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Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear
whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-
analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2)
standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan’s
unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic
resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256
patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic
metabolites in the medial frontal cortex (MFC, glutamate: CVR= 0.15, p < 0.001; glutamine: CVR= 0.15, p= 0.003; Glx: CVR= 0.11,
p= 0.002), dorsolateral prefrontal cortex (glutamine: CVR= 0.14, p= 0.05; Glx: CVR= 0.25, p < 0.001) and thalamus (glutamate:
CVR= 0.16, p= 0.008; Glx: CVR= 0.19, p= 0.008). Studies in younger, more symptomatic patients were associated with greater
variability in the basal ganglia (BG glutamate with age: z=−0.03, p= 0.003, symptoms: z= 0.007, p= 0.02) and temporal lobe
(glutamate with age: z=−0.03, p= 0.02), while studies with older, more symptomatic patients associated with greater variability in
MFC (glutamate with age: z= 0.01, p= 0.02, glutamine with symptoms: z= 0.01, p= 0.02). For individual patient data, most studies
showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate
(g=−0.15, p= 0.03), higher thalamic glutamine (g= 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g= 0.28,
p < 0.001). Proportion of males was negatively associated with MFC glutamate (z=−0.02, p < 0.001) and frontal white matter Glx
(z=−0.03, p= 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG
(z= 0.01, p= 0.01) and temporal lobe (z= 0.05, p= 0.008). Further research into the mechanisms underlying greater glutamatergic
metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future
treatment strategies.
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INTRODUCTION
Several lines of evidence implicate glutamatergic dysfunction in
the pathoaetiology of schizophrenia [1]. It is not clear, however,
whether the degree of glutamatergic dysfunction is similar across
individuals with schizophrenia or whether there is significant
interindividual variability over and above the variability observed

in the general population. Meta-analyses of 1H-MRS studies report
higher glutamate and combined glutamate and glutamine (Glx) in
the basal ganglia [2, 3], higher glutamine in the thalamus [2, 3]
and lower glutamate in the medial frontal cortex (MFC) [3–6] in
schizophrenia in comparison to controls. Two meta-analyses do
not report lower glutamate levels in the medial frontal cortex [2, 3]
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but find lower levels in non treatment-resistant patients [3].
Glutamate levels in schizophrenia show heritability [7], are
associated with glutamatergic genetic risk [8] and may also be
altered by environmental factors [9]. There is some evidence that
glutamate levels are positively associated with the severity of
symptoms of schizophrenia [10–13] and may be reduced by
treatment with antipsychotic medication [12, 14]. It is unknown,
however, whether these associations are similar across all patients
or if they vary between individuals, for example due to differences
in underlying neurobiology or illness stage. This could be
important if heterogeneity in glutamate measures is related to
treatment outcomes in schizophrenia. For example, there is
already some evidence that elevated glutamate levels may be
most apparent in patients whose symptoms do not respond well
to antipsychotic medication [15–24], and that glutamate-acting
compounds could have selective efficacy in some patient
subgroups [25]. If greater variability is present, it is of interest as
to whether this manifests in the form of a spectrum (following a
unimodal distribution), or whether there is evidence of a bimodal
distribution, consistent with discrete subtypes of schizophrenia
with different brain glutamate levels [15].
The hypothesis of greater glutamate variability in patients can

be formally tested by conducting a meta-analysis of variability, as
previously employed to examine the variability of glutathione [26],
antipsychotic treatment response [27] and brain structure in
schizophrenia [28]. One meta-analysis examined the variability of
glutamate in schizophrenia compared to controls, but this was
limited to glutamate in the dorsolateral prefrontal cortex (DLPFC)
[29]. In addition, the hypothesis of discrete subgroups can be
tested by examining the distribution of individual patient
data [30].
In the current meta-analysis, we hypothesised that patients with

schizophrenia would exhibit greater variability of brain glutamate,
glutamine and Glx levels than controls. We complemented this
with analysis of the distribution of individual-level data, as a
bimodal distribution of glutamatergic metabolites in patients
would support the existence of discrete glutamate subgroups.
Additionally, we present an updated meta-analysis of case-control
differences in glutamate metabolites to include recently published
data that has not been previously summarised. In accordance with
recent meta-analyses, we hypothesised that glutamine levels in
thalamus and glutamate and Glx levels in the basal ganglia will be
higher in schizophrenia patients compared to controls, and that
MFC glutamate will be lower. Sensitivity analyses examined
whether variability or standardised mean differences (SMD) in
glutamatergic metabolites were associated with antipsychotic
medication exposure, and meta-regressions tested for potential
effects of age, sex, symptom severity and antipsychotic medica-
tion dose. On the basis of results from a recent mega-analysis [12],
we hypothesised that age will not be associated with SMD,
whereas medication exposure will be associated with negative
effect sizes and symptom severity with positive effect size
differences between patients and controls. Meta-regressions of
the same variables were performed to investigate potential
sources of patient-control differences in variability.

METHODS
Search strategy and study selection
We followed PRISMA guidelines and registered the study on PROSPERO
(CRD42021251798). MEDLINE and EMBASE databases were searched to
identify articles published from inception to September 23, 2022, using the
search terms: (1) MRS or magnetic resonance spectroscopy AND (2)
schizophrenia or psychosis or UHR or ARMS or schizoaffective or “Psychosis
risk” OR “at risk mental state” or “psychotic experience” or “psychosis
spectrum” OR (“genetic risk” and (psychosis or schizophrenia)) OR (“high
risk” and (psychosis or schizophrenia)). Screening and selection of studies
was performed independently by three authors (KM, KB, CB). 1H-MRS
studies reporting glutamate, glutamine, or Glx values for a schizophrenia

patient group in comparison with a healthy volunteer group were included
in the analysis. Studies in clinical high risk or genetic high risk cohorts have
been summarised elsewhere [31] and were excluded from the current
analysis on individuals meeting diagnostic criteria. In the case of
longitudinal studies, only the values for the first time point were included.
If the same sample or partially overlapping samples were included in more
than one report, data from the study with the largest sample were
included. Where the mean or standard deviations for glutamate measures
were unavailable in the published manuscript the authors were contacted
and values requested. We also requested individual patient level datasets
from authors as part of a previous mega-analysis (for further details see 12).

Data extraction and processing
Mean and standard deviation (SD) values of glutamate, glutamine, or Glx
concentrations were extracted (K.M.) and verified independently (S.A. and
B.K.), and categorized into the following brain regions of interest: (1) medial
frontal cortex (MFC), including voxels in the medial prefrontal cortex and in
the anterior cingulate cortex since these voxels often spatially overlap; (2)
dorsolateral prefrontal cortex (DLPFC); (3) frontal white matter; (4) thalamus;
(5) temporal lobe (including superior temporal gyrus and hippocampus); (6)
basal ganglia (including caudate, putamen, globus pallidus and substantia
nigra). When more than one clinical group was reported in a single study, the
values were treated as independent data sets and the number of controls
was adjusted by dividing by the number of clinical groups. We also extracted
participant age, sex, Positive and Negative Syndrome Scale (PANSS) scores
and antipsychotic dose in chlorpromazine equivalents (CPZ), and the SD
values for these variables (data available in Supplementary eTable 1. Data
and R code also available on github [32]). The quality of included studies was
rated using the Newcastle-Ottawa Scale [33] (Supplementary eAppendix 1).
Metabolite measures using J-edited and echo-planar spectroscopic imaging
(EPSI) acquisition sequences were scaled by 1000 [34–36] or 100,000 to
obtain comparable values [37].

Meta-analysis outcome measures
The relative variability between patients and controls can be quantified
using the log variability ratio (VR), taking into account the standard
deviation of mean glutamate values. In many natural systems mean scales
with variability, and if this is not accounted for, variability differences can
be influenced by mean differences. We therefore used the log coefficient
of variation ratio (CVR) for our primary analyses, which adjusts the VR for
mean differences between groups:

ln CVR ¼ ln
σ̂p=xp
σ̂c=xc

� �
¼ ln

Sp=xp
Sc=xc

� �
þ 1

2 np � 1
� �� 1

2ðnc � 1Þ

Where σ̂p and σ̂c are the unbiased estimates of the population standard
deviation for the patient and control groups respectively, xp and xc are the
mean values, Sp and Sc are the reported SDs, while np and nc are the
sample sizes.
A CVR above 0 indicates greater variability in patients, and below 0

indicates greater variability in controls. While CVR is used for our primary
analysis, VR is presented in the supplementary results.
The standardised mean differences (Hedges’ g) of glutamatergic

metabolites between patients and controls were calculated using a
random effects model. A Hedges’ g value of 0 indicates no difference
between patients and controls, negative values indicate lower glutama-
tergic metabolite levels in patients than controls, and positive values
denote higher metabolite levels in patients than controls. I2 values were
calculated to quantify between-study inconsistency. Benjamini-Hochberg
false discovery rate (FDR) was used to correct for the number of regions (Q
false discovery rate of 10%).
Sensitivity analyses examined CVR and Hedges’ g effect sizes in

antipsychotic-naïve and medicated patients separately, which were then
compared in a Wald type test to assess significance. Meta-regressions
assessed the impact of the combined mean age of sample (patients and
controls), proportion of males in combined sample, PANSS total score and
CPZ on CVR and Hedges’ g effect sizes. Significant meta-regressions were
followed up with meta-regressions to determine if the SD of a
demographic/clinical variable was associated with CVR. Significant CVR
results were followed up with meta-regressions to determine if CVR was
associated with 1H-MRS data quality, namely (1) signal to noise ratio (SNR)
(patient mean divided by control mean) and (2) field homogeneity
(linewidth as full width half maximum values: FWHM) (patient mean
divided by control mean). Analyses were carried out in R (version 4.1.1),
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using the “metafor” [38] and “weights” packages, while plots were
generated using “ggplot2” [39].

Data distribution
The modal distribution of data was investigated in individual-level patient
data from 33 studies contributed by the 1H-MRS in Schizophrenia
Investigators consortium (for further details see 12). For each study, data
was normalized (mean-scaled) and analysed using Hartigan’s Dip Test of
Unimodality [30] (R package “dip.test”).

RESULTS
Study selection
The search identified 2527 articles, 123 of which met criteria for
the meta-analysis (Supplementary eFig. 1 and eResults 1 for
references), including data on 8256 patients with schizophrenia
and 7532 controls. The average age was 31 years and males
constituted 66% of participants (Supplementary eTable 1 for raw
data). Studies examined first episode psychosis patients (57 stu-
dies), patients with established schizophrenia (72 studies) and
antipsychotic-naïve patients (33 studies).

Variability analyses
Meta-analysis of CVR. There was a positive relationship between
mean glutamatergic metabolite level and standard deviation
(weighted rp= 0.70, p < 0.001, Supplementary eFig. 2), indicating
mean-scaling of variability and the appropriateness of CVR as the
primary variability outcome measure.
In the MFC, variability of glutamate, glutamine and Glx were

significantly increased in patients compared with controls (CVR=
0.15, 95% CI 0.08–0.22, p < 0.001, 65 studies; CVR= 0.15, 95% CI
0.05–0.25, p= 0.003, 26 studies; CVR= 0.11, 95% CI 0.04–0.18,
p= 0.002, 54 studies respectively; Fig. 1). In the DLPFC, variability
of glutamine and Glx were significantly increased in patients
compared with controls (CVR= 0.14, 95% CI 0.00–0.29, p= 0.05,
8 studies and CVR= 0.24, 95% CI 0.12–0.36, p < 0.001, 22 studies),
but the variability of glutamate did not differ (Fig. 1). In the
thalamus, variability of glutamate and Glx were significantly
increased in patients compared with controls (CVR= 0.16, 95% CI
0.04–0.27, p= 0.008, 14 studies and CVR= 0.19, 95% CI 0.05–0.32,

p= 0.008, 13 studies), but the variability of glutamine did not
differ (Fig. 1). For the frontal white matter, basal ganglia and
temporal lobe, the variability of glutamatergic metabolite
measures did not differ between patients and controls (Fig. 1).
All findings survived FDR correction.
Sensitivity analyses examined antipsychotic-naïve and medi-

cated patients separately, and produced the same pattern of
results for the MFC and DLPFC (Fig. 1), although the variability of
glutamate did not differ between antipsychotic-naïve patients and
healthy volunteers in the MFC. In the thalamus, when analysis was
restricted to antipsychotic-naïve patients the variability of
glutamate no longer differed between groups (Fig. 1). In the
basal ganglia, Glx variability was reduced in medicated patients
compared with controls (CVR=−0.15, 95% CI −0.26 to −0.03,
p= 0.02, 15 studies), but this reduction was not apparent in
antipsychotic-naïve patients (3 studies) or across the whole
sample. Significant differences in CVR were not found between
antipsychotic-naïve and medicated patients in the MFC (gluta-
mate), thalamus (glutamate) and basal ganglia (Glx).
Log VR results were largely the same as CVR and are reported in

the Supplement (eFig. 3).

Meta-regressions of CVR. PANSS total score was positively
associated with glutamine variability (CVR) in the MFC (z= 0.01,
p= 0.02, 9 studies, Fig. 2) and glutamate variability in the basal
ganglia (z= 0.007, p= 0.02, 11 studies), indicating that studies
examining patients with a greater symptom severity showed
greater glutamatergic variability in patients compared to controls.
Age (of patients and controls combined) was negatively
associated with glutamate variability in the temporal lobe
(z=−0.03, p= 0.02, 14 studies) and basal ganglia (z=−0.03,
p= 0.003, 12 studies), indicating that studies examining younger
participants showed greater variability in the patient group
relative to controls. Age (of patients and controls combined)
was positively associated with glutamate variability in the MFC
(z= 0.01, p= 0.02, 65 studies). CPZ and proportion of males were
not significantly related with CVR.
The SD of PANSS total score for each study was not associated

with glutamine variability in the MFC or glutamate variability in
the basal ganglia, indicating that the association between PANSS

Fig. 1 Forest plot showing the summary effect sizes for the coefficient of variation ratio (CVR) of glutamate measures. A CVR
in schizophrenia patients compared to healthy volunteers (HV). B CVR in patients treated with antipsychotic medication compared to HV.
C CVR in antipsychotic-naïve patients compared to HV. Significant results are shown in blue. Variability was significantly higher in patients
relative to HV in the medial frontal cortex (MFC; all glutamatergic metabolites), dorsolateral prefrontal cortex (DLPFC: Glutamine and Glx) and
Thalamus (Thal; Glutamate and Glx-). There were no significant differences in glutamatergic metabolite variability in the frontal white matter
(fWM), temporal lobe (Temp) and basal ganglia (BG) in patients compared with HV. Reduced Glx variability in the basal ganglia (BG) was found
in medicated patients relative to HV. CVR, 95% confidence intervals, P value and I2 presented.
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total score and CVR is not explained by increased variability in
PANSS total score. Similarly, there was no association between age
SD and glutamate CVR in the basal ganglia. In the temporal lobe,
greater age SD was associated with reduced CVR in glutamate
(z=−0.05, p= 0.05, 14 studies), suggesting that greater gluta-
mate CVR in younger patients is unlikely to be explained by
greater variability in age in younger cohorts. 1H-MRS data quality
measures (SNR and FWHM) were not associated with CVR in the
MFC, DLPFC or thalamus.

Distribution of individual patient glutamate and Glx data. 27 studies
contributed individual participant-level glutamatergic metabolite
data in the MFC. 18 studies were in patients previously or currently
treated with antipsychotics, 6 studies were in antipsychotic-naïve or
minimally medicated cohorts, and 3 studies included both
antipsychotic-naïve and medicated patients. Hartigan’s dip test
found unimodality in the distribution of mean-centred Cr-scaled
glutamate (D= 0.01, p= 0.99) and Glx in patients (D= 0.01,
p= 0.99), and for CSF-corrected glutamate (D= 0.02, p= 0.37) and
Glx in patients (D= 0.01, p= 0.68). Hartigan’s dip test for individual
studies found unimodality in 26 studies [15, 16, 21, 22, 40–60] and
bimodality in 1 study [61].
For the temporal lobe, 6 studies contributed individual participant-

level glutamatergic metabolite data. 4 studies were in patients
previously or currently treated with antipsychotics and 2 studies
were in antipsychotic-naïve or minimally medicated cohorts.
Hartigan’s dip test found unimodality in the distribution of mean-
centred CSF-corrected Glx (D= 0.04, p= 0.581, 3 studies) and

Cr-scaled Glx in patients (D= 0.03, p= 0.68, 6 studies). Hartigan’s
dip test for individual studies found unimodality in all 6 studies
[51, 53, 62–65].

Standardised mean differences analyses
Meta-analysis of hedges’ g effect sizes. In the MFC, glutamate
levels were significantly lower in patients compared with controls
(g=−0.15, 95% CI −0.29 to −0.01, p= 0.03, 65 studies, Fig. 3),
whereas glutamine and Glx levels did not differ (Fig. 3). In the
thalamus, glutamine levels were significantly higher in patients
compared with controls (g= 0.53, 95% CI 0.30–0.75, p < 0.001,
6 studies), and glutamate and Glx levels did not differ (Fig. 3). In
the basal ganglia, Glx levels were significantly higher in patients
compared with controls (g= 0.28, 95% CI 0.12–0.44, p < 0.001,
18 studies) and glutamate and glutamine did not differ (Fig. 3). For
the DLPFC, frontal white matter and temporal lobe, glutamatergic
metabolite levels did not differ between patients and controls
(Fig. 3). All findings survived FDR correction except glutamate in
the MFC.
The same pattern of results was apparent when analyses were

restricted to medicated patients (Fig. 3). When analyses were
restricted to antipsychotic-naïve patients there were no significant
differences in glutamatergic metabolites. However, there were
no significant differences in Hedges’ g effect sizes between
antipsychotic-naïve and medicated patients in the MFC (gluta-
mate) or basal ganglia (Glx) and an insufficient number of studies
to assess Hedges’ g effect sizes in antipsychotic-naïve patients for
glutamine in the thalamus.

Fig. 2 Meta-regressions of the coefficient of variation ratio (CVR) and age or PANSS total score. A In the temporal lobe and B basal ganglia,
higher glutamate variability in patients relative to HV was associated with studies in younger participants. C In the medial frontal cortex (MFC),
higher glutamate variability in patients relative to HV was associated with studies in older participants. For glutamine in the D MFC and
E glutamate in the basal ganglia, higher variability in patients relative to healthy volunteers (HV) was associated with studies in more
symptomatic patients (according to PANSS Total Scores). Bubble size represents total sample of patients and HV.
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Meta-regressions of hedges’ g effect sizes. Mean PANSS total score
was positively associated with effect sizes for elevated
glutamate in patients in the temporal lobe (z= 0.05, p= 0.008,
5 studies) and basal ganglia (z= 0.01, p= 0.01, 11 studies), and
negatively correlated with glutamate in the DLPFC (z=−0.02,
p= 0.03, 12 studies, Fig. 4). Age was negatively associated with
the effect size for elevated glutamine in patients compared to
controls in the basal ganglia (z=−0.15, p= 0.003, 4 studies,
Supplementary eFig. 4). In frontal white matter, age was
negatively associated with the effect size for elevated glutamate
in patients (z=−0.04, p= 0.03, 7 studies), but positively
associated with the effect size for elevated Glx (z=−0.02,
p= 0.02, 12 studies). A higher proportion of males was
associated with lower MFC glutamate (z=−0.02, p < 0.001,
64 studies) and frontal white matter Glx in patients compared to
controls (z=−0.03, p= 0.02, 10 studies) (Fig. 4). Lower CPZ
associated with effect sizes for lower Glx in patients in the
temporal lobe (z= 0.003, p= 0.03). CPZ did not associate with
Hedges’ g effect sizes in other brain regions.

DISCUSSION
The main findings of this meta-analysis are that schizophrenia is
associated with increased variability in the concentrations of
glutamatergic metabolites in the brain, together with regional
differences in mean glutamatergic metabolite concentrations. The
greatest amount of data were available for the MFC (65 studies),
where glutamate levels were lower and the variability of all
glutamate metabolites (glutamate, glutamine and Glx) were
increased in schizophrenia compared to controls (although the
finding of lower MFC glutamate in patients compared to controls
did not survive FDR correction). While the emphasis has been on
glutamate in the MFC in schizophrenia, our results additionally
indicate glutamatergic dysregulation in other brain regions,
finding increased variability in glutamine and Glx in the DLPFC,
higher levels of Glx in the basal ganglia, and higher levels of
glutamine alongside increased variability of glutamate and Glx in
the thalamus. The increased variability in glutamatergic metabo-
lites tended to be most apparent in studies examining patients
who were more symptomatic.

Glutamate is tightly regulated in the brain through complex
feedback mechanisms which may be disrupted in schizophrenia
[66]. The increased variability in glutamatergic metabolites in
schizophrenia indicate a spectrum of disturbances in glutamate
homeostatic control between individual patients, resulting in a
wide range of concentration values. Regionally, our analysis of the
available data in schizophrenia indicates dysfunctional regulation
(i.e. increased variability) of glutamatergic metabolite concentra-
tions in the MFC, DLPFC and thalamus, and mean value decreases
in the MFC and increases in the thalamus and basal ganglia.
Increased glutamatergic variability in schizophrenia, as observed
at the macro scale with 1H-MRS, could relate to individual
differences in the nature or in the extent of the underlying
molecular pathophysiological mechanisms. We did not find
evidence for a bimodal distribution within individual participant
data, as would be expected if between-subject glutamatergic
differences were driven by the presence or absence of a simple,
discrete variable. In contrast, the observed unimodal distributions
are consistent with the view that glutamatergic pathology in
schizophrenia arises secondary to a range of factors that vary
amongst patients (e.g polygenic and multiple environmental
vulnerability variables) [7–9]. Therefore, findings of higher
glutamate levels in treatment resistant patients in comparison to
treatment responders [15–24] may represent a continuum, rather
than the presence of discrete subtypes.
There was evidence in some regions that the variability of

glutamate or glutamine was related to symptom severity and age.
In both the basal ganglia and MFC, variability was greater in
studies recruiting more symptomatic patients. This could indicate
that dysfunction of glutamate regulatory mechanisms is greatest
in those patients with highest illness burden. These findings were
not explained by increased variance in symptom scores in studies
recruiting more unwell patients, or by the absence of antipsycho-
tic medication as variance was similar in medicated compared to
unmedicated cohorts. In the basal ganglia and temporal lobe,
variability was higher in studies recruiting younger patients. In
older patients, our results indicated that glutamate in these
regions may be even more homogenous than that seen in
controls, which could potentially reflect regulatory over-
compensation. Alternatively, this may reflect greater clinical

Fig. 3 Forest plot showing summary Hedges’ g effect sizes for standardised mean differences (SMD) of glutamate measures. A SMD in
schizophrenia patients compared to healthy volunteers (HV). B SMD in patients treated with antipsychotic medication compared to HV. C SMD
in antipsychotic-naïve patients compared to HV. Significant results are shown in green. Glutamate levels in the medial frontal cortex (MFC)
were significantly lower in patients relative to HV, whereas glutamine levels in the thalamus (Thal) and Glx levels in the basal ganglia (BG) were
significantly higher in patients relative to HV. There were no significant differences in glutamatergic metabolite levels in the dorsolateral
prefrontal cortex (DLPFC), frontal white matter (fWM) or temporal lobe (Temp) between patients and HV. Significant differences in
glutamatergic metabolites were no longer present when antipsychotic-naïve patients were assessed. Hedges’ g, 95% confidence intervals,
P value and I2 presented.
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heterogeneity within first episode cohorts, for example in respect
to diagnosis. In contrast in the MFC glutamate was more variable
in studies including older patients. Potentially, this could relate to
heterogeneity in clinical outcomes, as treatment response has
been most strongly linked to differential glutamate levels in this
region [15, 17–23]. The relationship between basal ganglia
glutamate and symptom severity was largely influenced by a
single study. Further studies in highly symptomatic patients are
therefore needed to confirm this finding, and to determine
whether treatment response contributes to increased variability in
the MFC.
As increased variability was of comparable magnitudes in

antipsychotic-naive and medicated patient cohorts, this suggests
that variability in glutamate does not result from differential
effects of antipsychotic medication on glutamate levels between
individuals [14, 21]. Although a recent meta-analysis of DLPFC
glutamate found higher variability in antipsychotic medicated
patients and lower variability in medication-naïve patients [29].
Our analysis, including 12 more recent studies and investigating
DLPFC glutamate and Glx separately, did not find any effect
of medication status in this region. In fact, in the basal
ganglia, it appeared that antipsychotic-treated cohorts displayed
reduced variability compared to controls. Potentially this could
be due to a regulatory effect of antipsychotics on basal ganglia
Glx [67, 68].

The meta-analysis of standardised mean differences found
lower MFC glutamate levels and higher thalamic glutamine and
basal ganglia Glx in patients compared to controls, although lower
MFC glutamate did not survive FDR correction. These results are
consistent with recent meta-analyses [2–6], but substantially
extend them by including 20 new datasets for MFC glutamate
and 2 new datasets for thalamic glutamine. Stratified analyses
found that lower MFC glutamate was observed across studies
examining medicated patients but not across studies examining
antipsychotic-naïve patients. Thus, antipsychotic medication could
lower MFC glutamate levels, as indicated by longitudinal studies
[14, 21] and a mega-analysis [12], although the meta-regression
with CPZ dose was not significant. Our analysis also revealed
relationships between the proportion of males in the study and
MFC glutamate and frontal white matter Glx effect sizes, such that
a higher proportion of males was associated with lower glutamate
levels in patients compared to controls. In schizophrenia, males
show greater elevation in peripheral d-serine (an NMDA receptor
co-agonist) [69], and, in the postmortem ACC, less upregulation of
glutamine synthetase [70] and lower expression of GABAergic
genes encoding proteins which modulate glutamate neurotrans-
mission [71]. The effect of sex should be further investigated on
the individual level through large studies or mega-analyses.
Although there was no difference in glutamate metabolite
variability in the temporal lobe, higher glutamate levels were

Fig. 4 Meta-regressions of Hedges’ g effect sizes and PANSS total score or proportion of males or chlorpromazine equivalent dose (CPZ).
A In the dorsolateral prefrontal cortex (DLPFC), lower glutamate levels in patients relative to healthy volunteers (HV) was associated with
studies examining patients with greater symptom severity (according to PANSS Total Scores). In the (B) basal ganglia and (C) temporal lobe,
higher glutamate levels were associated with studies examining patients with greater symptom severity (according to PANSS Total Scores).
D In the medial frontal cortex (MFC) and (E) frontal white matter, lower glutamate and Glx levels in patients relative to HV was associated with
studies including a higher proportion of males. F In the temporal lobe, lower Glx in patients relative to HV was associated with lower CPZ.
Bubble size represents total sample of patients and HV.
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found in studies which included more highly symptomatic
patients. This is also consistent with our recent mega-analysis
[12]. Finally, other than in the basal ganglia and frontal white
matter, meta-regressions did not find an accelerated loss of
glutamatergic metabolites in patients with age for the majority of
brain regions, also consistent with our recent mega-analysis [12].
A limitation of the meta-analysis is the high between-study

inconsistency, as measured by I2, for most brain regions studied.
This was highest in the temporal lobe and may relate to the
difficulty of obtaining good quality 1H-MRS imaging in this region.
There is a possibility that case-control differences in variability
result from greater movement artifacts in patient populations [72],
however CVR did not correlate with SNR or FWHM values. A recent
meta-analysis emphasises the importance of using strict
Cramér–Rao lower bound criteria (≤7%) and short echo times
(≤20ms) to improve 1H-MRS consistency [5]. Furthermore, the
glutamine signal cannot be accurately resolved from glutamate
below 3 T, although the majority of studies reporting glutamine
were conducted above 3 T. As voxel placement varied between
studies, broad categories of brain regions were used, limiting the
regional specificity of our results. Meta-regression analyses of
clinical and demographic variables are limited to the study level
and are not sensitive to variation within individual studies
(although meta-regressions with the SD of clinical and demo-
graphic variables were carried out). Lastly, the number of included
studies is low for some brain regions, such as the thalamus, and
there are a small number of studies examining antipsychotic-naïve
patients in all regions except the MFC, and so these sensitivity
analyses should be considered preliminary.
In summary, this meta-analysis demonstrates increased regional

variability in glutamatergic metabolites in schizophrenia in
addition to mean differences compared to controls. Increased
inter-individual differences in glutamatergic metabolites in
schizophrenia are likely to have a complex mechanistic basis.
Further work is also required to determine the clinical con-
sequences along the spectrum of glutamate dysregulation. Both
glutamatergic metabolite levels [12] and interindividual variability
appear to be greater in more symptomatic patients. Neurobiolo-
gical heterogeneity may also relate to heterogeneity in anti-
psychotic response in schizophrenia, and some studies have
shown that glutamatergic metabolite levels in the MFC, thalamus,
DLPFC and striatum associate with the degree of antipsychotic
response [15–24, 68, 73, 74]. Our findings are relevant to the on-
going effort to develop novel drug therapies to target glutamate
dysfunction in schizophrenia, as the presence of glutamatergic
heterogeneity may indicate the importance of targeting more
specific patient subgroups.
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