BMC Complementary and 0)
Alternative Medicine BiolMed Cenral

Research article

Protective effects of a compound herbal extract (Tong Xin Luo) on
free fatty acid induced endothelial injury: Implications of
antioxidant system

Lin Zhang!, Yiling Wu*2, Zhenhua Jia2, Yun Zhang3, Hu Ying Shen*! and
Xing Li Wang*!

Address: 'Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Texas Heart Institute, Houston, Texas, USA, 2Research Institute
of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Hebei, PR China and 3Key Laboratory of Cardiovascular Remodeling
and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital; Jinan, PR China

Email: Lin Zhang - linz@bcm.edu; Yiling Wu* - jiatcm@163.com; Zhenhua Jia - jlatcm@163.com; Yun Zhang - yunzhang@sdu.edu.cn; Hu
Ying Shen* - hyshen@bcm.edu; Xing Li Wang* - xlwang@bcm.edu

* Corresponding authors

Published: 14 July 2008 Received: 29 January 2008
. - . Accepted: 14 July 2008

BMC Complementary and Alternative Medicine 2008, 8:39  doi:10.1186/1472-6882-8-39

This article is available from: http://www.biomedcentral.com/1472-6882/8/39

© 2008 Zhang et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Tong-Xin-Luo (TXL) — a mixture of herbal extracts, has been used in Chinese
medicine with established therapeutic efficacy in patients with coronary artery disease.

Methods: We investigated the protective role of TXL extracts on endothelial cells injured by a
known risk factor — palmitic acid (PA), which is elevated in metabolic syndrome and associated with
cardiovascular complications. Human aortic endothelial cells (HAECs) were preconditioned with
TXL extracts before exposed to PA for 24 hours.

Results: We found that PA (0.5 mM) exposure induced 73% apoptosis in endothelial cells.
However, when HAECs were preconditioned with ethanol extracted TXL (100 pg/ml), PA induced
only 7% of the endothelial cells into apoptosis. Using antibody-based protein microarray, we found
that TXL attenuated PA-induced activation of p38-MAPK stress pathway. To investigate the
mechanisms involved in TXL's protective effects, we found that TXL reduced PA-induced
intracellular oxidative stress. Through AMPK pathway, TXL restored the intracellular antioxidant
system, which was depressed by the PA treatment, with an increased expression of thioredoxin
and a decreased expression of the thioredoxin interacting protein.

Conclusion: In summary, our study demonstrates that TXL protects endothelial cells from PA-
induced injury. This protection is likely mediated by boosting intracellular antioxidant capacity
through AMPK pathway, which may account for the therapeutic efficacy in TXL-mediated
cardiovascular protection.

Background has been made in the development of preventive and ther-
Coronary artery disease (CAD), as a multifactorial disease, ~ apeutic strategies in managing CAD, the CAD prevalence
is the consequence of interactions between modern life  appears to have reached the plateau and remains the
style and susceptible genes. Although significant progress  major cause of mortality and morbidity in most devel-
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oped and developing nations. Advent of statin class drugs
- HMG-CoA reductase inhibitor, has made cholesterol
reduction readily achievable. However, hypercholestero-
lemia explains less than 50% of CAD risk. Other risk fac-
tors including cigarette smoking, metabolic syndrome
and arterial wall specific risks explain a large proportion
of the unexplained pathologies.

Among established risk factors for CAD, metabolic syn-
drome is one of the modern day epidemics and is charac-
terized by increased levels of circulating nonesterified free
fatty acids (FFAs). FFAs provide an important energy
source as well as acting as signaling molecules in various
cellular processes. However, a chronic elevation of FFAs as
seen in metabolic syndrome is strongly associated with
cardiovascular complications [1,2]. Although FFAs-
induced metabolic insulin resistance and sustain hyperg-
lycemia may be a mechanism, excessive FFAs may also
have direct effects on vascular functions [3]. A significant
relationship between FFA levels and baseline systolic and
diastolic blood pressure has been reported [4]; and inap-
propriate elevation of plasma FFAs is associated with
impaired endothelium-dependent vasodilation in both
healthy and insulin resistant human subjects and animals
[5,6]. Elevation of FFAs also induces inflammation in
healthy subjects [7-9] and in endothelial cells [10,11].
Additionally, high FFA levels are significantly associated
with stroke[12], myocardial infarction [12] and sudden
death [13]. Thus, FFAs may play a proximal pathophysio-
logical role and serves as a potentially causative link
between obesity, type 2 diabetes and cardiovascular dis-
eases [14-18]. Among FFAs, palmitic acid (PA) is a satu-
rated fatty acid and appears to promote endothelial
apoptosis, thereby increases the risk of vascular diseases
[10,19,20]. Apoptosis is a universal biological phenome-
non regulating cell proliferation, differentiation and spe-
cialization [21,22]. Dysregulated apoptotic processes,
either genetically programmed or environmentally trig-
gered, can result in a range of abnormalities in every body
system. Excessive endothelial apoptosis is generally
regarded as atherogenic and thrombogenic [23-26].

Despite the significant progress in the understanding of
endothelial dysfunction and vascular disease, no pharma-
cologically active agent has been developed to therapeuti-
cally modulate this connection. Currently employed
pharmaceutical development strategies appear to be stag-
nant in discovering new drug with efficacy as powerful as
the statins. On the other hand, traditional medicine has
been practiced for hundreds and thousands of years in
some communities, such as American Indians or Chinese.
One of the major therapeutic modalities is herbal medi-
cine with different mixing formulas in treating various
clinical conditions. With availability of modern technolo-
gies, preparation of the herbal medicine has also evolved

http://www.biomedcentral.com/1472-6882/8/39

and some herbal compound extracts being developed and
used clinically with success. Among many of the com-
pound herbal extracts, Tong-Xin-Luo (TXL) was devel-
oped 2 decades ago for the treatment of CAD (registered
in State Food and Drug Administration of China). TXL is
a mixture of herbal extracts and has been successfully used
in thousands of patients with chronic CAD in reducing
the occurrence of acute coronary events or sudden death.
TXL was extracted, concentrated and freeze-dried from a
mixture of ginseng, red peony root, borneol and spine
date seed. One therapeutic course is normally prescribed
as 2-4 capsules 3 times daily for 4 weeks. Clinical trials
have shown that standard medical treatment comple-
mented with TXL is more effective than standard therapy
alone in reducing infarct size, recovery time and improve-
ment in ventricular function in patients with acute coro-
nary syndrome [27,28]. The beneficial effects are further
demonstrated in animal models [28].

In this study, we investigated molecular targets that may
be responsible for TXL mediated endothelial protection. It
is of note that TXL as compound extracts contain multiple
active components that may be responsible for the
observed therapeutic effects. Our strategy is to use the
extracts that have proven clinical benefits to identify
molecular targets that are influenced by the TXL. We chal-
lenged the TXL-preconditioned endothelial cells with PA
and explored the molecular changes in these endothelial
cells. We found that TXL protected PA-induced endothe-
lial damage by initiating AMPK-mediated activation of
thioredoxin (Trx) antioxidant system.

Methods

Preparation of Fatty Acid-Albumin Complexes, TXL and
Endothelial Treatment

Saturated PA was used in this study. Lipid-containing
media were prepared by conjugation of PA with bovine
serum albumin (BSA) using a modification of the method
described previously [29]. Briefly, PA was first dissolved in
ethanol at 200 mM, and then combined with 10% FFA-
free low endotoxin BSA to final concentrations of 1-5
mM. The pH of the solution was adjusted to approxi-
mately 7.5, and the stock solution was filter-sterilized and
stored at -20°C until use. Control solution containing
ethanol and BSA was prepared similarly. Working solu-
tions were prepared fresh by diluting stock solution (1:10)
in 2% FCS-EBM (fetal calf serum-endothelial cell basic
medium).

In order to investigate the protective effects by the TXL, we
dissolved the TXL in three different types of solvents
including phosphate buffered saline (PBS), dimethyl sul-
foxide (DMSO) and ethanol. We prepared TXL solution
by mixing 100 mg TXL in 10 ml PBS or DMSO or ethanol
as a stock solution (10 mg/ml). After the vortex mix, the
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solution was then filtered through a 0.2 micron filter,
which was then aliquoted and stored at -20°C before use.

Primary human aortic endothelial cells (HAECs) (Cell
Applications, San Diego, CA) were cultured in endothelial
cell growth medium-2 (EGM-2) medium (Cambrex, East
Rutherford, NJ) containing EBM, hydrocortisone, FGF-B,
VEGF, IGF-1, EGF, ascorbic acid, GA-1000, heparin, and
2% FBS in 5% CO, at 37°C. Cells cultured up to five pas-
sages were first grown to 90% confluence before exposed
to PA (0 - 0.5 mM) or TXL (10 - 100 png/ml) for 24 hours.
In order to test the TXL-mediated endothelial protection,
we first preconditioned the HAECs with TXL for 30 min
before they were exposed to PA for additional 24 hours.
These cells were then tested for apoptosis or subjected to
protein extraction for Western blot.

siRNA-induced Gene Silencing

Silencing gene expression was achieved using the siRNA
technique. AMPK siRNA was purchased from Ambion
(Austin, Texas). Transfection of HAECs with siRNAs was
carried out using LipofectAMINE™ 2000 (Invitrogen,
Carlsbad, California), according to the manufacturer's
instruction. Transfected cells were then treated with PA or
TXL at the designated concentrations for the time periods
indicated in the text.

Detection of Apoptosis

We used terminal deoxynucleotidyltrasnferase-mediated
dUTP nick-end labeling (TUNEL) assay to measure the
endothelial apoptosis. The TUNEL was performed using
the in situ cell detection kit following the manufacturer's
instructions (BD Biosciences). In brief, after designated
treatments, HAECs grown on gelatin-coated coverslips
were washed twice by PBS, and fixed by 4% paraformalde-
hyde solution in PBS for 15 min at room temperature.
Coverslips were then washed with PBS and permeabilized
in 0.2% Triton X-100/PBS for 10 min. Each coverslip was
added 50 pl of the TUNEL reaction mixture and incubated
in a dark humidified chamber for 1 h at 37°C. The reac-
tion was terminated by adding 2 #215; SSC and incubated
at room temperature for 15 min. The DNA dye DAPI (4'6'
Diamidino-2-phenylindole dihydrochloride) was used to
label the nuclei at the concentration 0.1 pg/ml for 30 min.
The slides were examined with a Leica DMLS Epifluores-
ence microscope (200x magnification). The data were
analyzed with the Image-Pro Plus V4.5 software (Media
Cybernetics, Inc).

Detection of Intracellular ROS Levels

Intracellular ROS level was determined using the oxidant-
sensitive fluorogenic probe CM-H,DCFDA (5-(and-6)-
chloromethyl-2',7'-dichlorodihydrofluorescein diacetate,
acetyl ester) from Invitrogen, Carlsbad, California. HAECs
were treated with FFAs for 24 hours with or without TXL
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preconditioning and washed with PBS. Treated cells were
incubated with 5 uM DCFH-DA in serum free medium for
30 minutes at 37°C. Fluorescence was detected by a fluo-
rescent microscope, and its intensity in individual cells
was analyzed.

Western Blot

Treated cells were collected and lysed as described previ-
ously [30]. Protein samples (15 pug per lane) were sub-
jected to SDS-polyacrylamide gel electrophoresis and
transferred to PVDF membranes. The membranes were
blocked, treated with primary antibody, washed, and then
incubated with the secondary horseradish peroxidase-
labeled antibody. Bands were visualized with Enhanced
Chemiluminescence (Amersham Biosciences, Piscataway,
NJ). The data shown were representative of three experi-
ments. Trx, thioredoxin interacting protein (Txnip) and
AMPK antibodies were purchased from Cell Signaling
(Beverly, MA).

Antibody-based Protein Microarray

In the analysis of protein microarray, we compared pro-
tein profiles in HAECs treated with TXL/PA to PA alone;
HAECs treated with PA alone to culture medium control;
HAECs treated with TXL/PA to 1% ethanol (as the vehicle
amount used in the TXL treatment); HAECs treated with
1% ethanol to culture medium blank control. Crude cell/
tissue lysates were prepared in the lysis buffer (20 mM
MOPS, 60 mM B-glycerophosphate, 5 mM EDTA, 2 mM
EGTA, 1 mM Na;VO,, 30 mM NaF, 0.5% Nonidet P-40,
and 1 mM DTT, supplemented with 1 mM PMSF, 10 uM
leupeptin, 4 pg/ml aprotinin and 5 uM pepstatin A) as
stipulated by Kinexus (Kinexus Bioinformatics Corpora-
tion, Vancouver, British Columbia, Canada). Fifty micro-
grams of protein lysate were labeled with a fluorescent dye
at a concentration of 2 mg/ml, and unincorporated dye
molecules were removed by ultrafiltration. Purified
labeled proteins from the control and its correspondingly
treated sample were incubated simultaneously on a
Kinex™ antibody microarray side by side (Kinexus). Each
Kinex antibody microarray has 2 identical fields of anti-
body grids containing 608 antibodies each that target var-
ious cell signaling proteins (Additional file 1). After
probing, arrays were scanned using a ScanArray scanner
(Perkin Elmer, Wellesley, USA) with a resolution of 10
pm, and the resulting images were quantified using
ImaGene (BioDiscovery, El Segundo, CA). We regarded
proteins with differences of 2.0-fold or more as signifi-
cant.

Results
TXL-Mediated Protection against PA-Induced Endothelial
Apoptosis
Dysregulated endothelial apoptosis plays an important
role in endothelial dysfunction, vascular inflammation,
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pathological thrombus formation and atherosclerosis. We
therefore examined whether TXL had any protective effect
on endothelial apoptosis which was detected by the
TUNEL assay. As shown in Figure 1, PA induced apoptosis
in a dose dependent manner; PA treatment (0.5 mM)
resulted in nearly 70% cell death. However, in HAECs pre-
conditioned with 100 pg/ml of TXL, PA exposure (0.5
mM) resulted in only 7% apoptosis. These findings indi-
cate that the ethanol extracted TXL had a clear anti-apop-
totic effect on PA-induced endothelial apoptosis. Ethanol
alone had minimal protection (Fig. 1A). The PBS extracted
TXL had no protection on PA-induced endothelial apop-

-

Control ™"

Control

Ethanol (1%)

0.5mM

.

Ethanol (1%)

Figure |

PA (0.5mM) + Ethanol (1%)
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tosis (data not shown). While DMSO-extracted TXL also
showed the protective effects, the protection demon-
strated in cells treated with DMSO alone accounted for
most of the protection (data not shown). Therefore, we
carried out rest of the studies using ethanol extracted TXL.

In the process of investigating the mechanisms of TXL-
mediated protection on PA-induced endothelial apopto-
sis, we found that TXL had no effects on PA-induced cas-
pase-3 activation (data not shown) nor the expression of
Bcl-2 (Fig. 2). However, TXL significantly attenuated the

PA(0.5mM)+TXL(100ug/ml)

TXL(100ug/ml)

TXL-mediated protection against PA-induced endothelial apoptosis. PA at the concentration of 0.5 mM was used to
treat endothelial cells with or without TXL preconditioning. TXL preconditioning was carried out by adding ethanol extracted
TXL (100 pg/ml) to cultured endothelial cells 30 min prior to the exposure of PA. Apoptosis was detected using TUNEL assay
in which DAPI stained nuclei blue. Percentages of apoptosis were calculated as the number of nuclei with positive TUNEL stain
to the total number of nuclei (DAPI stain). Cells were visualized under fluorescence microscope (magnification x 200).
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Figure 2

Changes in apoptotic pathways in TXL and/or PA treated endothelial cells. Detection of cleaved PARP in cells
treated with increasing doses of PA (0, 0.3, 0.4 and 0.5 mM), TXL dissolved in DMSO (0, 10, 50 and 100 (g/ml) or TXL dis-
solved in ethanol (0, 10, 50 and 100 (g/ml). Bcl-2 was detected with the specific antibody and beta-actin was used as the loading

control.

PA-induced PARP elevation (Fig. 2), which is one of the
last steps in apoptotic nuclear DNA cleavage.

TXL Mediated Protein Changes in PA Treated Endothelial
Cells

In order to explore protein changes that may be responsi-
ble for TXL-mediated protection, we used antibody micro-
array to interrogate 608 proteins (Additional file 1). We
compared the protein profiles in cells treated with TXL/
PA, PA, ethanol and control medium for the fluorescence
intensity as illustrated in the Additional file 2 (Figure A
and B). More than 90 proteins were decreased by the TXL
preconditioning in PA-exposed endothelial cells (Addi-
tional file 3). The reduction in these proteins was clearly
consistent with the protective effects on endothelial cells.
For example, PA treatment activated p38 MAPK (as
marked by both pan-specific increase in phosphorylated
p38 and phosphorylated p38 at T180 and Y182). The TXL
preconditioning, however, induced 2.7 to 8.1-fold reduc-
tion in p38 (Additional file 3). This pattern of action was
further demonstrated by the reduction in MEKK2,
MEKK4, MEK3 and MEKG6. As a pro-apoptotic factor, PA
also increased phospho-Ser392-p53 - a tumor suppressor
protein inducing cell death. Endothelial cells precondi-
tioned with TXL had reduced p53 by nearly 6.0-fold. The
anti-apoptotic effect was further illustrated by the reduc-
tion in PARP1 that was activated by the PA treatment. Fur-
thermore, PA as an inflammatory trigger also activated
PKC and PKA kinase systems, both of which were sup-
pressed by the TXL preconditioning to as much as 15-fold.
A similar effect was also observed for RIPK1 and RSK
kinases, which are all part of proinflammatory responses.

More than 100 proteins were increased more than 2-fold
by the TXL treatment (Additional file 3). Among the pro-
teins increased by the TXL treatment, JAK1-Stat proteins
appeared to be prominent with more than 2.0-fold
increases comparing to the HAECs treated with PA only.
The JAK1-STAT is a well-recognized cell survival signaling
pathway. Activation of the pathway by TXL could be
responsible for the TXL-mediated anti-apoptotic effects.
In corresponding with the activation of this pathway, the
Smad associated TGFp pathway was also activated by the
TXL with more than 2-fold increase in phospho-Smad 2/
3. Furthermore, the AMPK regulatory subunit was ele-
vated by the TXL pretreatment (>2.0-fold). The cell growth
signaling pathways including Rb gene and arrestin beta 1
were also elevated. All these changes are consistent with
the anti-apoptotic effect. In line with the pro-growth
capacity, transcription factors including elF2a, eIF4E, JNK,
Jun and EGFR were upregulated by the TXL treatment as
well.

Effects of TXL on PA-induced Oxidative Stress

Previous studies suggest that excess PA induces oxidative
stress. We therefore investigated whether TXL had any
effect on PA-induced oxidative stress. As expected, the
superoxide production was increased in endothelial cells
exposed to PA (Fig. 3A). However, in endothelial cells that
were first preconditioned with TXL before the PA treat-
ment, the superoxide production was significantly
reduced (Fig. 3A).

In order to investigate how TXL hindered the ROS produc-
tion induced by the PA, we examined one of the major
intracellular antioxidant pathways. Trx is the key compo-

Page 5 of 10

(page number not for citation purposes)



BMC Complementary and Alternative Medicine 2008, 8:39

Control

http://www.biomedcentral.com/1472-6882/8/39

PA: 0.5mM+
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Figure 3

TX/EtOH

Effects of TXL on PA induced ROS production in endothelial cells. A: Endothelial cells were treated with different
doses of PA (0, 0.3 and 0.5 mM) with or without TXL preconditioning. Treated cells were incubated with oxidant-sensitive
fluorogenic probe CM-H,DCFDA for the detection of ROS. The stained cells were visualized under fluorescence microscope
(magnification x 200). Brightfield images were also taken for comparison. B: Effect of TXL (0, 10, 50 and 100 (g/ml) on protein
expression of Txnip and Trx by Western blot. Beta-actin was used as a loading control.

nent of the intracellular antioxidant system, which pro-
tects proteins from oxidative damage by donating -SH
group. Our experiment showed that TXL significantly
increased the expression of Trx (Fig. 3B). At the same time,
TXL treatment also reduced the expression of Txnip (Fig.
2B), which is the antagonist of the Trx. These findings sug-
gest that one of the pathways mediating the protective
effects of the TXL on endothelial cells is by upregulating
intracellular antioxidant system.

Involvement of AMPK Pathway in TXL-Mediated
Protection

Since AMPK pathway is involved in PA-related oxidative
stress [2,31,32], we then examined whether AMPK was
involved in TXL-induced Trx upregulation. As shown in
Figure 4A, TXL directly increased the amount of phospho-
Ser172-AMPK  while the total AMPK remained
unchanged. The activation of AMPK, as demonstrated
using the specific AMPK activator AICAR resulted in an
increased expression of Trx (Fig. 4B). Suppression of
AMPK with gene specific siRNA resulted in a significant
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Figure 4

Western blot detection of TXL induced AMPK acti-
vation and Trx expression in endothelial cells. A:
While TXL (0, 10, 50 and 100 (g/ml) had on effect on the
protein levels of total AMPK, it significantly increased the lev-
els of phospho-ser|72-AMPK. B: Changes of Trx in endothe-
lial cells treated with AMPK activator AICAR at increased
doses. C: Effect of AMPK knockdown on Trx expression in
endothelial cells treated with TXL. AMPK knockdown abol-
ished the upregulatory effect of TXL on Trx.

reduction in Trx expression and indeed blocked the TXL-
mediated Trx elevation (Fig. 4C). In contrast, while PA
upregulated the Txnip expression (Fig. 5A), TXL blocked
this effect and resulted in suppression of Txnip. The TXL-
mediated Txnip downregulation appeared to be mediated
through the AMPK pathway as well since AMPK silence
with gene specific siRNA attenuated the effects of TXL on
Txnip (Fig. 5B). We therefore suggest that TXL activates Trx
antioxidant system through AMPK pathway.

Discussion

Over more than 2 decade clinical administration, TXL has
proven clinical beneficial effects in CAD patients. Current
study suggests that the protective effect by TXL is likely
mediated through the activation of intracellular thiore-
doxin antioxidant system. AMPK pathway regulates oxida-
tive metabolism of fatty acids and glucose [32,33]. Our
study demonstrates that TXL attenuates the damaging
effects of PA via activating the AMPK pathway. If AMPK
activation triggered by the exposure to TXL is not confined
to endothelial cells, it would suggest a potentially new
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Figure 5

Protein levels of Trx antagonist Txnip in endothelial
cells with different treatments. A: Txnip protein
changes in endothelial cells treated with AMPK activator
AICAR with or without co-treatment of PA. While PA
upregulated the Txnip level, the activation of AMPK pathway
using AICAR reduced Txnip levels. B: Role of AMPK in the
down-regulatory effect of TXL on Txnip expression in cells
treated with or without PA. While PA (0.3 mM) clearly
increased the Txnip expression, TXL (100 (g/ml) precondi-
tioning abolished the PA effect. However, AMPK silence
induced by the gene specific siRNA (middle panel) appeared
to diminish the effect of TXL.

application of TXL in regulating glucose metabolism and
insulin sensitivity.

Human subjects, like all other aerobic organisms, are con-
stantly challenged by free radicals or reactive oxygen spe-
cies (ROS) that are produced during normal metabolism
[34-36]. On the other hand, cells also possess a battery of
antioxidant systems to specifically counterbalance indi-
vidual species of ROS. Among available intracellular anti-
oxidants, thioredoxin system is one of the most important
intracellular antioxidant systems [37-41] that maintains
the reduced status of peroxiredoxin for the reduction of
H,0,; suppresses signaling protein ASK1 from activating
p38 MAPK-mediated apoptosis pathway; regulates expres-
sion of stress proteins including transcription factors.

In the conditions of metabolic syndrome, FFAs are ele-
vated; excessive ROS is produced during the oxidation
metabolism of FFA. In excess, ROS and their byproducts
are capable of causing oxidative damage and cytotoxic to
endothelial cells. ROS can promote endothelial apopto-
sis; [42]; increase the endothelial permeability, which
allows atherogenic LDL accumulating in the sub-endothe-
lial space; stimulate endothelial cell production of adhe-
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sion molecules rendering vascular wall pro-thrombotic
and pro-atherogenic [43]. Some antioxidants were shown
to successfully attenuate the oxidative stress induced
endothelial dysfunction [44-48]. However, no antioxi-
dants are shown to be therapeutically effective in protect-
ing endothelial cells from injury. Findings of our study in
illustrating the effects of TXL on the protection of Trx sys-
tem offer a possibility to discover compounds that could
be potentially used pharmacologically to energize intrac-
ellular antioxidant system.

In this study, we used high-throughput antibody microar-
ray approach to systemically discover the intracellular sys-
tems that are activated by the TXL. The results consistently
indicated the attenuation of the stress signaling pathways
by TXL; some of these changes are confirmed by the West-
ern blot and functional studies. Our study suggests that
the high throughput approach is an effective tool when no
prior knowledge is established for the biological effects of
a compound.

One of the major limitations of the current study is the
compound mixture of the TXL extracts, in which it is not
known which component(s) is responsible for the
observed protective effects on PA-induced endothelial
damage. Like all other herbal medicines, there are also no
biomarkers to test the effective plasma levels in relation to
the drug doses used in the patients. The doses used in the
current study were based on previous experiments and
dose-dependent effects observed in our laboratory. It
should be acknowledged that as a part of continuing
efforts in discovering active components with specific
molecular targets, our next project is to fractionate the
individual components of the compound and to evaluate
the protective effects of each individual component. This
strategy has a higher chance of success in discovering func-
tional molecules since it is based on an extract mixture
with established clinical benefits demonstrated over dec-
ades. It has the advantage over the approaches that are
developed on the basis of in vitro effects. These active mol-
ecules discovered through in vitro experiments or in vivo
animal models are frequently found either without effects
when applied to humans or with unacceptable side
effects. To discover effective molecules from the com-
pounds that have proven clinical effect may be a cost-
effective alternative drug discovery strategy.

Conclusion

In summary, we have found that clinical efficacy in TXL
mediated cardiovascular protection is at least partly medi-
ated through the activation of intracellular thioredoxin
antioxidant system, which is the consequence of AMPK
pathway activation. While further studies are needed to
discover the active components of the TXL compound
mixture that are responsible for the protection, current

http://www.biomedcentral.com/1472-6882/8/39

study identify the intracellular antioxidant system that can
be targeted when searching for the active components.
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