are conserved between zebrafish and humans (Figure 3).
DISCUSSION

Modeling viral infection in the zebrafish and other fishes have
provided valuable information about the inflammatory response
and other host-virus interactions that are complementary to other
model systems. Zebrafish models of viral infection take advantage
of the strengths of the model that include genetic tools and
reporter lines that allow for in vivo imaging. One aspect of the
inflammatory response to viral infection that needs additional
study is the contribution of neutrophils. As summarized in this
Frontiers in Immunology | www.frontiersin.org 18
review, several existing zebrafish models have been designed to
study neutrophil function. Some of these tools have begun to be
the applied to study viral infection as the role of the inflammatory
response of neutrophils during viral infection is largely unknown.

We hypothesize that there is an immunologic tipping point
during viral infection between the beneficial antiviral activity and
tissue damaging hyperinflammatory response of neutrophils
(Figure 4). ROS generated by virus-infected cells may initiate
neutrophil chemotaxis during an IAV infection. By recruiting
neutrophils to areas of virus-induced tissue damage through the
formation of H2O2 gradients, these neutrophils may then be
retained at the site because the high ROS levels suppress cell
motility. ROS play critical roles in the immune response, serving
both as indicators of immune dysregulation and as mediators of
various immune processes, including neutrophil migration. The
roles of ROS in viral infection have not been definitively identified.
In addition, type I and type II IFN together reduce neutrophil
migration and limit hyperinflammation during IAV infection. The
connections linking the effectors of ROS production, however, like
the NADPH oxidase and myeloperoxidase, as well as the
mechanisms driving the suppression of neutrophil migration by
interferon signaling, are unknown. Our hypothesis is that
neutrophils, while controlling an IAV infection, trigger excessive
inflammation through mechanisms involving ROS production
and type I IFN signaling.

The importance of neutrophils in the innate response to viral
infection is an ongoing subject of controversy. Zebrafish models
of virus infection are uniquely poised to enable characterization
of the molecular signals that stimulate neutrophils to migrate in
vivo and elucidate pathways that lead to generation of ROS and
other mediators of inflammation in the antiviral response.
Furthermore, studies that model human viruses in zebrafish,
such as IAV, have the potential to provide unique insight
regulating neutrophil function during the inflammatory and
A B

FIGURE 3 | Overlap among miRNA families in zebrafish, mouse, and human genomes. (A) 79 miRNA families are conserved among zebrafish, mouse and
human genomes, including miR-142, miR-199 and miR-223. 34 miRNA families are found in the zebrafish, but not in the mouse or human genome. One of the
34 miRNA families is miR-722 which was shown to regulate zebrafish neutrophil migration. 62 miRNA families are found in the mouse, but not in the zebrafish or
human genome. 105 miRNA families are found in the human genome, but not in the zebrafish or mouse genome. 83 miRNA families are conserved between the
mouse and human genomes that are not found in the zebrafish genome. (B) The origin of the 79 conserved miRNA families are labeled by the last common
ancestor for Eumetazoa, Bilateria, Deuterostomia, Chordata, Olfactores, Vertebrata, Osteichthyes, and Gnathostomata with the number of families shown in
parentheses. Two of the 79 miRNAs are miR-199 and miR-223 that have roles in neutrophil function. The node of origin for miR-142 and miR-199 is Vertebrata,
and Gnathostomata for miR-223.
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antiviral responses. One advantage of the zebrafish model is the
potential to screen small molecules to identify potential
candidate therapeutics at relatively low cost. One example was
demonstrating that the neuraminidase inhibitor, Zanamivir,
extended survival in our zebrafish model of IAV infection (8).
These advances may inform the development of new treatments
that modulate the inflammatory response to viruses like IAV.
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